Система заземления TN-C: схема подключения, недостатки
Электрические сети напряжением до 1кВ, кроме установок специального назначения, являются сетями с глухозаземлённой нейтралью. Это значит, что вторичные обмотки питающего трансформатора соединены в звезду, а её средняя точка соединяется с контуром заземления. Со средней точкой звезды соединяется также нулевой (нейтральный) провод трёхфазной линии электропередач.
Такие электроустановки, согласно ПУЭ п. 1.7.3, считаются установками с системой заземления TN. В этом разделе Правил Устройства Электроустановок рассказывается о разных типах заземлений, отличающихся методом соединения корпуса электроустановок с нейтралью трансформатора. Один из видов такого соединения — система заземления TN-C.
Особенности системы заземления TN-C
Система TN-C используется в жилых зданиях, электропроводка в которых не реконструировалась со времён Советского Союза. Это питающая линия, выполненная четырёхпроводными воздушными линиями или кабелями — 3 фазных и 1 нулевой.
В такой схеме соединения в одном проводе совмещены два проводника — нулевой «N» и заземление «РЕ». Это провод называется «PEN» и он соединяет нейтраль трансформатора и корпус электроустановки. Это является основным недостатком схемы заземления TN-C.
В Советском Союзе корпуса бытовых электроприборов не заземлялись, поэтому такая система была достаточно безопасной. Сейчас большинство устройств требуют защитного заземления «РЕ» и система заземления TN-C, фактически являющаяся не заземлением, а занулением, перестала соответствовать требованиям безопасности.
Расшифровка TN-C показывает конструкцию этой системы:
- T — terre (земля). Показывает, что это система заземления.
- N — neuter (нейтраль). Указывает, что линия соединяется со средней точкой звезды — нейтралью (занулена).
- C — combined (объединённый). Значит, что нулевой и заземляющий провода являются одним проводом на всём протяжении от трансформатора до электроустановки.
Как выполнена схема заземления tn c
Система заземления TN-C состоит из следующих частей:
- 1) Контур заземления. Это заземление, находящееся на трансформаторной подстанции и соединённое со средней точкой вторичной обмотки трансформатора.
- 2) Нулевой провод. В четырёхпроводной трёхфазной схеме электропитания выполняет роль нулевого и заземляющего проводников и обозначается на схемах PEN проводник.
В жилых домах, имеющих такую систему заземления, на каждом этаже находится электрощиток, в который приходит 4 провода – три фазы А, В, С и нулевой провод «PEN». При этом в каждую из квартир приходит 2 провода — фаза и ноль (PEN).
В бытовых розетках, установленных во времена СССР отсутствовал заземляющий контакт, как и не было электроприборов, конструкция которых предусматривала подключение к заземлению.
Важно! Если в розетке или квартирном щитке соединить заземляющий контакт и нулевой, то получится не заземление, а зануление.
В системе заземления TN-C с проводом PEN соединяются все металлические части электроприборов, находящихся в квартире. В этом случае вместо защитного заземления получится защитное зануление.
Так как провод PEN кроме заземляющего является также нулевым проводом, то он может не соединяться с заземлёнными частями здания. В некоторых случаях к нему выполняется подключение корпуса вводного и этажных электрощитков.
Ввод электропитания в квартиру выполняется двумя проводами, без заземления. И даже при установке евровилок с заземляющими контактами их некуда подключать. В результате все приборы в доме работают без заземления, даже те, которые нуждаются в нём по инструкции завода-изготовителя.
Кроме того, без заземления не работают разрядники системы грозозащиты, предохраняющие электрооборудование от высоковольтных грозовых импульсов. Они должны подключаться к нулевому и фазному проводам, а также к контуру заземления.
Тем не менее, система TN-C является более передовой по сравнению с полным отсутствием защиты и, во время монтажа, соответствовала существовавшим в этот период нормативным документам.
Достоинства и недостатки
Система заземления TN-C, как и любая схема, имеет отличия от других заземляющих устройств и связанные с этим достоинства и недостатки.
Достоинства этой системы не связаны с высокой безопасностью людей:
- Низкая стоимость. Это связано с отсутствием отдельного проводника «РЕ», который является пятым проводом при трёхфазном электропитании и третьим при однофазном.
- Простота конструкции. В трёхфазной сети всегда есть четвёртый нулевой провод, поэтому для монтажа TN-C достаточно заземлить среднюю точку вторичной обмотки питающего трансформатора.
Недостаток у системы заземления TN-C всего один, но он перевешивает любые достоинства — повышенная опасность поражения электрическим током,
возможная в разных ситуациях, связанных с отсоединением PEN проводника:
- обрыв этого провода между потребителем и питающим трансформатором;
- срабатывание автоматического выключателя, отсоединяющего нейтральный провод при залипшем контакте фазы.
В этих случаях через включённые лампы и другие электроприборы на занулённых металлических частях электроустановок появляется сетевое напряжение.
Поэтому система TN-C в электроустановках не обеспечивает достаточного уровня электробезопасности. Несмотря на это некоторые неграмотные электромонтёры для заземления электроприборов предлагают её установит и соединить нулевой и заземляющий контакты в розетке или квартирном щитке.
Что делать? Как исправить?
При реконструкции построенных и во всех новых зданиях сохранять и устанавливать систему TN-C современными нормативными документами запрещается. Однако есть возможность модернизации этой системы в TN-C-S или TN-S.
Система заземления TN-S является более надёжной, но требует значительных материальных затрат и прокладки пятого провода «РЕ» от потребителя к трансформатору. Правилами устройства электроустановок и другими нормативными документами допускается переделка системы TN-C в TN-C-S.
Для этого в водном щитке проводник PEN заземляется ещё раз, после чего он разделяется на два провода — нейтраль — N и заземление РЕ. После чего четырёхпроводная сеть превращается в пятипроводную и в квартиры заводится по три провода — фаза «L», ноль «N» и заземление «PE», причём заземление подключается в водном щитке на отдельную шину заземления. После электрощитка заземляющий провод подключается к клеммам заземления розеток и других электроприборов.
В отдельно стоящих коттеджах, запитанных от трёхфазной сети, такое разделение выполняется в вводном щитке учета ДО электросчётчика.
В зданиях, которым подведено однофазное напряжение, согласно ПУЭ п. 1.7.132 разделение проводника «PEN» на «РЕ» и «N» НЕ ПРОИЗВОДИТСЯ!. Это необходимо выполнить в месте подключения однофазной линии к трёхфазной сети.
Важно! Согласно ПУЭ п. 1.7.135 после разделения провода «N» и «PE» соединять в переходных коробках, розетках и других местах ЗАПРЕЩАЕТСЯ. |
Почему система TN-C морально устарела
В значительной части современной техники используются импульсные блоки питания. В этих устройствах есть фильтры от ВЧ помех. Это конденсаторы малой ёмкости, соединяющие схему с металлическим корпусом и заземляющим контактом вилки.
Помехи, приходящие из электросети или возникающие при работе электрооборудования через конденсатор и заземляющий провод «уходят в землю» и не нарушают работу подключённых к блоку питания приборов.
В обычных условиях ток, проходящий через фильтр недостаточен для срабатывания УЗО или поражения человека электричеством, но при пробое этого конденсатора корпус оказывается подключённым к сети 220В. Эта ситуация не является опасной при наличии системы заземления, соответствующей требованиям ПУЭ, но может привести к электротравме, при её отсутствии или использовании системы TN-C.
Так же является опасной ситуация
Аналогичная ситуация возникает при возникновении течи в стиральной или посудомоечной машине или перегорании ТЭНа в бойлере.
Главный недостаток системы TN-C это появление опасного потенциала на заземленных корпусах техники при отгорании PEN проводника. То есть в случаи обрыва PEN проводника заземление (зануление) теряет свои защитные свойства. |
Опасные способы заземления
Для того, чтобы обезопасить себя и членов своей семьи от поражения электрическим током, некоторые «специалисты» прокладывают линию заземления самостоятельно. Для этого используются различные варианты:
- Подключение к радиаторам центрального отопления или к водопроводным трубам. Это опасно тем, что при небольшой утечке по трубам начнёт протекать ток, вызывающий быструю коррозию, а при ремонте водопроводчики могут получить электротравму.
- Соединение в розетке нулевого и заземляющего контакта. Это не заземление, а зануление. В ПУЭ п.1.7.50 зануление отсутствует среди средств, защищающих от поражения электрическим током.
- Присоединение защитного проводника РЕ к корпусу электрощита, находящемуся на этаже. Этот вариант лучше предыдущих, но качество соединения самого PEN провода с корпусом щитка неизвестно. Кроме того, место соединения проводов «PEN», «N» и «РЕ» должно быть заземлено.
