Skip to content

Заземления что такое – что это такое, как работает, виды заземления и заземлителей: глубинное, штыревое, рабочее, защитное, пластина ptce

Содержание

определение понятия, для чего нужно, как работает

Работа современного электрооборудования недопустима без грамотно организованной защиты от случайного поражения электрическим током. Для этих целей используются специальные устройства, которые называются заземляющими. Таким образом, заземление — это преднамеренно организованная система, обеспечивающая нормальные условия функционирования электрооборудования.

О заземлении простыми словами

Само понятие «заземление» происходит от слова «земля», то есть почва или грунт, назначение которых – служить отводом для опасных токов, стекающих по специально организованной цепи. Для ее образования необходимо неразрывное соединение всех частей защитной системы, которое начинается от точки контакта корпуса заземляющего элемента и заканчивается погруженным в землю элементом заземляющего устройства (ЗУ).

Внешний контур заземления частного дома (слева). Заземление внутри помещения (справа), заземляющий проводник указан пунктирной линией.

Согласно определениям, приводимым в техдокументации, заземление это есть преднамеренное электрическое соединение металлических корпусов агрегатов со специальным заземляющим контуром. Исходя из рассмотренных фактов, можно сделать вывод, что заземлением называют преднамеренный электрический контакт защищаемого оборудования с грунтом.

Требования к заземлению

После того как разобрались с тем, что является определением самого понятия заземления – можно перейти к тем категориям и нормам, которые вводятся действующими стандартами. Согласно ПУЭ к заземляющему устройству в первую очередь предъявляются следующие требования:

  • назначение ЗУ – эффективно отводить опасные токи в землю, для чего в их конструкции предусмотрен целый набор проводников и металлических прутьев;
  • заземлению подлежат все части электроустановки, включая металлические дверцы щитов;
  • суммарное переходное сопротивление контактов в системе заземления не должно превышать 4-30 Ом;
  • при ее обустройстве в распределенных нагрузках обязательно использование системы выравнивания потенциалов (ее назначение – устранить неравномерность распределения напряжений).

Дополнительная информация: Поскольку основное назначение заземления состоит в обеспечении безопасности работающего с оборудованием персонала – при его эксплуатации особое внимание уделяется надежности функционирования.

Качество его работы обеспечивается целым комплексом профилактических мероприятий и периодически организуемых испытаний.

Почему человека бьет током

Для того чтобы ответить на поставленный вопрос потребуется ознакомиться с неисправностями, периодически возникающими в действующем электрооборудовании. Дело в том, что в процессе его длительной эксплуатации возможно разрушение изоляции и появление контакта оголенного провода силового питания с корпусом электроустановки.

Если у эксплуатируемого оборудования нет заземления – это угрожает работающему с ним оператору ударом тока (фото слева). Подобный эффект возникает при случайном соприкосновении тела человека с токопроводящими частями стиральной машины или ванны, например.

Принцип работы заземления

После ознакомления с определением заземляющих систем и предъявляемым к ним требованиям следует разобраться, что такое заземление и для чего оно предназначается. Для этого, прежде всего, следует знать, что ноги человека через железобетонный пол всегда в какой-то мере контактируют с землей.

При касании человеком корпуса оборудования, находящегося под воздействием высокого потенциала, ток протекает через его тело и ноги в землю, то есть он является звеном в этой цепочке.

Обратите внимание: Опасными для человека являются даже небольшие токи, а при достижении ими величины 100 мА возможен смертельный исход.

Для того чтобы понять, как работает заземляющая система – следует учесть, что корпус электрооборудования через набор проводников и металлических штырей соединяют с грунтом (заземляют). Благодаря этому преднамеренному соединению критичный для человека потенциал снижается до безопасного уровня. При этом аварийные токи «стекают» через заземленный корпус на землю, минуя человеческое тело.

Из чего состоит конструкция заземляющего устройства

Сначала следует познакомиться с теми элементами, которые входят в состав его конструкции. Типовой заземляющий контур представляет собой сооружение из трех стальных заземлителей, вбитых в землю по углам траншеи, вырытой на глубину примерно 0,7-0,8 метра. Заземлителями могут быть стальные уголки или омедненные прутки.

Длина погруженной в почву части заземлителей должна быть не менее 2,5 метров. Точные значения этих параметров выбираются с учетом характера грунта в месте обустройства контура и климатических условий в данной местности. Подробно о заземляющем контуре и его монтаже вы можете узнать в нашей статье «Контур заземления, что собой представляет и как он работает».

Выступающие из земли на 10-15 см части стальных заготовок свариваются между собой металлическими пластинами шириной 40 мм (толщиной не менее 4-х мм). В верхней части одного из вертикальных электродов устраивается контактная зона в виде наваренного на него болта с резьбой. На ней посредством гайки крепится конец идущей от корпуса заземляемого прибора медной шины, сечение которой не должно быть менее 6 кв.мм.

Дополнительная информация: Для снижения сопротивления цепи стекания аварийного тока это соединение иногда делается сварным.

Внешний контур заземления

По завершении основных работ траншея с размещенной в ней конструкцией засыпается откинутой ранее землей, из которой удаляются камни и ненужный мусор.

Согласно требованиям ПУЭ любая заземляющая система должна соответствовать техническим нормативам в части предельно допустимого сопротивления току утечки. Его величина должна быть:

  1. менее 8 Ом в промышленных сетях с фазным напряжением 220/127 Вольт;
  2. менее 4 Ом для линейных напряжений 380 Вольт;
  3. не более 30 Ом в бытовых сетях (этот показатель считается предельно допустимым).

Прокладываемая от конструкции ЗУ медная жила вторым своим концом фиксируется на специальной планке, монтируемой на распределительном щитке объекта (дома, в частности). Ее называют главной заземляющей шиной (ГЗШ), а предназначается она для сборки всех защитных проводников в одном месте. Медные жилы расходятся от нее непосредственно к потребителям (через розетки  к корпусам приборов).

Естественное и искусственное заземление

Естественное заземление – это предмет или сооружение, которое имеет надежный контакт с землей в силу выполняемых им функций. К этой категории можно отнести:

  • водопроводные и отопительные трубы, проложенные непосредственно в земле;
  • любые металлические конструкции и их элементы, имеющие хороший контакт с почвой;
  • оболочки сварочных и подобных им кабелей;
  • металлические закладные и шпунты и т.п.

Стоит заметить! На обустройство функционального заземления в этом случае не потребуется специальных усилий, так как элементы естественного заземлителя уже готовы к подключению заземляющих проводников.

Естественные заземлители

В ситуации, когда такие системы найти не удается – приходится заниматься монтажом самодельных ЗУ.

Искусственным заземлением считается преднамеренно организованный электрический контакт двух тел, одним из которых является защищаемый прибор, а вторым – так называемый «заземляющий контур». Эта его составляющая представляет собой специальную распределенную (иногда – точечную) конструкцию на основе металлических стержней, размещаемых глубоко в земле.

Как правило, в качестве вертикально забиваемых электродов применяются стальные прутки диаметром до 12 мм, имеющие длину не менее 2,5 метра. Для обустройства горизонтальных перемычек, обеспечивающих электрический контакт двух тел, берутся металлические уголки 50x50x6 мм и длиной 2,5-3 метра (их можно заменить трубами диаметром порядка 6 мм и более).

Для чего нужно заземление Видео

Чтобы разобраться в том, зачем нужно заземление в доме – придется ознакомиться с его основным назначением. Как уже отмечалось в ранее представленном разделе, заземление служит для защиты человека от опасного потенциала, случайно оказавшегося на корпусе действующего оборудования. С порядком его работы и назначением проще всего ознакомиться на многочисленных примерах, представленных на видеороликах.

В заключение отметим, что понимание назначения заземления поможет сберечь здоровье работающих с электрооборудованием людей.

Заземление. Что это такое и как его сделать (часть 1) / Habr

Мой рассказ будет состоять из трёх частей.