Кроме того неизвестно заземлен ли вообще PEN проводник в этажном щите. К примеру, можно представить ситуацию, когда при такой «схеме заземления» произойдет обрыв нулевого провода N и тогда все заземленные корпуса приборов в квартире через этот дополнительный проводник РЕ окажутся под напряжением.
Тем более если разобраться то такое подключение является не заземлением, а занулением.
Кроме различных вариантов самостоятельного подключения к проводу «PEN», возможен монтаж контура заземления из стальных уголков, штырей и труб, закопанных ниже уровня промерзания почвы. К этим уголкам присоединяется провод, заводится в квартиру и подключается к розеткам. В этом случае есть опасность обрыва этого провода или окисливания в месте контакта, находящемся на улице.
Важно! Контур заземления, выпоненный по всем правилам, соединяется при помощи электросварки с металлическими элементами конструкции здания и подлежит регулярной проверке.
Единственной надёжной защитой от поражения электрическим током является установка систем заземления TN-C-S или TN-S. В этом случае при нарушении изоляции между заземлённым корпусом электроприбора и токоведущими частями возникнет замыкание по цепи «токоведущие части-корпус-заземление», ток через автоматический выключатель возрастёт и автомат отключит питание установки.
Желательно дополнительно к системе заземления в электрощите подключить УЗО. Это устройство будет отключать электропитание в том случае, если изоляция нарушена и появился ток утечки, но отсутствует короткое замыкание.
Похожие материалы на сайте:
Понравилась статья — поделись с друзьями!
Система заземления TN-C-S: схема подключения ПУЭ
В электроустановках, спроектированных до 30-х годов ХХ века, устанавливалась система заземления TN-C. Позже она применялась в основном в жилом фонде СССР. Недостаток этой конструкции в том, что нулевой проводник N и заземляющий PE объединены в одном проводе PEN. Фактически, при соединении корпуса электроприбора с этим проводником вместо заземления получается защитное зануление.
Более совершенной является заземление типа TN-S, но оно дороже, чем TN-C. При реконструкции электроснабжения зданий и монтаже этого вида защиты необходимо менять линии электропередач от трансформаторной подстанции до розетки.
Для решения этой проблемы была создана система заземления TN-C-S, являющаяся компромиссным вариантом между этими типами защиты. Её особенностью является наличие объединённого проводника PEN, который в месте, определяемом ПУЭ, разделяется на два провода — заземляющий PE и нейтральный N.
В системе TN-C-S оба этих провода подключаются к розеткам или к клеммникам к соответствующим контактам. Провод РЕ не имеет разрывов и выключателей на всём протяжении и соединяется с корпусом электрооборудования, а N подключается к питающим выводам розеток.
В этой статье подробно рассматривается устройство этой системы, а так же достоинства и недостатки схемы заземления TN-C-S.
Что собой представляет система TN-C-S
Модернизация схем электроснабжения всех жилых зданий страны и приведение их в соответствие с требованием ПУЭ для системы TN-S, обеспечивающей максимальную защиту, потребует полной замены всех линий электропередач 0,4кВ и будет стоить очень дорого. Поэтому вместо схемы TN-S в жилых домах при подключении к электросети применяется система заземления TN-C-S.
Особенность этой схемы в том, что на участке от трансформаторной подстанции до ввода в здание сохраняется существующая линия электропередач с проводником PEN, а все работы по модернизации производятся в здании:
- 1. В водном щите происходит разделение провода PEN на два проводника — заземление PE и нейтраль N;
- 2. Место разделения подключается к контуру заземления здания;
- 3. В подъезде ко всем квартирам подводится заземляющие провода РЕ;
- 4. Производится модернизация или замена внутриквартирной электропроводки с двухпроводной (L,N) на трёхпроводную (L,N,PE) или, при трёхфазном питании, с четырёхпроводной (A,B,C,N) на пятипроводную (A,B,C,N,PE).
Совет! При модернизации внутриквартирной электропроводки допускается подводить заземление только к тем розеткам, которые имеют заземляющий контакт и к оборудованию, которое подключается к сети через автоматический выключатель — электроплита или бойлер.
Схема подключения по системе TN-C-S
В связи с тем, что система TN-C не обеспечивает необходимый уровень безопасности в жилых зданиях, особенно в частных домах, к которым подключёно однофазное напряжение 220В, её необходимо модернизировать и превратить в систему заземления TN-C-S. Эта работа может быть выполнена с минимальными затратами, поэтому такая схема получила широкое распространение, несмотря на имеющиеся недостатки конструкции.
Само название TN-C-S указывает на то, что заземляющий и нейтральный проводники соединены только в начале линии, а на некотором расстоянии от трансформаторной подстанции разделяются на два отдельных провода. Питающие трансформаторы в таких схемах используются с глухозаземлённой, неотключаемой, нейтралью.
Согласно ПУЭ п.1.7.132 использовать объединённый проводник PEN в однофазных сетях запрещается (не относится к ответвлениям от воздушных линий). Поэтому при реконструкции схемы электроснабжения в домах, к которым подводится 220В, разделение этого провода на PE и N производится в месте подключения здания к трёхфазной линии. В многоквартирных домах это делается во вводном щите в здание, а НЕ НА ПЛОЩАДКЕ в щитке возле электросчётчика.
При подключении здания не к подземному кабелю, а к воздушной линии электропередач, то, согласно ПУЭ п.1.7.102, место разделения проводов подлежит обязательному заземлению.
Как указано в ПУЭ п.1.7.135, соединять после разделения PE и N ЗАПРЕЩАЕТСЯ! Это автоматически превращает схему TN-C-S в TN-C.
Описание системы TN-C-S со всеми техническими требованиями к ней указано в ПУЭ п.1.7.3, 1.7.13, и рис.1.7.3
Зачем нужно разделение PEN проводника
Основной причиной для разделения провода PEN являются требования ПУЭ п. 7.1.13, в котором указано, что все электроустановки, кроме низковольтных (12 В, 36 В и т.п.), должны иметь заземление TN-S с отдельными проводами PE и N либо более дешёвого типа TN-C-S с разделением PEN-провода. При несоблюдении этих условий возможно отключение здания от электроснабжения контролирующими организациями.
Кроме того, этого требуют здравый смысл и законы электротехники:
- При использовании системы TN-C корпус электроприбора фактически не заземляется, а зануляется. Поэтому обрыв провода PEN приводит к тому, что на нейтральном контакте розетки, заземляющем выводе и корпусе электрооборудования оказывается напряжение сети 220В.
- Самое частое место этого обрыва — внутридомовые сети. Обычно они выполняются более тонким проводом, чем кабель, подходящий к зданию.
- На вводном квартирном щитке устанавливается два предохранителя или автоматический выключатель, разрывающий цепь PEN. Даже если используется спаренный автомат, нельзя исключить возможность «залипания» фазного контакта. Это отключение приводит к эффекту, аналогичному обрыву провода PEN.
Поэтому разделение PEN проводника обеспечивает бОльшую безопасность людей, живущих в доме.
Разделение PEN проводника
Правила, по которым производится разделение, описаны в ПУЭ п.п.1.7 и 7.1:
- самым удобным местом для разделения является вводной электрощит, до вводного автоматического выключателя, рубильника или общедомового электросчётчика;
- схема должна быть смонтирована так, чтобы исключить отключение, в том числе аварийное, цепей PEN и PE;
- автоматические выключатели и рубильники, согласно ПУЭ п.1.7.145, допускается устанавливать только в цепи нейтрали N;
- проводник PEN подключается к шине РЕ, или главной заземляющей шине ГЗШ, которая должна соединяться с нейтральной планкой;
- проводники РЕ и N после разделения не соединяются;
- нельзя использовать общую шину для нейтрали и заземления.
Исходя из этих правил, во вводном щите монтируются две шинки — нейтральная N и заземляющая ГЗШ. Вводной проводник PEN и заземляющий провод внутренней проводки РЕ подключаются к заземляющей шине. К ней же присоединяется контур заземления здания. Эта планка соединяется с нейтральной шиной N перемычкой.
Важно! Сечение проводника PEN вводного кабеля быть не менее 10мм² при использовании медного провода и 16мм², если кабель алюминиевый. |
Расшифровка TN-C-S системы
Как и у многих других схем и электротехнических элементов у системы заземления TN-C-S расшифровка названия показывает на её основные особенности:
- 1. Т (лат. terra) — нейтраль питающего трансформатора соединена с контуром заземления подстанции;
- 2. N — нейтраль источника питания соединена с воздушной или кабельной линией электропередач;
- 3. С (англ. combined) — в одном проводе PEN совмещаются проводники PE и N;
- 4. S (англ. separated) — наличие разделённых нулевого N и заземляющего PE проводов.
Присутствие в названии букв С и S указывает на то, что в линии есть как общие, так и разделённые участки.
Достоинства и недостатки
Система заземления TN-C-S имеет преимущество перед другими типами защитных заземлений. Она имеет простую конструкцию, которую легко смонтировать в любом здании. Эта работа имеет намного меньшую стоимость, чем монтаж схемы TN-S. Она обеспечивает достаточно высокую степень защиты от поражения электрическим током, особенно при дополнительном использовании УЗО.
Недостатком этой системы является попадание высокого напряжения на корпус оборудования при повреждении провода PEN на участке между зданием и трансформатором. Для предотвращения таких ситуаций ПУЭ требует устанавливать прокладывать питающие кабеля в лотках, трубах или использовать бронированный кабель. В воздушных линиях электропередач провод PEN периодически заземляется. Расстояние между заземлителями зависит от количества грозовых часов в год.
При соблюдении всех требований система TN-C-S является самой распространённой. Если же какие либо условия выполнить невозможно, то ПУЭ рекомендует использовать заземление типа ТТ.
Похожие материалы на сайте:
Понравилась статья — поделись с друзьями!
Система заземления TN-C | Заметки электрика
Здравствуйте, уважаемые гости и читатели сайта «Заметки электрика».
Начинаю серию статей про системы заземления. И сегодня Вашему вниманию я представляю статью на тему системы заземления TN-C.
Для чего же нужно знать про системы заземления?
Да все очень просто. Когда мы приобретаем квартиру, дачу или дом (коттедж), мы сталкиваемся с многочисленными вопросами в области электричества. В ответ же слышим разносторонние ответы от специалистов. Кто-то советует провести монтаж контура заземления, другие дают совет по занулению электрооборудования, а третьи вообще говорят все оставить как есть.
Как же понять — кто прав, а кто нет? Какого мнения стоит придерживаться?
Впредь чтобы не возникало подобных вопросов, мы с Вами подробно и поочередно познакомимся со всеми системами заземления.
Система заземления TN-C
Самая старая и распространенная система заземления, которая существовала в нашей стране очень долгое время и, к сожалению, продолжает существовать — это система TN-C.
Заземление в такой системе выполнено следующим образом: контур заземления (другими словами заземляющее устройство ЗУ) выполнен на трансформаторной подстанции ТП, питающей наш дом.
Нулевой проводник соединен с контуром заземления и приходит к потребителю одним проводом (PEN) в качестве защитного и рабочего проводника. Нулевой проводник в данной системе так и называется — PEN проводник.
Для наглядности приведу схему этажного щита на 3 квартиры на примере жилого дома.
Электропроводка в таком случае выполняется кабелями с двумя жилами (фаза, PEN) при однофазном питании квартиры или с четырьмя жилами (А,В,С, PEN) при трехфазном питании.
В розетках отсутствуют контакты защитного заземления. Если корпус электрооборудования (электрический прибор, корпус щитка или сборки) соединим с PEN проводником, то такая защита будет называться занулением.
Достоинства системы TN-C
Система TN-C обладает всего одним достоинством — электромонтаж такой системы относительно прост и является дешевым.
Недостатки системы заземления TN-C
А вот про недостатки поговорим подробнее.
В этой системе заземления существует угроза поражения людей электрическим током, что приводит к плачевным ситуациям. Вот пример несчастного случая на производстве, можете ознакомиться с ним.
Если Вам специалист-электрик рекомендует провести электромонтаж с системой заземления TN-C, то сразу же отказывайтесь от такого электрика.
Система заземления TN-C. Что делать? Как исправить?
Уважаемые, потребители электрической энергии. В данной ситуации отчаиваться не стоит, т.к. при реконструкции (модернизации) и вновь монтируемых объектах устанавливать систему TN-C строго запрещено!!!
Энергоснабжающим организациям, обслуживающим электрические сети наших домов, необходимо (рекомендовано) систему TN-C перевести на систему заземления TN-C-S или TN-S, путем модернизации схем электроснабжения. Но в связи с отсутствием финансовых средств, энергоснабжающие организации делают проще. Они на вводе в дом устанавливают повторное заземление нулевого проводника. А далее производят разделение PEN проводника на два отдельных проводника:
- нулевой рабочий проводник N
- защитный проводник PE
Более подробно об этом Вы можете прочитать в статье про разделение PEN проводника.
Если Вы не представляете как самостоятельно определить систему заземления Вашей квартиры или дома, то пригласите специалистов электролаборатории.
P.S. А у Вас какая система заземления используется в Вашей квартире?
Если статья была Вам полезна, то поделитесь ей со своими друзьями:
Система заземления tn и ее подвиды, схема заземления tn c s, tt, система зануления tn s
Люди каждый день в быту пользуются различными электрическими приборами, начиная от кофеварки и фена, заканчивая холодильником и стиральной машиной. Они живут в многоэтажных домах, ездят на работу в метро и даже не подозревают, сколько усилий сделано разработчиками этих приборов и устройств, чтобы они могли без страха за свою жизнь пользоваться этими дарами цивилизации. Сейчас любое устройство, здание, сооружение проверяется на электробезопасность. При проектировании любых электроустановок независимо от их назначения, главным условием является их безопасная и нормальная работа, что обеспечивается безупречным проектом и безошибочным устройством заземления. Существуют системы заземления tn, tt и другие. Основным документом, определяющим работу разработчиков систем заземления, являются Правила устройства электроустановок.
Категории
Наша земля является колоссальным поглотителем электроэнергии любого происхождения, и это ее качество используется человеком для обеспечения безопасности при использовании электрических приборов.
Все заземлители делятся на две категории: естественные и искусственные. К первым относятся все металлические изделия, находящиеся в соприкосновении с землей. Это арматура в железобетонных конструкциях, в буронабивных сваях, канализационные, водопроводные трубы и прочие электропроводные предметы.
Но проводимость земли в разных местах сильно различается, зависит от типа почвы, места расположения, поэтому нормировать ее проводимость в местах растекания электрических зарядов от этих предметов не представляется возможным. Кроме этого, использование арматуры, труб, металлических ферм приводит к ускоренной коррозии и ухудшению их прочностных характеристик. В связи с этим, запрещается использовать естественное заземление при эксплуатации электроприборов и оборудования.
Государственными и международными стандартами разрешено применение только искусственного заземления. В этом случае оборудование через специальную шину присоединяется к заземлителю с допустимой нормированной проводимостью.
Виды искусственного заземления
Если рассматривать по функциональности, то существует защитное и рабочее заземления. Первое обеспечивает безопасность людей при использовании электроприборов, а второе – нормальную работу электроустановок. По типу заземления нулевого провода делятся на системы с изолированной (IT) и глухозаземленной (TN) нейтралью. На рисунке показаны все типы заземления.
В системе IT нулевой провод генератора электроэнергии не имеет гальванической связи с заземлением, а токопроводящие части намеренно заземляются. Допускается между заземлителем и нейтралью установка дугообразующего устройства или приборов с большим внутренним сопротивлением.
Система заземления TN самая распространенная. В ней нулевой провод генератора электроэнергии глухо заземлен, а токопроводящие части с помощью специальных шин присоединяются к нему.
Она подразделяется еще на четыре подвида:
- систему заземления TN-С, в ней рабочий и защитный нулевые провода представляют собой один проводник от источника до потребителя энергии;
- систему TN-S, в ней рабочий и защитный нулевые провода представляют собой два проводника от источника до потребителя энергии;
- систему заземления TN C S, в ней рабочий и защитный нулевые проводники представляют собой один проводник, начиная от генератора электроэнергии, затем на каком-то участке разделяются на два;
- систему ТТ, в ней нулевой провод генератора электроэнергии глухо заземлен, а открытые токопроводящие части потребителя электроэнергии заземлены через собственное заземление, которое никак не связано с нулевым проводом генератора электроэнергии.
Первый символ аббревиатуры сообщает, в каком состоянии относительно земляного слоя находится нулевой провод производителя электроэнергии (генератора, трансформатора).
Т – заземленный нулевой проводник.
I — изолированный нулевой проводник.
Второй символ информирует о состоянии токопроводящих частей относительно заземления.
Т — токопроводящие части заземлены, состояние нулевого провода генератора электроэнергии значения не имеет;
N — токопроводящие части присоединены к глухозаземленному нулевому проводнику источника электропитания.
Символ после N показывают, как соотносятся рабочий и защитный нулевые проводники.
S (separated)— разделены рабочий (N) и защитный (PE) нулевые проводники.
С (combined)— объединены в (PEN) проводе N и PE проводники.