1 часть. Заземление
(общая информация, термины и определения)

2 часть. Традиционные способы строительства заземляющих устройств
(описание, расчёт, монтаж)

3 часть. Современные способы строительства заземляющих устройств
(описание, расчёт, монтаж)

В первой части (теория) я опишу терминологию, основные виды заземления (назначение) и предъявляемые к заземлению требования.
Во второй части (практика) будет рассказ про традиционные решения, применяемые при строительстве заземляющих устройств, с перечислением достоинств и недостатков этих решений.
Третья часть (практика) в некотором смысле продолжит вторую. В ней будет содержаться описание новых технологий, используемых при строительстве заземляющих устройств. Как и во второй части, с перечислением достоинств и недостатков этих технологий.

Если читатель обладает теоретическими знаниями и интересуется только практической реализацией — ему лучше пропустить первую часть и начать чтение со второй части.

Если читатель обладает необходимыми знаниями и хочет познакомиться только с новинками — лучше пропустить первые две части и сразу перейти к чтению третьей.

Мой взгляд на описанные методы и решения в какой-то степени однобокий. Прошу читателя понимать, что я не выдвигаю свой материал за всеобъемлющий объективный труд и выражаю в нём свою точку зрения, свой опыт.

Некоторая часть текста является компромиссом между точностью и желанием объяснить “человеческим языком”, поэтому допущены упрощения, могущие “резать слух” технически подкованного читателя.



1 часть. Заземление
В этой части я расскажу о терминологии, об основных видах заземления и о качественных характеристиках заземляющих устройств.
А. Термины и определения
Б. Назначение (виды) заземления
Б1. Рабочее (функциональное) заземление
Б2. Защитное заземление
Б2.1. Заземление в составе внешней молниезащиты
Б2.2. Заземление в составе системы защиты от перенапряжения (УЗИП)
Б2.3. Заземление в составе электросети
В. Качество заземления. Сопротивление заземления.
В1. Факторы, влияющие на качество заземления
В1.1. Площадь контакта заземлителя с грунтом
В1.2. Электрическое сопротивление грунта (удельное)
В2. Существующие нормы сопротивления заземления
В3. Расчёт сопротивления заземления
А. Термины и определения
Чтобы избежать путаницы и непонимания в дальнейшем рассказе — начну с этого пункта.
Я приведу установленные определения из действующего документа “Правила Устройства Электроустановок (ПУЭ)” в последней редакции (глава 1.7 в редакции седьмого издания).
И попытаюсь “перевести” эти определения на “простой” язык.

Заземление — преднамеренное электрическое соединение какой-либо точки сети, электроустановки или оборудования с заземляющим устройством (ПУЭ 1.7.28).
Грунт является средой, имеющей свойство “впитывать” в себя электрический ток. Также он являться некоторой “общей” точкой в электросхеме, относительно которой воспринимается сигнал.

Заземляющее устройство — совокупность заземлителя/ заземлителей и заземляющих проводников (ПУЭ 1.7.19).
Это устройство/ схема, состоящее из заземлителя и заземляющего проводника, соединяющего этот заземлитель с заземляемой частью сети, электроустановки или оборудования. Может быть распределенным, т.е. состоять из нескольких взаимно удаленных заземлителей.

На рисунке оно показано толстыми красными линиями:


Заземлитель — проводящая часть или совокупность соединенных между собой проводящих частей, находящихся в электрическом контакте с грунтом (ПУЭ 1.7.15).

Проводящая часть — это металлический (токопроводящий) элемент/ электрод любого профиля и конструкции (штырь, труба, полоса, пластина, сетка, ведро 🙂 и т.п.), находящийся в грунте и через который в него “стекает” электрический ток от электроустановки.
Конфигурация заземлителя (количество, длина, расположение электродов) зависит от требований, предъявляемых к нему, и способности грунта “впитывать” в себя электрический ток идущий/ “стекающий” от электроустановки через эти электроды.

На рисунке он показан толстыми красными линиями:


Сопротивление заземления — отношение напряжения на заземляющем устройстве к току, стекающему с заземлителя в землю (ПУЭ 1.7.26).

Сопротивление заземления — основной показатель заземляющего устройства, определяющий его способность выполнять свои функции и определяющий его качество в целом.
Сопротивление заземления зависит от площади электрического контакта заземлителя (заземляющих электродов) с грунтом (“стекание” тока) и удельного электрического сопротивления грунта, в котором смонтирован этот заземлитель (“впитывание” тока).

Заземляющий электрод (электрод заземлителя) — проводящая часть, находящаяся в электрическом контакте с локальной землей (ГОСТ Р 50571.21-2000 п. 3.21)

Повторюсь: в качестве проводящей части может выступать металлический (токопроводящий) элемент любого профиля и конструкции (штырь, труба, полоса, пластина, сетка, ведро 🙂 и т.п.), находящийся в грунте и через который в него “стекает” электрический ток от электроустановки.

На рисунке они показаны толстыми красными линиями:


Далее определения, не встречающиеся или не описанные достаточно точно в стандартах и нормах, поэтому имеющие только мое описание.

Контур заземления — “народное” название заземлителя или заземляющего устройства, состоящего из нескольких заземляющих электродов (группы электродов), соединенных друг с другом и смонтированных вокруг объекта по его периметру/ контуру.

На рисунке объект обозначен серым квадратом в центре,
а контур заземления — толстыми красными линиями:


Удельное электрическое сопротивление грунта — параметр, определяющий собой уровень «электропроводности» грунта как проводника, то есть как хорошо будет растекаться в такой среде электрический ток от заземляющего электрода.
Это измеряемая величина, зависящая от состава грунта, размеров и плотности
прилегания друг к другу его частиц, влажности и температуры, концентрации в нем растворимых химических веществ (солей, кислотных и щелочных остатков).
Б. Назначение (виды) заземления
Заземление делится на два основных вида по выполняемой роли — на рабочее (функциональное) и защитное. Также в различных источниках приводятся дополнительные виды, такие как: “инструментальное”, “измерительное”, “контрольное”, “радио”.
Б1. Рабочее (функциональное) заземление
Это заземление точки или точек токоведущих частей электроустановки, выполняемое для обеспечения работы электроустановки (не в целях электробезопасности) (ПУЭ 1.7.30).

Рабочее заземление (электрический контакт с грунтом) используется для нормального функционирования электроустановки или оборудования, т.е. для их работы в ОБЫЧНОМ режиме.

Б2. Защитное заземление
Это заземление, выполняемое в целях электробезопасности (ПУЭ 1.7.29).

Защитное заземление обеспечивает защиту электроустановки и оборудования, а также защиту людей от воздействия опасных напряжений и токов, могущих возникнуть при поломках, неправильной эксплуатации техники (т.е. в АВАРИЙНОМ режиме) и при разрядах молний.
Также защитное заземление используется для защиты аппаратуры от помех при коммутациях в питающей сети и интерфейсных цепях, а также от электромагнитных помех, наведенных от работающего рядом оборудования.

Подробнее защитное назначение заземления можно рассмотреть на двух примерах:

  • в составе внешней молниезащитной системы в виде заземленного молниеприёмника
  • в составе системы защиты от импульсного перенапряжения
  • в составе электросети объекта
Б2.1. Заземление в составе молниезащиты
Молния — это разряд или другими словами «пробой», возникающий ОТ облака К земле, при накоплении в облаке заряда критической величины (относительно земли). Примерами этого явления в меньших масштабах является “пробой” (wiki) в конденсаторе и газовый разряд (wiki) в лампе.

Воздух — это среда с очень большим сопротивлением (диэлектрик), но разряд преодолевает его, т.к. обладает большой мощностью. Путь разряда проходит по участкам наименьшего сопротивления, таким как капли воды в воздухе и деревья. Этим объясняется корнеобразная структура молнии в воздухе и частое попадание молнии в деревья и здания (они имеют меньшее сопротивление, чем воздух в этом промежутке).
При попадании в крышу здания, молния продолжает свой путь к земле, также выбирая участки с наименьшим сопротивлением: мокрые стены, провода, трубы, электроприборы — таким образом представляя опасность для человека и оборудования, находящихся в этом здании.


Молниезащита предназначена для отвода разряда молнии от защищаемого здания/ объекта. Разряд молнии, идущий по пути наименьшего сопротивления попадает в металлический молниеприёмник над объектом, затем по металлическим молниеотводам, расположенным снаружи объекта (например, на стенах), спускается до грунта, где и расходится в нём (напоминаю: грунт является средой, имеющей свойство “впитывать” в себя электрический ток).

Для того, чтобы сделать молниезащиту «привлекательной» для молнии, а также для исключения распространения молниевых токов от деталей молниезащиты (приёмник и отводы) внутрь объекта, её соединение с грунтом производится через заземлитель, имеющий низкое сопротивление заземления.

Заземление в такой системе является обязательным элементом, т.к. именно оно обеспечивает полный и быстрый переход молниевых токов в грунт, не допуская их распространение по объекту.

Б2.2. Заземление в составе системы защиты от импульсного перенапряжения (УЗИП)
УЗИП предназначено для защиты электронного оборудования от заряда, накопленного на каком-либо участке линии/сети в результате воздействия электромагнитного поля (ЭМП), наведенного от рядом стоящей мощной электроустановки (или высоковольтной линии) или ЭМП, возникшего при близком (до сотен метров) разряде молнии.

Ярким примером этого явления является накопление заряда на медном кабеле домовой сети или на “пробросе” между зданиями во время грозы. В какой-то момент приборы, подключенные к этому кабелю (сетевая карта компьютера или порт коммутатора), не выдерживают «размера» накопившегося заряда и происходит электрический пробой внутри этого прибора, разрушающий его (упрощенно).
Для “стравливания” накопившегося заряда параллельно “нагрузке” на линию перед оборудованием ставит УЗИП.


Классический УЗИП представляет собой газовый разрядник (wiki), рассчитанный на определенный «порог» заряда, который меньше “запаса прочности” защищаемого оборудования. Один из электродов этого разрядника заземляется, а другой — подключается к одному из проводов линии/ кабеля.

При достижении этого порога внутри разрядника возникает разряд 🙂 между электродами. В результате чего накопленный заряд сбрасывается в грунт (через заземление).

Как и в молниезащите — заземление в такой системе является обязательным элементом, т.к. именно оно обеспечивает своевременное и гарантированное возникновение разряда в УЗИПе, не допуская превышение заряда на линии выше безопасного для защищаемого оборудования уровня.

Б2.3. Заземление в составе электросети
Третий пример защитной роли заземления — это обеспечение безопасности человека и электрооборудования при поломках/ авариях.

Проще всего такая поломка описывается замыканием фазного провода электросети на корпус прибора (замыкание в блоке питания или замыкание в водонагревателе через водную среду). Человек, коснувшийся такого прибора, создаст дополнительную электрическую цепь, через которую побежит ток, вызывающий в теле повреждения внутренних органов — прежде всего нервной системы и сердца.

Для устранения таких последствий используется соединение корпусов с заземлителем (для отвода аварийных токов в грунт) и защитные автоматические устройства, за доли секунды отключающие ток при аварийной ситуации.

Например, заземление всех корпусов, шкафов и стоек телекоммуникационного оборудования.

В. Качество заземления. Сопротивление заземления.
Для корректного выполнения заземлением своих функций оно должно иметь определенные параметры/ характеристики. Одним из главных свойств, определяющих качество заземления, является сопротивление растеканию тока (сопротивление заземления), определяющее способность заземлителя (заземляющих электродов) передавать токи, поступающие на него от оборудования в грунт.
Это сопротивление имеет конечные значения и в идеальном случае представляет собой нулевую величину, что означает отсутствие какого-либо сопротивления при пропускании «вредных» токов (это гарантирует их ПОЛНОЕ поглощение грунтом).
В1. Факторы, влияющие на качество заземления
Сопротивление в основном зависит от двух условий:
  • площадь ( S ) электрического контакта заземлителя с грунтом
  • электрическое сопротивление ( R ) самого грунта, в котором находятся электроды

В1.1. Площадь контакта заземлителя с грунтом.
Чем больше будет площадь соприкосновения заземлителя с грунтом, тем больше площадь для перехода тока от этого заземлителя в грунт (тем более благоприятные условия создаются для перехода тока в грунт). Это можно сравнить с поведением автомобильного колеса на повороте. Узкая покрышка имеет небольшую площадь контакта с асфальтом и легко может начать скользить по нему, “отправив” автомобиль в занос. Широкая покрышка, да еще и немного спущенная, имеет много бОльшую площадь контакта с асфальтом, обеспечивая надежное сцепление с ним и, следовательно, надежный контроль за движением.(Пример оказался неграмотным. Спасибо SVlad — комментарий: habrahabr.ru/post/144464/#comment_4854521)

Увеличить площадь контакта заземлителя с грунтом можно либо увеличив количество электродов, соединив их вместе (сложив площади нескольких электродов), либо увеличив размер электродов. При применении вертикальных заземляющих электродов последний способ очень эффективен, если глубинные слои грунта имеют более низкое электрическое сопротивление, чем верхние.

В1.2. Электрическое сопротивление грунта (удельное)
Напомню: это величина, определяющая — как хорошо грунт проводит ток через себя. Чем меньшее сопротивление будет иметь грунт, тем эффективнее/ легче он будет “впитывать” в себя ток от заземлителя.

Примерами грунтов, хорошо проводящих ток, является солончаки или сильно увлажненная глина. Идеальная природная среда для пропускания тока — морская вода.
Примером “плохого” для заземления грунта является сухой песок.

(Если интересно, можно посмотреть таблицу величин удельного сопротивления грунтов, используемых в расчётах заземляющих устройств).

Возвращаясь к первому фактору и способу уменьшения сопротивления заземления в виде увеличения глубины электрода можно сказать, что на практике более чем в 70% случаев грунт на глубине более 5 метров имеет в разы меньшее удельное электрическое сопротивление, чем у поверхности, за счет большей влажности и плотности. Часто встречаются грунтовые воды, которые обеспечивают грунту очень низкое сопротивление. Заземление в таких случаях получается очень качественным и надежным.
В2. Существующие нормы сопротивления заземления
Так как идеала (нулевого сопротивления растеканию) достигнуть невозможно, все электрооборудование и электронные устройства создаются исходя из некоторых нормированных величин сопротивления заземления, например 0.5, 2, 4, 8, 10, 30 и более Ом.

Для ориентирования приведу следующие значения:

  • для подстанции с напряжением 110 кВ сопротивление растеканию токов должно быть не более 0,5 Ом (ПУЭ 1.7.90)
  • при подключении телекоммуникационного оборудования, заземление обычно должно иметь сопротивление не более 2 или 4 Ом
  • для уверенного срабатывания газовых разрядников в устройствах защиты воздушных линий связи (например, локальная сеть на основе медного кабеля или радиочастотный кабель) сопротивление заземления, к которому они (разрядники) подключаются должно быть не более 2 Ом. Встречаются экземпляры с требованием в 4 Ом.
  • у источника тока (например, трансформаторной подстанции) сопротивление заземления должно быть не более 4 Ом при линейном напряжении 380 В источника трехфазного тока или 220 В источника однофазного тока (ПУЭ 1.7.101)
  • у заземления, использующегося для подключения молниеприёмников, сопротивление должно быть не более 10 Ом (РД 34.21.122-87, п. 8)
  • для частных домов, с подключением к электросети 220 Вольт / 380 Вольт:
    • при использовании системы TN-C-S необходимо иметь локальное заземление с рекомендованным сопротивлением не более 30 Ом (ориентируюсь на ПУЭ 1.7.103)
    • при использовании системы TT (изолирование заземления от нейтрали источника тока) и применении устройства защитного отключения (УЗО) с током срабатывания 100 мА необходимо иметь локальное заземление с сопротивлением не более 500 Ом (ПУЭ 1.7.59)
В3. Расчёт сопротивления заземления
Для успешного проектирования заземляющего устройства, имеющего необходимое сопротивление заземления, применяются, как правило, типовые конфигурации заземлителя и базовые формулы для расчётов.

Конфигурация заземлителя обычно выбирается инженером на основании его опыта и возможности её (конфигурации) применения на конкретном объекте.