Системы с глухозаземлённым нулевым проводом
Система зануления TN C впервые была применена компанией AEG в начале ХХ века. Классическим ее видом является обычная схема электроснабжения с тремя фазными и одним нулевым проводом. Он одновременно является функциональным (N) и защитным (PE) «нолем», наглухо заземленным. С ним соединяют все корпуса и доступные токопроводящие части устройств. Самая большая проблема у системы возникает при обрыве нулевого провода, на токоведущих частях корпусов устройств появляется линейное напряжение в 1,73 раза больше фазного. При нормальной работе, попадание фазного провода на корпус приведет к короткому замыканию, но, благодаря специальным устройствам, произойдет мгновенное отключение, что оградит людей от удара током. В странах СНГ схема заземления TN C используется в наружном освещении и в зданиях, построенных до девяностых годов ХХ века.
Система TN-S
Самая надежная и безопасная система заземления TN-S была создана перед Второй мировой войной. Главная ее особенность заключается в раздельном использовании рабочего и защитного нулевого проводников, начиная от генератора электроэнергии. При трехфазном электроснабжении используются пять проводов, однофазном — три. Электробезопасность обеспечивается за счет практического дублирования защитного проводника. Независимо от места обрыва N проводника, система оставалась относительно безопасной. Позже, благодаря этому способу заземления были разработаны дифференциальные автоматы.
ГОСТ Р50571 и новая редакция ПУЭ предписывает при электроснабжении новых объектов, при капитальном ремонте зданий использовать систему зануления TN-S. Но ее распространению мешает высокая стоимость и то, что вся российская энергетика работает по четырехпроводной системе электроснабжения.
Система TN-C-S
Компромиссной стала система заземления TN-C-S, которая использовала преимущества TN-S, но по стоимости стала значительно дешевле. Все дело в том, что с трансформатора подача электроэнергии происходит с применением объединенного нуля «PEN», наглухо заземленного. При входе на объект PEN провод разделяется на защитный и рабочий нуль, но расщепление возможно и раньше ввода в сооружение. При обрыве провода PEN на участке генерирующая станция — здание, на корпусах электроустановок, появится опасное напряжение. Поэтому в системе заземления TN C S нормами предусмотрены особые меры защиты проводника PEN.
Система TT
Самый экономичный способ доставки электроэнергии на селе по воздушным линиям. Использование системы TN-S, как наиболее безопасной, обходится дорого, у систем заземления TN-C и TN-C-S сложно обеспечить надежную защиту нулевого проводника PEN. Поэтому часто используется система TT, с заземленным нулевым проводом у источника электропитания. При трехфазном электроснабжении система работает по четырехпроводной схеме с одним нулевым проводником.
Около приемника электроэнергии делается местное заземление, к которому присоединяют токоведущие части и корпуса устройств. В случае обрыва нулевого провода, а вне города это нередкое явление, на корпусе устройства не возникает опасного напряжения благодаря местному заземлению. В городской черте система заземления TT используется при электроснабжении временных сооружений, при этом обязательно должны быть установлены устройства защитного отключения и проведена грозозащита.
Система IT
Это система, в которой имеется полностью изолированный от земли нулевой провод или соединенный с ней через высокоомное сопротивление, а также наличие у потребителя электроэнергии собственного защитного заземления. Все токопроводящие части оборудования при этом надежно заземляются. Система IT применяется в электроустановках зданий с повышенными требованиями безопасности, например, в больницах для медицинского оборудования, в шахтах, карьерах. Мобильные электростанции тоже используют изолированную нейтраль, что позволяет использовать подключенные к ним электроприборы без заземления. Раньше система IT широко использовалась и в энергоснабжении деревянных домов. В Советском Союзе сети напряжения 127/220 В долгое время использовались с изолированным нулевым проводом, это было связано с отсутствием заземления в домах. С началом панельного строительства от нее отказались.
Сами заземляющие устройства прежде выглядели как набор трехметровых стальных стержней вкопанных в землю на расстоянии нескольких метров, вершины которых соединялись стальной полосой. Получившийся огромный контактный элемент проверялся на сопротивление, если превышал нормированную величину, то вкапывались дополнительные стержни, пока не получали необходимый результат. Недостатком его были большие занимаемые площади и недостаточная стойкость к коррозии. Современные заземляющие устройства лишены этих недостатков. Они строятся на основе омедненных стальных стержней, которые могут соединяться между собой при помощи латунных муфт и забиваться на глубину до 50 м. По верху соединяются медной полосой. За счет такой конструкции могут устанавливаться на любых грунтах, не требуют земляных работ и занимают мало площади.
Вот такими заземляющими устройствами и системами заземления обеспечивается электробезопасность людей.
Чем опасно самостоятельное выполнение заземления в квартире (переделка tn-c в tn-c-s)
Электрические сети напряжением до 1кВ, кроме установок специального назначения, являются сетями с глухозаземлённой нейтралью. Это значит, что вторичные обмотки питающего трансформатора соединены в звезду, а её средняя точка соединяется с контуром заземления. Со средней точкой звезды соединяется также нулевой (нейтральный) провод трёхфазной линии электропередач.
Такие электроустановки, согласно ПУЭ п. 1.7.3, считаются установками с системой заземления TN. В этом разделе Правил Устройства Электроустановок рассказывается о разных типах заземлений, отличающихся методом соединения корпуса электроустановок с нейтралью трансформатора. Один из видов такого соединения — система заземления TN-C.
Особенности системы заземления TN-C
Система TN-C используется в жилых зданиях, электропроводка в которых не реконструировалась со времён Советского Союза. Это питающая линия, выполненная четырёхпроводными воздушными линиями или кабелями — 3 фазных и 1 нулевой.
В такой схеме соединения в одном проводе совмещены два проводника — нулевой «N» и заземление «РЕ». Это провод называется «PEN» и он соединяет нейтраль трансформатора и корпус электроустановки. Это является основным недостатком схемы заземления TN-C.
В Советском Союзе корпуса бытовых электроприборов не заземлялись, поэтому такая система была достаточно безопасной. Сейчас большинство устройств требуют защитного заземления «РЕ» и система заземления TN-C, фактически являющаяся не заземлением, а занулением, перестала соответствовать требованиям безопасности.
Расшифровка TN-C показывает конструкцию этой системы:
- T — terre (земля). Показывает, что это система заземления.
- N — neuter (нейтраль). Указывает, что линия соединяется со средней точкой звезды — нейтралью (занулена).
- C — combined (объединённый). Значит, что нулевой и заземляющий провода являются одним проводом на всём протяжении от трансформатора до электроустановки.
Как выполнена схема заземления tn c
Система заземления TN-C состоит из следующих частей:
- 1) Контур заземления. Это заземление, находящееся на трансформаторной подстанции и соединённое со средней точкой вторичной обмотки трансформатора.
- 2) Нулевой провод. В четырёхпроводной трёхфазной схеме электропитания выполняет роль нулевого и заземляющего проводников и обозначается на схемах PEN проводник.
В жилых домах, имеющих такую систему заземления, на каждом этаже находится электрощиток, в который приходит 4 провода – три фазы А, В, С и нулевой провод «PEN». При этом в каждую из квартир приходит 2 провода — фаза и ноль (PEN).
В бытовых розетках, установленных во времена СССР отсутствовал заземляющий контакт, как и не было электроприборов, конструкция которых предусматривала подключение к заземлению.
Важно! Если в розетке или квартирном щитке соединить заземляющий контакт и нулевой, то получится не заземление, а зануление.
В системе заземления TN-C с проводом PEN соединяются все металлические части электроприборов, находящихся в квартире. В этом случае вместо защитного заземления получится защитное зануление.
Так как провод PEN кроме заземляющего является также нулевым проводом, то он может не соединяться с заземлёнными частями здания. В некоторых случаях к нему выполняется подключение корпуса вводного и этажных электрощитков.
Ввод электропитания в квартиру выполняется двумя проводами, без заземления. И даже при установке евровилок с заземляющими контактами их некуда подключать. В результате все приборы в доме работают без заземления, даже те, которые нуждаются в нём по инструкции завода-изготовителя.
Кроме того, без заземления не работают разрядники системы грозозащиты, предохраняющие электрооборудование от высоковольтных грозовых импульсов. Они должны подключаться к нулевому и фазному проводам, а также к контуру заземления.
Тем не менее, система TN-C является более передовой по сравнению с полным отсутствием защиты и, во время монтажа, соответствовала существовавшим в этот период нормативным документам.
Достоинства и недостатки
Система заземления TN-C, как и любая схема, имеет отличия от других заземляющих устройств и связанные с этим достоинства и недостатки.