Выбор формул расчёта зависит от выбранной конфигурации заземлителя.
Сами формулы содержат в себе параметры этой конфигурации (например, количество заземляющих электродов, их длину, толщину) и параметры грунта конкретного объекта, где будет размещаться заземлитель. Например, для одиночного вертикального электрода эта формула будет такой:

Точность расчёта обычно невысока и зависит опять же от грунта — на практике расхождения практических результатов встречается в почти 100% случаев. Это происходит из-за его (грунта) большой неоднородности: он изменяется не только по глубине, но и по площади — образуя трёхмерную структуру. Имеющиеся формулы расчёта параметров заземления с трудом справляются с одномерной неоднородностью грунта, а расчёт в трёхмерной структуре сопряжен с огромными вычислительными мощностями и требует крайне высокую подготовку оператора.
Кроме того, для создания точной карты грунта необходимо произвести большой объем геологических работ (например, для площади 10*10 метров необходимо сделать и проанализировать около 100 шурфов длиной до 10 метров), что вызывает значительное увеличение стоимости проекта и чаще всего не возможно.

В свете вышесказанного почти всегда расчёт является обязательной, но ориентировочной мерой и обычно ведётся по принципу достижения сопротивления заземления “не более, чем”. В формулы подставляются усредненные значения удельного сопротивления грунта, либо их наибольшие величины. Это обеспечивает “запас прочности” и на практике выражается в заведомо более низких (ниже — значит лучше) значениях сопротивления заземления, чем ожидалось при проектировании.

Строительство заземлителей
При строительстве заземлителей чаще всего применяются вертикальные заземляющие электроды. Это связано с тем, что горизонтальные электроды трудно заглубить на большую глубину, а при малой глубине таких электродов — у них очень сильно увеличивается сопротивление заземления (ухудшение основной характеристики) в зимний период из-за замерзания верхнего слоя грунта, приводящее к большому увеличению его удельного электрического сопротивления.

В качества вертикальных электродов почти всегда выбирают стальные трубы, штыри/ стержни, уголки и т.п. стандартную прокатную продукцию, имеющую большую длину (более 1 метра) при сравнительно малых поперечных размерах. Этот выбор связан с возможностью легкого заглубления таких элементов в грунт в отличии, например, от плоского листа.

Подробнее о строительстве — в следующих частях.

Продолжение:


Алексей Рожанков, специалист технического центра "ZANDZ.ru"

При подготовке данной части использовались следующие материалы:

  • Публикации на сайте “Заземление на ZANDZ.ru”
  • Правила Устройства Электроустановок (ПУЭ), часть 1.7 в редакции седьмого издания (гуглить)
  • ГОСТ Р 50571.21-2000 (МЭК 60364-5-548-96)
    Заземляющие устройства и системы уравнивания электрических потенциалов в электроустановках, содержащих оборудование обработки информации (гуглить)
  • Инструкция по устройству молниезащиты зданий и сооружений РД 34.21.122-87 (гуглить)
  • Собственный опыт и знания

виды, защитное заземление, заземляющее устройство

Защитное заземление -- это система, созданная для предупреждения воздействия электрического тока на человека, путём преднамеренного соединения с землёй корпуса и нетоковедущих частей оборудования, которые могут оказаться под напряжением. Системы заземления могут быть естественными и искусственными.

Какие виды систем заземления существуют и что такое защитное заземление?

Какие виды систем заземления существуют и что такое защитное заземление?

Что такое заземление и зачем оно нужно?

Заземляющие устройства представляют собой преднамеренное соединение проводниками электрического типа различных точек электросети.

Назначение заземления заключается в предотвращении воздействия электрического тока на человека. Ещё одно назначение защитного заземления -- отведение напряжения с корпуса электроустановки через устройство заземления на землю.

Основная цель применения заземления -- снижение уровня потенциала между точкой, которая заземляется и землёй. Тем самым понижается сила тока до наименьшего уровня и уменьшается количество поражающих факторов при соприкосновении с деталями электрических приборов и установок, в которых произошел пробой на корпус.

Что такое нейтраль?

Нейтраль -- это нулевой защитный проводник, который соединяет между собой нейтрали электроустановок в трехфазных сетях электрического тока. Сфера использования -- зануление электроустановок.

Понижающая подстанция, где находится трансформаторная установка, оснащена своим контуром заземления. Этот контур состоит из стальной шины и прутов, закопанных специальным образом в землю. К источникам потребления в электрощиток от подстанции проложен кабель, имеющий 4 жилы. Когда потребителю электроэнергии нужно питание от цепи трехфазного типа, то все 4 жилы должны быть подключены. Когда к жилам подключается разная нагрузка, в системе происходит смещение нейтрали, чтобы предотвратить это смещение, используется нулевой проводник. Он помогает симметрично распределить нагрузку на все фазы.

Что такое PE и PEN проводники?

PEN-проводник -- это проводник, совмещающий в себе функции нулевого защитного и нулевого рабочего проводника. Он идет от подстанции и разделяется на PE и N проводники, непосредственно у потребителя.

PE-проводник -- это защитное заземление, которое мы используем, например,  в квартире в розетке с заземлением. PE-проводник используется для заземления устройств, установок и приборов, где уровень напряжения не превышает 1 кВ.

Данный тип заземления используется только для гарантии безопасности. Такое заземление обеспечивает непрерывное соединение всех открытых и внешних деталей. Механизм обеспечивает стекание тока на землю, которое появилось вследствии попадания электрического тока на корпус какого-либо устройства.

PEN-проводник (объединение нулевого защитного и нулевого рабочего проводника) применяется при использовании системы заземления типа TN-C.

shema-razdeleniya-pen-provodnika-na-re-i-n

shema-razdeleniya-pen-provodnika-na-re-i-n

Виды систем искусственного заземления

В классификации систем заземления есть естественные и искусственные типы заземления.

Системы заземления искусственного типа:

Виды заземления -- расшифровка названия:

  • T -- заземление;
  • N -- подсоединение проводника к нейтрали;
  • I -изолирование;
  • C -- объединение опций функционального и нулевого провода защитного типа;
  • S -- раздельное использование проводов.

Многих людей интересует вопрос о том, что называют рабочим заземлением. По-другому его называют функциональным. Ответ на данный вопрос даёт пункт 1.7.30 ПУЭ. Это заземлерие точек токоведущих частей электрической установки. Применяется для обеспечения функционирования электрических приборов или установок, а не в защитных целях.

Также многих волнует вопрос о том, а что такое защитное заземление. Это процесс заземления устройств с целью обеспечения электробезопасности.

Системы с глухозаземленной нейтралью системы заземления TN

К таким системам относятся:

Согласно п. 1.7.3 ПУЭ TN-система -- система, в которой нейтраль источника питания глухо заземлена, а открытые проводящие части электроустановки присоединены к глухозаземленной нейтрали источника посредством нулевых защитных проводников.

TN включает в себя такие элементы, как:

  • заземлитель средней точки, которая относится к источнику питания;
  • внешние проводящие части устройства;
  • проводник нейтрального типа;
  • совмещенные проводники.

Нейтраль источника глухо заземлена, а внешние проводники установки подключены к глухозаземленной средней точке источника при помощи проводников защитного типа.

Сделать заземляющий контур можно только в электроустановках, мощность которых не превышает 1 кВ.

Система TN-C

В данной системе нулевой защитный и нулевой рабочий проводники, объединены в один PEN проводник. Они совмещены на всем протяжении системы. Полное название -- Terre-Neutre-Combine.

Среди преимуществ TN-C можно выделить только легкий монтаж системы, который не требует больших усилий и денежных затрат. Для монтажа не требуется улучшение уже установленных кабельных и воздушных линий электропередачи, у которых есть всего 4 проводящих устройства.

Недостатки:

  • возрастает вероятность получения удара током;
  • возможно появление линейного напряжения на корпусе электрической установки во время обрыва электрической цепи;
  • высокая вероятность потери заземляющей цепи в случае повреждения проводящего устройства;
  • такая система защищает только от короткого замыкания.

Система TN-S

Особенность системы заключается в том, что электричество поставляется к потребителям через 5 проводников в трехфазной сети и через 3 проводника в однофазной сети.

Всего от сети отходит 5 проводящих источников, 3 из которых выполняют функцию силовой фазы, а оставшиеся 2 -- это нейтральные проводники, подсоединенные к нулевой точке.

Конструкция:

  1. PN -- нейтральный механизм, который задействован в схеме электрического оборудования.
  2. PE -- глухозаземленный проводник, выполняющий защитную функцию.