Достоинства этой системы не связаны с высокой безопасностью людей:
- Низкая стоимость. Это связано с отсутствием отдельного проводника «РЕ», который является пятым проводом при трёхфазном электропитании и третьим при однофазном.
- Простота конструкции. В трёхфазной сети всегда есть четвёртый нулевой провод, поэтому для монтажа TN-C достаточно заземлить среднюю точку вторичной обмотки питающего трансформатора.
Недостаток у системы заземления TN-C всего один, но он перевешивает любые достоинства — повышенная опасность поражения электрическим током,
возможная в разных ситуациях, связанных с отсоединением PEN проводника:
- обрыв этого провода между потребителем и питающим трансформатором;
- срабатывание автоматического выключателя, отсоединяющего нейтральный провод при залипшем контакте фазы.
В этих случаях через включённые лампы и другие электроприборы на занулённых металлических частях электроустановок появляется сетевое напряжение.
Поэтому система TN-C в электроустановках не обеспечивает достаточного уровня электробезопасности. Несмотря на это некоторые неграмотные электромонтёры для заземления электроприборов предлагают её установит и соединить нулевой и заземляющий контакты в розетке или квартирном щитке.
Что делать? Как исправить?
При реконструкции построенных и во всех новых зданиях сохранять и устанавливать систему TN-C современными нормативными документами запрещается. Однако есть возможность модернизации этой системы в TN-C-S или TN-S.
Система заземления TN-S является более надёжной, но требует значительных материальных затрат и прокладки пятого провода «РЕ» от потребителя к трансформатору. Правилами устройства электроустановок и другими нормативными документами допускается переделка системы TN-C в TN-C-S.
Для этого в водном щитке проводник PEN заземляется ещё раз, после чего он разделяется на два провода — нейтраль — N и заземление РЕ.
После чего четырёхпроводная сеть превращается в пятипроводную и в квартиры заводится по три провода — фаза «L», ноль «N» и заземление «PE», причём заземление подключается в водном щитке на отдельную шину заземления.
После электрощитка заземляющий провод подключается к клеммам заземления розеток и других электроприборов.
В отдельно стоящих коттеджах, запитанных от трёхфазной сети, такое разделение выполняется в вводном щитке учета ДО электросчётчика.
В зданиях, которым подведено однофазное напряжение, согласно ПУЭ п. 1.7.132 разделение проводника «PEN» на «РЕ» и «N» НЕ ПРОИЗВОДИТСЯ!. Это необходимо выполнить в месте подключения однофазной линии к трёхфазной сети.
Важно! Согласно ПУЭ п. 1.7.135 после разделения провода «N» и «PE» соединять в переходных коробках, розетках и других местах ЗАПРЕЩАЕТСЯ. |
Почему система TN-C морально устарела
В значительной части современной техники используются импульсные блоки питания. В этих устройствах есть фильтры от ВЧ помех. Это конденсаторы малой ёмкости, соединяющие схему с металлическим корпусом и заземляющим контактом вилки.
Помехи, приходящие из электросети или возникающие при работе электрооборудования через конденсатор и заземляющий провод «уходят в землю» и не нарушают работу подключённых к блоку питания приборов.
В обычных условиях ток, проходящий через фильтр недостаточен для срабатывания УЗО или поражения человека электричеством, но при пробое этого конденсатора корпус оказывается подключённым к сети 220В. Эта ситуация не является опасной при наличии системы заземления, соответствующей требованиям ПУЭ, но может привести к электротравме, при её отсутствии или использовании системы TN-C.
Так же является опасной ситуация обрыва нулевого провода «N». В этом случае корпус окажется под напряжением через цепь «фаза-электроприбор-ноль-заземление-корпус».
Аналогичная ситуация возникает при возникновении течи в стиральной или посудомоечной машине или перегорании ТЭНа в бойлере.
Главный недостаток системы TN-C это появление опасного потенциала на заземленных корпусах техники при отгорании PEN проводника. То есть в случаи обрыва PEN проводника заземление (зануление) теряет свои защитные свойства. |
Опасные способы заземления
Для того, чтобы обезопасить себя и членов своей семьи от поражения электрическим током, некоторые «специалисты» прокладывают линию заземления самостоятельно. Для этого используются различные варианты:
- Подключение к радиаторам центрального отопления или к водопроводным трубам. Это опасно тем, что при небольшой утечке по трубам начнёт протекать ток, вызывающий быструю коррозию, а при ремонте водопроводчики могут получить электротравму.
- Соединение в розетке нулевого и заземляющего контакта. Это не заземление, а зануление. В ПУЭ п.1.7.50 зануление отсутствует среди средств, защищающих от поражения электрическим током.
- Присоединение защитного проводника РЕ к корпусу электрощита, находящемуся на этаже. Этот вариант лучше предыдущих, но качество соединения самого PEN провода с корпусом щитка неизвестно. Кроме того, место соединения проводов «PEN», «N» и «РЕ» должно быть заземлено.
Кроме того неизвестно заземлен ли вообще PEN проводник в этажном щите. К примеру, можно представить ситуацию, когда при такой «схеме заземления» произойдет обрыв нулевого провода N и тогда все заземленные корпуса приборов в квартире через этот дополнительный проводник РЕ окажутся под напряжением.
Тем более если разобраться то такое подключение является не заземлением, а занулением.
Кроме различных вариантов самостоятельного подключения к проводу «PEN», возможен монтаж контура заземления из стальных уголков, штырей и труб, закопанных ниже уровня промерзания почвы. К этим уголкам присоединяется провод, заводится в квартиру и подключается к розеткам. В этом случае есть опасность обрыва этого провода или окисливания в месте контакта, находящемся на улице.
Важно! Контур заземления, выпоненный по всем правилам, соединяется при помощи электросварки с металлическими элементами конструкции здания и подлежит регулярной проверке.
Единственной надёжной защитой от поражения электрическим током является установка систем заземления TN-C-S или TN-S. В этом случае при нарушении изоляции между заземлённым корпусом электроприбора и токоведущими частями возникнет замыкание по цепи «токоведущие части-корпус-заземление», ток через автоматический выключатель возрастёт и автомат отключит питание установки.
Желательно дополнительно к системе заземления в электрощите подключить УЗО. Это устройство будет отключать электропитание в том случае, если изоляция нарушена и появился ток утечки, но отсутствует короткое замыкание.
Как разделить PEN проводник на PE и N
Здравствуйте, уважаемые читатели и посетители сайта http://zametkielectrika.ru.
Сегодня я решил Вам рассказать о том, где и как правильно выполнить разделение PEN проводника на PE и N. На эту мысль меня подтолкнули бесконечные споры и дискуссии на тематических форумах.
В данной статье, ссылаясь на пункты действующих нормативных документов (ПУЭ, ПТЭЭП, различные ГОСТы), я постараюсь дать Вам окончательный правильный и исчерпывающий ответ на этот вопрос.
Зачем нужно разделять PEN проводник?
Сначала определимся, для чего нам нужно разделять PEN проводник. Для этого обратимся к последнему 7 изданию ПУЭ, п.7.1.13, где сказано, что:
Это значит, что все электроустановки напряжением 380/220 (В) должны иметь систему заземления ТN-S, ну или в крайнем случае ТN-С-S. А что делать, когда у нас в России еще до сих пор электропроводка в старом жилищном фонде выполнена по устаревшим нормам с системой заземления TN-C.
Таким образом, при любой реконструкции (изменении) или модернизации электроустановки, а также если Вам не безразлична электробезопасность Вашей семьи, необходимо переходить от системы заземления TN-C на более современные ТN-S или ТN-С-S, но при этом необходимо выполнить разделение PEN проводника на нулевой рабочий N и нулевой защитный РЕ, и причем правильно. Вот здесь то и начинаются путаницы и постоянные разногласия.
Для информации: можете почитать выпуски статей о том, как мы проводили капитальный ремонт электропроводки жилого многоквартирного дома и Вы увидите своими глазами текущее состояние электропроводки, и прочих инженерных сетей и коммуникаций большинства жилых домов.
Приведу пример подъездного щитка одного из жилых домов, где мы проводили ремонт электропроводки — ужас:
В данной статье я не буду акцентировать внимание на системах заземления, т.к. про каждую писал отдельно, указывая их достоинства и недостатки. Читайте:
Итак, перейдем к вопросу разделения PEN проводника на нулевой рабочий N и нулевой защитный РЕ.
Как разделить PEN проводник на PE и N?
Чтобы нагляднее представить написанное ниже, я буду приводить примеры из своей практики с реальными фотографиями. В качестве примера рассмотрим питание многоквартирного жилого дома, типа «хрущевки».