Преимущества:

  • легкость монтажа;
  • низкая стоимость покупки и содержания системы;
  • высокая степень электробезопасности;
  • не требуется создание контура;
  • возможность использовать систему в качестве устройства от защиты утечки тока.

sistema-tn-s

sistema-tn-s

Система TN-C-S

TN-C-S система предполагает разделение проводника PEN на PE и N в каком-то участке цепи. Обычно разделение происходит в щитке в доме, а до этого они совмещены.

Достоинства:

  • простое устройство защитного механизма от попадания молний;
  • наличие защиты от короткого замыкания.

Минусы использования:

  • слабый уровень защиты от сгорания нулевого проводника;
  • возможность появления фазного напряжения;
  • высокая стоимость монтажа и содержания;
  • напряжение не может быть отключено автоматикой;
  • отсутствует защита от тока на открытом воздухе.

sistema-tn-c-s

sistema-tn-c-s

Система TT

TT разработана для обеспечения высокого уровня безопасности. Устанавливается на электростанциях с низким уровнем технического состояния, например, где используются оголенные провода, электроустановки, которые расположены на открытом воздухе или закреплены на опорах.

TT монтируется по схеме четырех проводников:

  • 3 фазы, подающие напряжение, смещаются под углом 120° между собой;
  • 1 общий ноль выполняет совмещенные функции рабочего и защитного проводника.

Преимущества TT:

  • высокий уровень устойчивости к деформации провода, ведущего к потребителю;
  • защита от КЗ;
  • возможность использования на электроустановках высокого напряжения.

Недостатки:

  • сложное устройство защиты от молний;
  • невозможность отследить фазы короткого замыкания электрической цепи.

sistema-tt

sistema-tt

Системы с изолированной нейтралью

В ходе передачи и распределения электрического тока на потребителей применяется трехфазная система. Это дает возможность обеспечить симметричность и равномерное распределение нагрузки по току.

Такое устройство создает режим, предусматривающий использование трансформаторной будки и генераторов. Их нейтральные точки не оснащены контуром заземления.

Изолированный тип нейтрали применяется в схеме питания при соединении вторичных обмоток трансформаторных установок по схеме треугольника и при отсутствии питания во время аварийный ситуаций. Такая сеть представляет собой замещающую цепь.

Изолированная нейтраль способствует пробиванию изоляционного покрытия при коротком замыкании и возникновению короткого замыкания на других фазах.

Система IT

Система IT с напряжением до 1000 В обеспечивает заземление через высокий уровень сопротивления и оснащена нейтралью источника питания.

Все внешние элементы электроустановки, которые выполнены из материалов, проводящих ток, заземляются. Среди преимуществ можно выделить невысокие показатели утечки тока во время однофазного КЗ электрической сети. Установка с таким механизмом может функционировать долгое время даже при аварийных ситуациях. Между потенциалами отсутствует разность.

Недостаток: защита от тока не срабатывает при замыкании на землю. Во время работы в режиме однофазного КЗ возрастает вероятность поражения током при прикосновении ко второй фазе установки.

устройство, принцип действия и назначение

Электричество – лучший друг и злейший враг человека. Безусловно, сейчас представить без него жизнь практически невозможно. К сожалению, не обошлось и без плохих моментов, таких как поражение электрическим током. Вас может ударить током, если вы коснетесь не только оголенной токоведущей части, но и безобидного с виду корпуса электроприбора. В этой статье мы постараемся объяснить простым языком, что такое заземление и для чего оно предназначено. Кроме того мы рассмотрим, что такое дифавтомат и УЗО и для чего их используют.

Определение понятия

Если сказать кратко и простыми словами, то:

Заземление – это устройство, которое защищает человека от поражения электрическим током, если всё электрооборудование соединено с землей. В аварийной ситуации опасное напряжение «стекает» на землю.

Защита – основное назначение заземления. Оно заключается в подключении дополнительного, третьего заземляющего проводника в проводку, который соединен с таким устройством, как заземлитель. Он, в свою очередь, имеет хороший контакт с землей.

Заземлитель

Заземление бывает рабочим и защитным по назначению. Рабочее нужно для нормального функционирования электроустановки, защитное нужно для обеспечения электробезопасности (предотвращения поражения электрическим током).

Обычно заземление (заземлитель) выглядит как три электрических прута вбитых в землю, на одинаковом расстоянии друг от друга, расположенных в углах равностороннего треугольника. Эти пруты соединены между собой металлической полосой. Вы могли видеть такие пруты около домов и сооружений.

Заземляющий контур

Также вы могли заметить, что на стенах многих зданий внутри или снаружи закреплены металлические полосы, иногда выкрашенные желтыми и зелеными чередующимися полосами – это заземляющая шина, она тоже соединена с заземлителем. Заземляющая шина нужна для того, чтобы не тянуть от каждой электроустановки заземляющий провод.

Третий проводник обычно соединяется с корпусом электрических приборов, обеспечивая защиту от появления на нем опасного напряжения. В кабелях он обычно имеет меньшее сечение, чем соседние «рабочие» жилы и другой цвет изоляции – желто-зеленый.

О том, какие виды заземления бывают, вы можете узнать из нашей отдельной статьи: https://samelectrik.ru/osnovnye-tipy-sistem-zazemlenija.html

Требования к заземлению

Требования к защитному заземляющему контуру заключаются в следующем:

  1. Заземлены должны быть все электроустановки, в том числе металлические дверцы электрошкафов и щитов.
  2. Сопротивление заземляющего устройства не должно превышать 4 Ом в электроустановках с заземляющей нейтралью.
  3. Необходимо использовать системы уравнивания потенциалов.

Мы разобрались что такое заземление, теперь поговорим о том для чего оно нужно.

Почему человека бьёт током

Рассмотрим две типовых ситуации, когда вас бьет током:

  1. Стиральная машинка исправно выполняла свою работы, а когда вы захотели её отключить – почувствовали, что её корпус «щипает» вас. Или еще хуже, когда вы к ней прикоснулись – вас серьезно «дёрнуло».
  2. Вы решили принять ванну, включили воду, взявшись за кран, вы почувствовали такое же действие электричества – пощипывание или сильный удар.

Система уравнивания потенциалов

И та и другая ситуация решается подключением заземления к корпусам приборов и всех металлических частей в ванной комнате и установкой УЗО или дифференциального автомата на вводе электроэнергии в дом или на группу потребителей.

Как работает заземление

Для начала разберемся, почему на корпусе стиральной машинки или другого электрооборудования появилось опасное напряжение. Всё достаточно просто – изоляция проводников по какой-то причине испортилась или повредилась и поврежденный участок касается металлического корпуса какой-то из деталей оборудования.

Если заземление или зануление электрооборудования отсутствует, то при касании человеком поврежденного прибора может возникнуть напряжение прикосновения (разность потенциалов на поверхности между точками касания). При нахождении рядом с поврежденным оборудованием может возникнуть шаговое напряжение (разность потенциалов между ступнями, соприкасающимися с землей). Напряжение прикосновения и шаговое напряжение могут иметь опасное для человека значение. Чтобы уменьшить их значение до безопасной величины, применяется защитное заземление.

Для человека опасны даже такие маленькие значения как 50 мА – такой ток может привести к фибрилляции желудочков сердца и смерти.

Так вот принцип работы заземления заключается в следующем: к заземлителю подключаются корпуса всех электроприборов, дополнительно устанавливается УЗО. В случае возникновения опасного напряжения на корпусе заземление всегда притягивает опасный потенциал к безопасному потенциалу земли и напряжение «стекает» на заземление.

Для чего применяются УЗО и дифавтоматы

Простое заземление устройств – это хорошо, но еще лучше обеспечить дополнительную защиту. Для этого придумали устройство защитного отключения (УЗО) и дифференциальные автоматы.

Дифавтомат – это устройство, которое в своём корпусе объединяет УЗО и обычный автоматический выключатель, так вы сэкономите место в электрощите.

Дифференциальный автомат

УЗО – реагирует только на токи утечки. Принцип его работы такой: оно сравнивает количество тока через фазный и через нулевой провод, если часть тока утекла на землю, то оно моментально реагирует, отключая цепь. Их отличают по чувствительности от 10 до 500 мА. Чем чувствительнее УЗО, тем чаще оно будет срабатывать, даже при незначительных утечках, но не стоит устанавливать слишком грубое УЗО для дома.