ПУЭ, п.1.7.135:
Поясняю: c места разделения PEN проводника на нулевой рабочий N и нулевой защитный РЕ, дальнейшее их соединение (объединение) запрещено.
В месте разделения, в нашем примере это ВРУ-0,4 (кВ), устанавливаются две шины (или зажимы), которые должны быть соединены между собой и промаркированы:
В качестве перемычки может служить любой провод или шинка такого же сечения и материала. Некоторые мои коллеги-электрики устанавливают две перемычки по краям этих шин, что в принципе не противоречит требованиям ПУЭ.
Акцентирую внимание на том, что шины или зажимы должны иметь отдельные точки подключения для соответствующих проводников РЕ и N, а не подключаться в одном месте под один болт или зажим.
Шина N устанавливается на специальных изоляторах, а шина РЕ (ГЗШ) — закреплена прямо на корпус ВРУ-0,4 (кВ).
Читаем ПУЭ, п.1.7.61:
А сейчас нам нужно выполнить повторное заземление шины РЕ (ГЗШ), к которой подключен PEN проводник вводного кабеля.
В приведенном выше пункте сказано, что в качестве повторного заземления можно использовать естественные заземлители. Я же рекомендую Вам выполнить монтаж заземляющего устройства, сокращенно — З.У.
О том, как это можно сделать самостоятельно Вы можете прочитать в моей статье про монтаж заземляющего устройства.
После монтажа заземляющего устройства (З.У.) необходимо проверить его сопротивление. В этом Вам поможет электротехническая лаборатория по месту жительства.
Если сопротивление смонтированного заземляющего устройства удовлетворяет требованиям ПТЭЭП и ПУЭ, то соединяем шину РЕ (ГЗШ) с нашим заземляющим устройством с помощью заземляющего проводника. Ну вот и все, с этой точки электроустановки вводной PEN проводник разделен на нулевой рабочий N и нулевой защитный РЕ проводники.
Схемы разделения PEN проводника
Приведу пример схемы трехфазного ввода с счетчиком непосредственного (прямого) включения в сеть:
Компоновка вышеприведенной схемы может немного отличаться. Например, вместо вводного автомата может быть установлен трехполюсный рубильник, а после счетчика установлены вводные предохранители и УЗО. Аналогично и по автоматам групповых нагрузок — вместо них могут быть установлены предохранители.
Перейдем к наглядному примеру: жилой многоквартирный 4-этажный дом питается от трансформаторной подстанции (ТП), расположенной во дворе, кабелем АВБбШв (4х70).
- В таком случае фазные жилы (А,В,С) вводного кабеля мы подключаем на коммутационный аппарат — трехполюсный рубильник, а совмещенный PEN проводник вводного кабеля — на шину РЕ (ГЗШ). Смотрим схему:
- А вот фотографии этого самого ВРУ:
- Вот еще один наглядный пример — это схема трехфазного ввода с счетчиком, подключенного через трансформатор тока:
- Вводной кабель марки АВБбШв 2(3х70) проложен до ВРУ двумя нитками.
Три жилы кабеля — это фазные проводники (А, В, С) подключены на вводной трехполюсный рубильник. В качестве PEN проводника используется металлическая оболочка вводного кабеля, которая подключается непосредственно на шину РЕ (ГЗШ).
После вводного рубильника установлены вводные предохранители ППН-35 с номиналом 250 (А) и трансформаторы тока с коэффициентом трансформации 200/5. Для защиты от коротких замыканий и перегрузок групповых нагрузок, в нашем примере это магистральная электропроводка (стояки) подъездов, применяются предохранители ППН-33 с номиналом 50 (А).
- Вот пример схемы однофазного ввода для частного дома или коттеджа, получающего питание от двухпроводной воздушной линии СИП с дальнейшем разделением PEN проводника в вводном щитке:
Здесь хочу добавить то, что вводной автомат должен быть установлен в пластиковом боксе для возможности его опломбировки, иначе могут возникнуть проблемы с энергоснабжающей организацией при вводе электроустановки и прибора учета в эксплуатацию. И еще прошу заметить, что нулевые шины N1 и N2 НЕ соединены между собой.
Я все таки больше склоняюсь именно к такой схеме однофазного питания дома с разделением PEN проводника в вводном щитке и всегда рекомендую и советую ее.
- Но многие специалисты, в том числе мои коллеги «по цеху», частенько ссылаются на еще существующий в настоящее время ГОСТ Р 51628-2000, который, кстати, редактировался последний раз аж в марте 2004 года. А там рекомендуется применять вот такую схему для однофазного питания одноквартирных и сельских жилых домов:
- Мое мнение по этому поводу следующее: обе схемы правильные, но лучше все таки ссылаться на более новые выпуски НТД (я имею ввиду ПУЭ) и придерживаться их норм и требований, о которых я рассказывал в начале этой статьи.
Забыл сказать: не забывайте защищать свое «жилище» от перенапряжений, возникающих от грозовых разрядов или коммутаций различного электрооборудования, с помощью УЗИП или ОПН. В следующих статьях я расскажу об этом более подробнее — подписывайтесь на получение новостей на почту.
После рассмотренных вариантов схем хотелось бы напомнить ПУЭ, п.1.7.145:
После того, как Вы произвели модернизацию своего вводного щитка, установили там шины PE (ГЗШ) и N, выполнили монтаж З.У. (контура заземления), то следует обратить внимание на следующий п.7.1.87 и п.7.1.88 7-ого издания ПУЭ, в котором говорится следующее:
Как видно из пункта 7.1.87, систему уравнивания потенциала необходимо выполнять на вводе в здание, т.е. это еще один аргумент в пользу разделения PEN на нулевой рабочий N и нулевой защитный РЕ на вводе в здание, т.е. в ВРУ. Об этом читайте чуть ниже.
Более подробно о системах уравнивания потенциалов я рассказывал здесь: СУП.
Надеюсь, что тему разделения PEN проводника я раскрыл полностью, но я решил в конце статьи ответить на самые распространенные вопросы, которые все таки могут возникнуть в процессе прочтения.
Место разделения PEN проводника на PE и N
Самый распространенный (наверное) вопрос, который постоянно заставляет активно общаться на тематических форумах — это место разделения PEN проводника. Есть два варианта ответа — один правильный, а другой — не совсем.
Начнем с правильного.
1. Вводное распределительное устройство (ВРУ)
Самым правильным местом для разделения PEN проводника на PE и N является вводное распределительное устройство ВРУ-0,4 (кВ) или ВРУ-0,23 (кВ) отдельно стоящего здания. Отдельно стоящее здание в нашем понимании — это жилой многоквартирный дом, коттедж, садовый или дачный деревянный домик и т.п.
Существует одно условие, про которое я не могу не сказать: питание отдельного стоящего здания должно осуществляться кабелем сечение которого должно быть не меньше, чем 10 кв.мм по меди или 16 кв.мм по алюминию. Об этом отчетливо говорится в ПУЭ, п.1.7.131:
Как это понять: если у Ваш коттедж, дом или другое отдельное строение питается кабелем сечение которого меньше, чем указано в п.1.7.131, то его питание должно осуществляться уже по системе TN-C-S, т.е. с отдельными проводниками РЕ и N.
Бывают случаи, когда отдельное строение (например, баня) питается по системе TN-C кабелем меньшим сечением, чем допускает п.1.7.
131 — в таком случае PEN проводник необходимо разделить в другом месте — ближе к источнику питания, например, в распределительном щите, откуда это строение (баня) питается.
Вот еще один весомый аргумент в пользу норм и требований ПУЭ по разделению PEN проводника — это ГОСТ Р 50571.1-2009. В п.312.2.1 отчетливо сказано где и как именно должен разделяться PEN проводник. Цитирую:
Вводом электроустановки для жилого многоквартирного дома или частного дома является вводное распределительное устройство (ВРУ).
А сейчас — не очень правильный вариант…
- 2. Этажный щит
- Очень часто посетители моего сайта, а также различных форумов, настойчиво интересуются вопросом про разделение PEN проводника в этажном (подъездном) щитке.
Отвечаю: см. пункт 1.
Если не убедил, то знайте, что разделение PEN проводника на этажном щитке является грубым нарушением существующего проекта электропроводки жилого дома.
Поэтому у Вас нет никакого права вмешиваться в существующую схему со своим монтажом.
Не дай Бог, если что то случится после вмешательств, то в первую очередь Вы понесете за это полную ответственность: штраф, административную или уголовную ответственность.
Поэтому настоятельно рекомендую разделение PEN проводника на PE и N выполнять только на вводе в здание и точка!!!
Ладно, с этим определились (я надеюсь), но что же делать и как перейти с системы TN-C на систему TN-C-S?