Принцип работы защищенной цепи простым языком:

Когда на корпус заземленного электрооборудования попадает фаза, между фазным проводом и корпусом начинает протекать ток. Тогда УЗО замечает, что по фазному проводу прошел ток, часть тока куда-то делать и по нулевому проводу вернулся меньший ток, после чего эта цепь обестачивается. Так вы защищены от удара током.

Если установить УЗО в двухпроводной электроцепи без заземляющего проводника и где-то появится возможность утечки тока, оно сработает только после того как вы коснетесь этого места и ток утечет на землю через вас. В таком случае вы тоже будете в безопасности.

Также рекомендуем просмотреть видео, на котором более подробно рассказывается, для чего нужно заземление электроприборов:

Это и все, что мы хотели рассказать касаемо данного вопроса. Теперь вы знаете, что такое заземление, когда и как оно устанавливается и для чего служит. Надеемся, информация была изложена для вас понятно и доступно!

Что такое заземление и для чего оно предназначено?

Заземление - важная часть электрической системы, однако оно нужно далеко не везде. Зачем нужно заземление в розетке и что оно дает - читайте в публикации.

 

Определение понятия

Если сказать кратко и простыми словами, то:

Заземление – это устройство, которое защищает человека от поражения электрическим током, если всё электрооборудование соединено с землей. В аварийной ситуации опасное напряжение «стекает» на землю.

Защита – основное назначение заземления. Оно заключается в подключении дополнительного, третьего заземляющего проводника в проводку, который соединен с таким устройством, как заземлитель. Он, в свою очередь, имеет хороший контакт с землей.

Заземление бывает рабочим и защитным по назначению. Рабочее нужно для нормального функционирования электроустановки, защитное нужно для обеспечения электробезопасности (предотвращения поражения электрическим током).

Обычно заземление (заземлитель) выглядит как три электрических прута вбитых в землю, на одинаковом расстоянии друг от друга, расположенных в углах равностороннего треугольника. Эти пруты соединены между собой металлической полосой. Вы могли видеть такие пруты около домов и сооружений.

Также вы могли заметить, что на стенах многих зданий внутри или снаружи закреплены металлические полосы, иногда выкрашенные желтыми и зелеными чередующимися полосами – это заземляющая шина, она тоже соединена с заземлителем. Заземляющая шина нужна для того, чтобы не тянуть от каждой электроустановки заземляющий провод.

Третий проводник обычно соединяется с корпусом электрических приборов, обеспечивая защиту от появления на нем опасного напряжения. В кабелях он обычно имеет меньшее сечение, чем соседние «рабочие» жилы и другой цвет изоляции – желто-зеленый.

Требования к заземлению

Требования к защитному заземляющему контуру заключаются в следующем:

  1. Заземлены должны быть все электроустановки, в том числе металлические дверцы электрошкафов и щитов.
  2. Сопротивление заземляющего устройства не должно превышать 4 Ом в электроустановках с заземляющей нейтралью.
  3. Необходимо использовать системы уравнивания потенциалов.

Мы разобрались что такое заземление, теперь поговорим о том для чего оно нужно.

Почему человека бьёт током

Рассмотрим две типовых ситуации, когда вас бьет током:

  1. Стиральная машинка исправно выполняла свою работы, а когда вы захотели её отключить – почувствовали, что её корпус «щипает» вас. Или еще хуже, когда вы к ней прикоснулись – вас серьезно «дёрнуло».
  2. Вы решили принять ванну, включили воду, взявшись за кран, вы почувствовали такое же действие электричества – пощипывание или сильный удар.

И та и другая ситуация решается подключением заземления к корпусам приборов и всех металлических частей в ванной комнате и установкой УЗО или дифференциального автомата на вводе электроэнергии в дом или на группу потребителей.

Как работает заземление

Для начала разберемся, почему на корпусе стиральной машинки или другого электрооборудования появилось опасное напряжение. Всё достаточно просто – изоляция проводников по какой-то причине испортилась или повредилась и поврежденный участок касается металлического корпуса какой-то из деталей оборудования.

Если у вас нет заземления или зануления корпус поврежденного устройства для электрической цепи ничего собой не представляет, пока вы его не коснетесь, конечно. Вы подходите к прибору, стоите на полу, пол имеет хоть и слабый, но какой-то контакт с землей. При прикосновении к корпусу ток начинает протекать через вас в землю. Для протекания тока нужна разность потенциалов, а потенциал фазного провода всегда больше потенциала земли. Получается, что вы замыкаете фазный провод на землю своим телом.

Для человека опасны даже такие маленькие значения как 50 мА – такой ток может привести к фибрилляции желудочков сердца и смерти.

Так вот принцип работы заземления заключается в следующем: к заземлителю подключаются корпуса всех электроприборов, дополнительно устанавливается УЗО. В случае возникновения опасного напряжения на корпусе заземление всегда притягивает опасный потенциал к безопасному потенциалу земли и напряжение «стекает» на заземление.

Для чего применяются УЗО и дифавтоматы

Простое заземление устройств – это хорошо, но еще лучше обеспечить дополнительную защиту. Для этого придумали устройство защитного отключения (УЗО) и дифференциальные автоматы.

Дифавтомат – это устройство, которое в своём корпусе объединяет УЗО и обычный автоматический выключатель, так вы сэкономите место в электрощите.

УЗО – реагирует только на токи утечки. Принцип его работы такой: оно сравнивает количество тока через фазный и через нулевой провод, если часть тока утекла на землю, то оно моментально реагирует, отключая цепь. Их отличают по чувствительности от 10 до 500 мА. Чем чувствительнее УЗО, тем чаще оно будет срабатывать, даже при незначительных утечках, но не стоит устанавливать слишком грубое УЗО для дома.

 

Принцип работы защищенной цепи простым языком:

Когда на корпус заземленного электрооборудования попадает фаза, между фазным проводом и корпусом начинает протекать ток. Тогда УЗО замечает, что по фазному проводу прошел ток, часть тока куда-то делать и по нулевому проводу вернулся меньший ток, после чего эта цепь обестачивается. Так вы защищены от удара током.

Если установить УЗО в двухпроводной электроцепи без заземляющего проводника и где-то появится возможность утечки тока, оно сработает только после того как вы коснетесь этого места и ток утечет на землю через вас. В таком случае вы тоже будете в безопасности.

Все действия описанные в данной статье, можно выполнить и самому, но, как мы уже говорили, будет лучше, если их произведут квалифицированные электрики, которые знают все правила проведения монтажных работ, а также технику безопасности  

Зачем нужно заземление - просто о сложном

заземляем элетричество Наличие заземляющего контакта в современных электророзетках стало привычным делом. Ему соответствует контакт на вилке любого электроприбора. Попробуем разобраться, зачем нужно заземление.

Что такое заземление

Заземлением называют подключение токопроводящих элементов, в норме не пребывающих под напряжением, к заземлителю — заглубленной в грунт металлической конструкции с низким электрическим сопротивлением. В качестве упомянутых токопроводящих элементов могут выступать металлический корпус электроустановки, рабочие органы машин или бытовых приборов и т.д.

Также заземляют экранирующие оплетки электрических кабелей.

Для чего нужно заземление

В зависимости от назначения, различают несколько видов заземления:
  • защитное;
  • функциональное;
  • для молниезащиты.

Защитное заземление обеспечивает безопасную эксплуатацию электроустановок.

Функциональное используется для работы прибора или схемы — играет ту же роль, что и нулевой проводник в электросети.

В системах молниезащиты заземлитель подключается к молниеприемнику.

Принцип работы

Контур заземления функционирует за счет способности грунта поглощать электрический заряд. Если корпус оборудования в результате пробоя изоляции оказался под напряжением, то заряд будет стекать в землю. Когда пользователь коснется корпуса, ток все равно будет двигаться по пути наименьшего сопротивления, то есть через заземление, а не через тело человека. Не будь заземления, в подобной ситуации пользователь получил бы электротравму.

Условием нормального функционирования заземления является низкое сопротивление заземлителя. Эта величина зависит от параметров грунта:

  • плотность;
  • влажность;
  • соленость;
  • площадь контакта с заземлителем.

Способность грунта впитывать заряд сильно падает при замерзании. Поэтому штыри заземлителя вбивают на глубину ниже отметки промерзания, зависящей от широты местности. Данные о глубине промерзания грунта для разных регионов Российской Федерации приведены в СНиП «Строительная климатология».

заземлен и не заземлен

Наглядная демонстрация заземления

На каменистых, песчаных и вечномерзлых грунтах, в которые сложно заглубиться, применяют электролитические заземлители из Г-образной перфорированной трубы. Внутри содержится реагент, формирующий соленую среду. Последняя характеризуется высокой проводимостью и низкой температурой замерзания. Длинную часть заземлителя закапывают в неглубокую траншею, короткую выводят на поверхность. Ее используют трояко:

Другой современный вариант заземлителя — модульный. Состоит из множества секций, соединяемых резьбовым или иным способом. По мере забивания в грунт навинчиваются все новые и новые секции. Так что такой заземлитель, в отличие от классического из нескольких штырей, можно установить на любую глубину. Соединяют секции по особым правилам и с применением токопроводящей пасты. При забивании используют особую насадку, защищающую резьбу от повреждений. Модули выполнены из стали и покрыты медью или цинком, отчего их сопротивление падает, а срок службы увеличивается.

Электролитический и модульный заземлители стоят дорого, потому их традиционные аналоги остаются востребованными. Штыри в такой конструкции располагают по-разному:

  • в вершинах равностороннего треугольника рядом с объектом;
  • по углам объекта;
  • по периметру объекта.

Число стержней и расстояние между ними определяются расчетом.

Сопротивление заземлителя периодически проверяют. Максимально допустимая величина — 30 Ом.

Совокупная защита заземляющих устройств и предохранителей

Заземление не только отводит опасный ток, но при наличии аппарата защиты вызывает отключение аварийного оборудования. При контакте фазного проводника с заземленным корпусом сеть работает в режиме, близком к короткому замыканию (КЗ), сопровождающемся резким увеличением силы тока в цепи. На это реагирует выключатель автоматический (ВА), обязательно устанавливаемый на вводе электрической линии на объект.

Правда, подобное возможно лишь при очень низком сопротивлении заземлителя, что бывает крайне редко. В большинстве случаев вероятность отключения ВА довольно низкая. К примеру, при сопротивлении заземлителя в 10 Ом ток в цепи составит I = 220 / 10 = 22 А. Автоматы, согласно требованиям ГОСТ, выдерживают в течение часа ток, в 1,42 раза превышающий номинальное значение. То есть автомат на 16 А при силе тока в 22 А не отключится в течение почти 60-ти мин (16 * 1,42 = 22,72 А).

работа заземления

Схема заземления

Более надежный автомат защиты — выключатель дифференциального тока или устройство предохранительного отключения (УЗО). Этот прибор сравнивает токи в фазном и нулевом проводниках и при обнаружении разницы, свидетельствующей об утечке, разъединяет цепь. По чувствительности, то есть минимальной величине утечки тока, вызывающей срабатывание, УЗО делятся на несколько категорий:

  1. Защищающие от поражения электротоком: 10 мА – устанавливаются в помещениях с высокой влажностью и 30 мА – в сухих.
  2. Противопожарные – на 100, 300 и 500 мА.

Противопожарные УЗО применяют на объектах, где короткое замыкание может вызвать пожар. Ими защищают участки сети, где поражение током практически исключено, например, цепи освещения.

УЗО и ВА не являются взаимозаменяемыми. ВА защищает от коротких замыканий и перегрузок, УЗО — от поражения электротоком. В идеале ввод и каждая группа потребителей должны быть защищены и ВА, и УЗО.

Заземленное неэлектрическое оборудование

К заземлителю подключаются и конструкции, никак с электричеством не связанные:

  1. Ограждения и прочие конструкции на эстакадах и галереях, в которых при разряде молнии на близком расстоянии наводится опасная разность потенциалов. То же может произойти с трубопроводом или емкостью, содержащими горючее вещество. Из-за наведенного напряжения возможно искрение с последующим взрывом, потому такие конструкции также заземляют.
  2. Изделия, в которых в процессе эксплуатации накапливается статический заряд. В основном это трубопроводы и емкости: статическое электричество образуется из-за трения частиц транспортируемой среды. По этой причине ограничивают скорость подачи топлива в авиалайнеры.
  3. Трубопроводы значительной протяженности. В соответствии с законом электромагнитной индукции, в таких трубопроводах при изменении магнитного поля Земли, а оно всегда нестабильно под действием солнечного ветра, образуются так называемые блуждающие токи. Потому их подключают с определенным шагом к заземлителям.

Отличие от зануления

Занулением называют подключение токопроводящих частей электроустановки к глухозаземленной нейтрали источника тока (к нулевой жиле). Ее сопротивление намного меньше сопротивления заземлителя. Потому при замыкании фазы на зануленный корпус устройства гарантированно возникает ток КЗ, приводящий к срабатыванию автоматического выключателя.

В наиболее распространенной системе заземления типа TN одновременно осуществляется и заземление, и зануление.

Подключение к нулевой жиле осуществляется выше УЗО. Иначе токи в фазном и нулевом проводниках после замыкания фазы на корпус останутся равными и аппарат защиты не сработает.

О системах заземления

Применяют несколько систем заземления, обозначаемых комбинацией букв. Буквы имеют следующее значение:

  • I: изолированный проводник;
  • N: имеется подключение к глухозаземленной нейтрали;
  • Т: имеется подключение к заземляющему проводу.

Основных видов систем заземления три:

  1. Тип IT — система с изолированным нейтральным проводом. В данной системе провод заземления изолирован от нейтрали либо контактирует с ней через резистор с высоким номиналом или воздушный промежуток. В жилых домах не применяется. Предназначена для подключения приборов, предъявляющих особые требования к безопасности и стабильности. В основном используется в лабораториях и лечебных учреждениях.
  2. Тип TT — система с независимыми заземлителями. Оптимальный вариант для частных и хозяйственных строений. Предусматривает использование двух заземлителей – для источника электротока и металлических элементов системы, не имеющих защиты. Провод заземления (РЕ) в этой системе независим, а его работоспособность на участке между оборудованием и трансформатором улучшена. Возможны сложности при подборе диаметра для собственного заземлителя. Этот недостаток компенсируется путем устройства системы защитного отключения.
  3. Тип TN. Провод заземления в такой системе совмещен с нейтралью, потому при пробое фазы на корпус происходит КЗ и автомат разъединяет цепь. Этим обеспечивается высокий уровень безопасности.
заземление - системы

Различные системы заземления

Системы TN получили наибольшее распространение. Есть три их подвида:

  1. TN-S: вариант с нулевым и разделенным рабочим проводником. С целью повышения безопасности вместо одного нулевого провода применяется два: один используется как защитный, второй — как нейтральный с подключением к глухозаземленной нейтрали. Такая система обеспечивает наилучшую защиту от поражения током.
  2. TN и TN-C-S: вариант с PEN-проводом и парой нулей. К оборудованию подключается нулевой провод, расщепленный на жилы PE и N.
  3. В TN-C-S после разделения устанавливается второй заземлитель, чем обеспечивается бесперебойная работа системы.

Достоинства системы TN:

  • устройство довольно простое;
  • осуществляется защита от разрядов молнии;
  • для защиты проводки достаточно установить автоматы от замыкания.

Недостатки:

  • существует вероятность перегорания нуля снаружи с последующим пробоем металлических корпусов оборудования;
  • требуется оборудование для уравнивания потенциалов.

Система TN мало подходит для сельских населенных пунктов.

От правильности организации заземления подчас зависят жизни людей. Под организацией подразумевается не только устройство, но и своевременный контроль сопротивления заземлителя. Из-за окисления или изменения параметров грунта оно может оказаться завышенным, вследствие чего защитный эффект заземления будет утрачен.

Зануление — Википедия

Зануле́ние — это преднамеренное электрическое соединение открытых проводящих частей электроустановок, не находящихся в нормальном состоянии под напряжением, с глухозаземлённой нейтральной точкой генератора или трансформатора, в сетях трёхфазного тока; с глухозаземлённым выводом источника однофазного тока; с заземлённой точкой источника в сетях постоянного тока, выполняемое в целях электробезопасности.