Пути решения для перехода с системы TN-C на систему TN-C-S
Что я могу Вам здесь посоветовать?
1. Ждать возможности включения Вашего жилого многоквартирного дома в список на проведение капитального ремонта, согласно действующей федеральной программы. В таком случае Вам обойдется все бесплатно. Вопрос остается в том, а внесут ли вообще Ваш дом в эту программу. Узнать это можно в офисе Вашей управляющей компании.
2. Оплатить услуги специалистов, которые составят проект, согласуют его во всех инстанциях и выполнят капитальный ремонт электропроводки всего жилого дома, ну или в крайнем случае, переведут Ваш дом на систему TN-C-S, установят новое ВРУ, проложат новые провода магистралей (стояков) и заведут Вам в квартиру полноценную «трехпроводку»: фазу, ноль и «землю».
Данный вариант по финансам получится достаточно затратный, поэтому читаем третий вариант, который тоже имеет право на жизнь.
3. Обратиться всеми жильцами дома (хотя бы большинством) в управляющую компанию (УК) с предложением плодотворного и плотного сотрудничества.
Например, Вы можете выполнить монтаж заземляющего устройства (контура заземления), про это я подробно рассказывал, или посодействовать в помощи при прокладке магистралей (стояков) электропроводки по этажам.
Так сказать действовать «сообща»…Ну а проект на все изменения, естественно, ляжет на плечи УК.
Возможно такой вариант больше подойдет для участников ТСЖ, но тем не менее попробовать можно. В итоге, совместными усилиями Ваш дом возможно переведут на систему TN-C-S, по этажам или шахтам проложат пятипроводную магистраль (стояк), а Вам лишь останется при удобном случае завести к себе в квартиру трехпроводный ввод.
Что делать, когда проводка в квартире выполнена по современным требованиям ПУЭ, а питающая линия еще двухпроводная?
Отвечаю: в таком случае все очень просто. В квартирном щитке все защитные проводники РЕ подключаете на свою шину РЕ, но саму шину РЕ никуда не подключаете и оставляете «в воздухе», до тех пор пока Ваш дом не переведут на систему TN-C-S.
P.S. Ну вот пожалуй, я закончу свой длительный рассказ о разделении PEN проводника. Готов выслушать все Ваши вопросы и комментарии. Спасибо за внимание.
Если статья была Вам полезна, то поделитесь ей со своими друзьями:
Заземление в частном доме своими руками 380 в схема – Как сделать заземление в частном доме своими руками: 220В и 380В
В любом загородном доме или частном строении, расположенном в городской черте, в распоряжении хозяев имеются бытовые приборы и силовое оборудование, при пользовании которыми возможны нештатные ситуации.
Обычно они проявляются в том, что в какой-либо технике повреждается изоляция, после чего фаза напряжения питания попадает на металлический корпус. При случайном прикосновении к нему одного из жильцов он получает сильный удар током, который может привести к непоправимым последствиям.
Чтобы избежать таких ситуаций – в любом современном строении организуется защитное заземление, призванное снизить опасный потенциал, воздействующий на человека при аварийном режиме работы оборудования.
Нужно ли заземление в частном доме
Надежное заземление в частном доме необходимо хотя бы потому, что требования ПУЭ не допускают эксплуатацию имеющихся в нем бытовых приборов без защиты от опасных напряжений.
Обратите внимание: Кроме того, в отличие от городских квартир, в загородном хозяйстве допускается подводка 4-х или 5-ти жильного кабеля с трехфазным питанием 380 Вольт.
Подобный ввод позволяет устанавливать на участке небольшой фрезерный станок, например, а также подключать к линии электроснабжения асинхронные двигатели и другие образцы силового оборудования.
Заземление всех металлических составляющих в частном доме
Если в частном загородном доме предполагается обустроить бассейн или сауну (то есть объекты, связанные с повышенной влажностью) – обязательно потребуется проработка вопроса о системе выравнивания потенциалов.
Ее организация позволит объединить все крупные металлические составляющие данного объекта (включая стальные трубопроводы и металлические двери) в единую цепь.
А та в свою очередь подключается к уже готовому контуру заземления, как это показано на фото справа.
Принцип действия заземления
Чтобы было понятнее, зачем нужно заземление в домах или на даче – потребуется рассмотреть принцип его работы, основанный на том, что электрический ток всегда выбирает для стока кратчайшее расстояние.
Иными словами – электронные носители всегда устремляются в цепи, обладающие минимальным сопротивлением. В аварийной ситуации, когда токопроводящий корпус прибора из-за повреждения изоляции оказывается под напряжением как раз и реализуется этот случай.
Если это уже произошло, единственно, что сможет защитить работающего с ними пользователя – это наличие цепочки для стекания опасного тока.
Добиться его ответвления удается за счет обустройства специального заземляющего контура (ЗК), отдельные элементы которого связаны с корпусом защищаемого электрооборудования.
Благодаря этому представляющий угрозу для человека аварийный ток уменьшается до безопасной величины.
Последнее объясняется тем, что большая его часть стекает в землю по параллельной цепочке, образованной конструкцией ЗК (смотрите фото ниже).
Принцип работы системы заземленияВажно! Величина токовой составляющей, протекающей через человеческое тело, в значительной мере зависит от изолированности его ног от грунта.
При наличии резиновой обуви или толстого защитного коврика она снижается по абсолютной величине, в идеале приближаясь к нулевому значению. С учетом этого профессиональные электрики обычно работают на оборудовании, расположившись на р
fishkielektrika.ru
Как сделать заземление правильно
Электричество это наше все, оно должно быть безопасным. Для этого применяется заземление. Расскажу вам как сделать заземление правильно и при этом сэкономить.
Для чего нужно заземление в частном доме или квартире
Простыми словам заземление необходимо для защиты человека от возможного удара током в квартире или частном доме.
Принцип работы защитного заземления — это отведение электрического тока в землю от металлических электроприборов, при их неисправности.
В новой квартире или при строительстве дома нужно обязательно провести работу по прокладке заземляющего кабеля и его подключению к «контуру земли» или общедомовому или индивидуальному.
Электроприборы потребляют большое количество энергии, их корпуса металлические и отлично проводят ток, поэтому в особенности обратите внимание на заземление: стиральных машин и холодильников, варочных панелей и духовых шкафов, электрических бойлеров и котлов отопления, микроволновых печей.
Корректная работа заземления опирается на факт того, что:
- Происходит снижение до неопасного значения разности потенциалов между заземляемым объектом и другими проводящими ток объектами, имеющими свое заземление.
- В рабочей электрической сети появление утечки тока приведет к быстрому срабатыванию защитного устройства УЗО.
- При утечке тока и контакте заземляемого проводящего объекта с фазным проводом должно происходить отведение этого тока.
Внимание! Контур заземления будет грамотно работать в комплекте с использованием устройств защитного отключения УЗО. Если прибор выйдет из строя, то величина тока на заземленных предметах не превысит опасной величины. Нерабочий участок сети будет мгновенно выключен в течение времени срабатывания УЗО.
Отсюда можно сделать выводы:
- Наиболее опасный вариант для человека, когда корпус электроприбора не заземлен и УЗО отсутствует.
- Если корпус заземлен, УЗО отсутствует, то этот вариант недостаточно безопасен, так как при высоком сопротивлении заземлителя и больших номиналах предохранителей потенциал на заземленном проводнике может достигать очень высоких величин.
- Если корпус не заземлен, но при этом УЗО установлено, утечка тока может произойти через тело человека, коснувшегося одновременно неисправного прибора и предмета, имеющего естественное заземление. УЗО отключает участок сети, как только возникнет утечка. Но человек получит лишь кратковременный удар током, не причиняющий вреда здоровью. Но УЗО может быть неисправен, поэтому лучше не рисковать и сделать все по следующему варианту.
- Корпус прибора заземлен и установлено УЗО. Это самый лучший вариант, так как выполнены два защитных решения.
Как сделать заземление правильно в квартире
Чтобы ответить на этот вопрос необходимо понимать какая система защиты установлена именно в вашем доме.
Как правило в старых домах советской постройки применялась Система TN-C, в которой нулевой защитный и нулевой рабочий проводники, объединены в один PEN проводник, и они совмещены на всем протяжении системы. Узнать такую систему можно по двухжильному кабелю, который проложен по квартире и по четырехжильному в общем щитке.
Если говорить честно, как правильно сделать заземление именно в квартире в старом фонде, то такая система защищает только от короткого замыкания и возрастает вероятность получения удара током.
Поэтому говорить о защитном заземлении в данном случае необходимо с некой долей риска.