Защитное зануление является основной мерой защиты от поражения эл. током при возможном прикосновении в электроустановках до 1 кВ с глухозаземлённой нейтралью.

Принцип действия зануления

Принцип работы зануления: если напряжение (фазовый провод) попадает на соединённый с нулём металлический корпус прибора, происходит короткое замыкание. Сила тока в цепи при этом увеличивается до очень больших величин, что вызывает быстрое срабатывание аппаратов защиты (автоматические выключатели, плавкие предохранители), которые отключают линию, питающую неисправный прибор. В любом случае, ПУЭ регламентируют время автоматического отключения повреждённой линии. Для номинального фазного напряжения сети 400/230 В[источник не указан 1068 дней] оно не должно превышать 0,4 с.

Зануление осуществляется специально предназначенными для этого проводниками. При однофазной проводке — это, например, третья жила провода или кабеля.

Для того, чтобы отключение аппарата защиты произошло в предусмотренное правилами время, сопротивление петли «фаза-ноль» должно быть небольшим, что, в свою очередь, накладывает на все соединения и монтаж сети жёсткие требования качества, иначе зануление может оказаться неэффективным.

Помимо быстрого отключения неисправной линии от электроснабжения, благодаря тому, что нейтраль заземлена, зануление обеспечивает низкое напряжение прикосновения на корпусе электроприбора. Это исключает вероятность поражения током человека. Поскольку нейтраль заземлена, зануление можно рассматривать как специфическую разновидность заземления.

Различают зануление систем TN-C, TN-C-S и TN-S.

Зануление системы TN-C[править | править код]

Система зануления TN-C

Простая система зануления, в которой нулевой проводник N и нулевой защитный PE совмещены на всей своей длине. Совместный проводник обозначается аббревиатурой PEN. Имеет существенные недостатки, главный из которых — высокие требования к системам уравнивания потенциалов и сечению PEN-проводника. Применяется для электроснабжения трёхфазных нагрузок, например асинхронных двигателей. Применение данной системы в однофазных групповых и распределительных сетях запрещено:

1.7.132. Не допускается совмещение функций нулевого защитного и нулевого рабочего проводников в цепях однофазного и постоянного тока. В качестве нулевого защитного проводника в таких цепях должен быть предусмотрен отдельный третий проводник.

Зануление системы TN-C-S[править | править код]

Усовершенствованная система зануления, предназначенная для обеспечения электробезопасности однофазных сетей электроустановок. Она состоит из совмещённого PEN-проводника, который соединён с глухозаземлённой нейтралью питающего электроустановку трансформатора. В точке, где трёхфазная линия разветвляется на однофазные потребители (например в этажном щите многоквартирного дома или в подвале такого дома) PEN-проводник разделяется на PE- и N-проводники, непосредственно подходящие к однофазным потребителям.

Зануление системы TN-S[править | править код]

Наиболее совершенная, дорогая и безопасная система зануления, получившая распространение, в частности, в Великобритании[2]. В этой системе нулевой защитный и нулевой проводники разделены на всей своей длине, что существенно повышает её безопасность.

Иногда считают, что заземление на отдельный контур, не связанный с нулевым проводом сети, лучше, потому что при этом нет сопротивления длинного PEN-проводника от электроустановки потребителя до заземлителя КТП (комплектной трансформаторной подстанции). Такое мнение ошибочно, потому что сопротивление заземления, особенно кустарного, гораздо больше сопротивления даже длинного провода. И при замыкании фазы на заземлённый таким образом корпус электроприбора ток замыкания из-за большого сопротивления местного заземления может оказаться недостаточным для срабатывания АВ (автоматического выключателя) или предохранителя, защищающего эту линию. В таком случае корпус прибора будет находиться под опасным потенциалом. Кроме того, даже если применить АВ небольшого номинала, срабатывающий от тока замыкания на землю, всё равно обеспечить требуемое ПУЭ время автоматического отключения повреждённой линии практически невозможно.

Поэтому раньше, до начала массового применения УЗО, заземление корпусов электроприёмников без их зануления (то есть заземление по системе ТТ) вообще не допускалось. Пункт 1.7.39 ПУЭ-6:

В электроустановках до 1 кВ с глухозаземлённой нейтралью или глухозаземлённым выводом источника однофазного тока, а также с глухозаземлённой средней точкой в трёхпроводных сетях постоянного тока должно быть выполнено зануление. Применение в таких электроустановках заземления корпусов электроприёмников без их зануления не допускается.

Распространённым заблуждением является утверждение, что согласно новой редакции ПУЭ (п. 1.7.59), заземление корпусов электроприёмников без их зануления допускается, но только при обязательном применении УЗО. Пункт 1.7.39 ПУЭ-7:

Питание электроустановок напряжением до 1 кВ от источника с глухозаземлённой нейтралью и с заземлением открытых проводящих частей при помощи заземлителя, не присоединённого к нейтрали (система ТТ), допускается только в тех случаях, когда условия электробезопасности в системе TN не могут быть обеспечены. Для защиты при косвенном прикосновении в таких электроустановках должно быть выполнено автоматическое отключение питания с обязательным применением УЗО. При этом должно быть соблюдено условие: Ra * Iа ≤ 50 В, где Iа — ток срабатывания защитного устройства; Ra — суммарное сопротивление заземлителя и заземляющего проводника, при применении УЗО для защиты нескольких электроприёмников — заземляющего проводника наиболее удалённого электроприёмника.

В рассматриваемом пункте ПУЭ речь идёт о системе ТТ. Указывается, что в системе ТТ электробезопасность при косвенном прикосновении обеспечивается использованием УЗО. Система сети определяется состоянием нейтрали источника питания (п. 1.7.3), в большинстве случаев трансформатора подстанции, а также способами подключения открытых проводящих частей оборудования к элементам защиты, которые чётко определены для каждой системы — глухозаземлённой нейтрали трансформатора или заземляющему устройству.

  • Вайнштейн Л. И. Меры безопасности при эксплуатации электроустанок потребителей. — М.: Энергия, 1977. — 176 с.
  • Кораблев В. П. Электробезопасность в вопросах и ответах. - М., Московский рабочий, 1988. - 301 c.
  • IEC 60050-195:1998. International Electrotechnical Vocabulary. Part 195: Earthing and protection against electric shock. Edition 1.0. – Geneva: IEC, 1998‑08.
  • IEC 60364-1:2005. Low-voltage electrical installations. Part 1: Fundamental principles, assessment of general characteristics, definitions. Edition 1.0. – Geneva: IEC, 2005‑11.
  • IEC 60364-4-41:2005. Low-voltage electrical installations. Part 4-41: Protection for safety. Protection against electric shock. Edition 5.0. – Geneva: IEC, 2005-12.
  • IEC 61140:2016. Protection against electric shock. Common aspects for installation and equipment. Edition 4.0. – Geneva: IEC, 2016-01.
  • ГОСТ Р МЭК 60050-195–2005. Заземление и защита от поражения электрическим током. Термины и определения.
  • ГОСТ 30331.1–2013 (IEC 60364-1:2005). Электроустановки низковольтные. Ч. 1. Основные положения, оценка общих характеристик, термины и определения.
  • ГОСТ Р 50571.3–2009 (МЭК 60364-4-41:2005). Электроустановки низковольтные. Ч. 4-41. Требования для обеспечения безопасности. Защита от поражения электрическим током.
  • ГОСТ IEC 61140–2012. Защита от поражения электрическим током. Общие положения безопасности установок и оборудования.
  • Харечко Ю.В. Основы заземления электрических сетей и электроустановок зданий. 6-е изд., перераб. и доп. – М.: ПТФ МИЭЭ, 2012. – 304 с.
  • IEC 60364-5-54:2011. Low-voltage electrical installations. Part 5-54: Selection and erection of electrical equipment. Earthing arrangements and protective conductors. Edition 3.0. – Geneva: IEC, 2011-03.
  • ГОСТ Р 50571.5.54–2013/ МЭК 60364-5-54:2011. Электроустановки низковольтные. Ч. 5-54. Выбор и монтаж электрооборудования. Заземляющие устройства, защитные проводники и защитные проводники уравнивания потенциалов.

Отправить ответ

avatar
  Подписаться  
Уведомление о