Есть несколько рабочих вариантов, которые снижают риски, но при этом не являются полноценной защитой, и делаются на ваш страх и риск.
Вариант 1 Меняем проводку в квартире на трехжильную L, N, PE, но PE никуда не подключаем. В будущем, когда будет сделано общедомовое заземление, можно будет подключиться.
На группы розеток обязательно устанавливаем УЗО на случай попадания фазы на корпус в пределах квартиры. Абсолютной защиты они не гарантируют.
Но при повреждении бытовой техники УЗО обесточит линию и не позволит току достичь опасной величины.
Вариант 2 Договариваемся с соседями и управляющей компанией и делаем отдельный контур заземления возле подъезда по принципу как в частном доме. Этот вариант самый безопасный и правильный.
Вариант 3 Ноль оставляем как есть, провод PE берем с магистрального PEN провода. Можно с места, куда он подходит к корпусу этажного щитка. Важно, чтобы наши N и PE были подключены в разных точках.
PE – на корпусе, N – на изолированной от корпуса шине, на которую ноли приходит после вводного рубильника или автомата и счетчика. При этом остается большой минус в таком решении. Нуль может отгореть на входе в дом.
Вы можете думать, что домов меньше, чем квартир и вероятность возникновения такой проблемы меньше, но это опасность все же есть. Поэтому такое заземление то же не работает на 100%.
Внимание! Не делайте заземляющий провод с контактной точкой на батарее центрального отопления или водоснабжения. Нельзя делать заземление, соединив в розетке нулевой рабочий и нулевой защитный проводники. Это опасно, так как может отгореть рабочий нуль в щитке. После этого на корпусе ваших электроприборов появиться 220В.
В современных многоквартирных домах используется система TN-S, в ней проводники N и PE разделены на всём протяжении от подстанции до потребителя.
Эта система самая безопасная и предпочтительная, но применяется только в новых электроустановках из-за высокой стоимости.
В большинстве домов сейчас используется система TN-C-S, в которой проводники N и PE после подстанции соединены в один провод PEN, а потом, на вводе в здание, разделены.
В данном случае организовать защитное заземление можно на этапе монтажа электрики используя трехжильные провода, розетки с заземлением и защитную автоматик. При попадании фазы на корпус прибора должен сработать защитный автомат. При касании токоведущих частей должен сработать УЗО.
Для разводки электричества советую выбрать кабель с тремя жилами в двойной изоляции, лучше ВВГ НГ, для розеточных групп сечением 3 на 2.5 для световых групп 3 на 1.5.
Один конец провода заводится под свободный болт шины распределительного щита, соединенной с корпусом щита, а второй — на «заземляющий» контакт розетки.
Одновременно со сборкой квартирного щитка электрики проверьте подключение заземляющего провода в общем домовом щитке.
Внимание! Сделайте отдельный контур заземления для металлической ванны и раковины, металлических труб стиральной машины. Правильно соединяйте кабель заземления с металлической ванной к специально приваренному к корпусу ванны ушку, но не к регулируемым болтовым креплениям ванны.
Внимание! При наличии в щитке УЗО заземляющий проводник не должен нигде иметь контакта с N проводником, так как будет срабатывать УЗО. Помните, что «земля» не должна разрываться, посредством выключателей
Как сделать заземление правильно в доме
Как правило для подачи в частный дом электричества применяется система ТТ, в такой системе заземляющий провод PE подключается к контуру заземления, и больше никуда.
При такой системе, необходимо делать качественной контур заземления, чтобы в случае замыкания КЗ на землю, ток короткого замыкания был достаточен для срабатывания автомата защиты.
Рассмотрим, как сделать заземление правильно в частном доме.
Контур состоит из заземлителей и металлической обвязки. Заземлители делаются из металлических штырей 2-3 метров длинной, они полностью входят в землю. Эти штыри и распределительный щит в доме соединяются металлической обвязкой.
Для изготовления штырей могут применяться металлические трубы, уголки, пруты. Арматуру использовать нельзя, так как она быстрее ржавеет и теряет заземляющие свойства. Между собой штыри удобно соединять металлической полосой.
Существует принципиально две схемы контура заземления:
- Линейная схема заземляющего контура, заземлители уложены в ряд и соединяются последовательно.
- Схема с замкнутым контуром, например треугольные и квадратные, в этом случае все штыри заземления образуют замкнутый круг. Такая схема более надежна и оптимальна. Если позволяет территория возле дома, то используйте её. Самой оптимально схемой будет треугольник, расстояние между штырями должно быть одинаковым от 1 м до 1,5 м.
Организацию заземления в частном доме можно разделить на три этапа работ, на монтаж контура заземлителей в земле, подключение контура к электрическому щитку и проверку работы заземления.
Внимание! Ответственно подойдите к выбору места для контура заземления, так как в случае утечки тока над ним не должно никого быть. Можно расположить под клумбой или дорожкой. Размещать контур нужно на расстоянии от 1 до 10 метров от дома.
ЭТАП1
- Отмечаем территорию под контур треугольника, в направлении к строению выкапываем траншею глубиной 70 см.
- В углах треугольника в землю вбиваются металлические уголки или трубы на глубину ниже уровня промерзания, около 2,3 метров. Концы штырей забивают так, чтобы после засыпания грунтом над ними было еще около 50 см почвы.
- Затем эти концы соединяются методом сварки металлическими полосами, тем самым образую замкнутый контур в виде равнобедренного треугольника.
- Затем приваривается к контуру металлическая полоса, идущая к дому. На её конце, на стене дома, привариваем болт, к которому будет закрепляться заземляющий провод от шины в электро-щитке.
- Сварочные швы красятся битумной краской или мастикой, для защиты от коррозии.
- Засыпаем грунтом траншею, и красим для защиты от коррозии земляную шину, которая выступает из земли.
Внимание! Есть заблуждение, что для лучшей работы заземления можно посыпать контур перед засыпкой солью, якобы соленая почва лучше проводит ток. Не делайте этого, так как показатели проводимости тока действительно на начальном этапе эксплуатации будет лучше, но в долгосрочной перспективе ваш контур значительно быстрее заржавеет и потеряет свою способность выполнять свои функции.
ЭТАП2
Для подключения земляной шины к щитку лучше использовать медный провод желтого цвета, сечением не меньше 10 кв.мм.
Внимание! Для крепления медного провода к металлической полосе делается отверстие по диаметру болта, провод фиксируется гайкой с шайбой специальными клеммами, но не накручиваться на них. Это место соединения зачищаем до блеска и покрываем консистентной смазкой для защиты металла от окисления и коррозии.
К щиту медный провод крепится на корпус также винтовым соединением. Если дверца щита не заземлена, то заземлите её еще одним проводом.
Совет! Заранее подберите шины заземления в щитке с нужным количеством отверстий для разных линий, так как крепить два провода в одну точку запрещается.
ЭТАП3
Проверьте работоспособность выполненного защитного. Лучше проводить такую проверку раз в 3 года, для вашей безопасности. Проверка проводится омметром. Может показаться, что проверить ваш контур можно при подключении обыкновенной лампочки к фазе и контуру и она будет гореть, но это ошибочно из-за низкого электропотребления.
Сопротивление контура заземления не должно быть более 4 Ом. Советую пригласить электрика и быть уверенным в том что ваш контур заземления работает корректно.
Итоговые рекомендации
Теперь вы знаете, как правильно сделать заземление в квартире или доме. Подведем небольшие итоги:
- Заземление необходимо для защиты человека от возможного удара током в квартире или частном доме.
- Самый безопасный вариант, когда корпус электроприбора заземлен и установлено УЗО.
- В старом жилом фонде лучше ни рисковать и заменить старую проводку на трехжильные кабеля ВВГ НГ и использовать защитную автоматику, при этом пытаться решить вопрос об установке общедомового контура заземления.
- В новом жилом фонде организовать защитное заземление можно на этапе монтажа электрики используя трехжильные провода, розетки с заземлением и защитную автоматику. При попадании фазы на корпус прибора должен сработать защитный автомат. При касании токоведущих частей должен сработать УЗО.
- Сделайте отдельный контур заземления для металлической ванны и раковины, металлических труб, стиральной машины, варочной панели и духового шкафа.
- В частном доме организуйте схему с замкнутым контуром заземления из трех штырей в земле, соединенных между собой и щитком земляной шиной.
- Обязательно проверьте корректность работы заземления.
Схематично схему организации контура заземления в частном доме можно представить так:
cheremo.ru
Заземление в частном доме своими руками: схемы и монтаж
Электрика дома — все про електрику
|
Чем опасно самостоятельное выполнение заземления в квартире?
Защитное заземление — основной способ минимизации воздействия на человека электрического тока в случае появления на металлическом корпусе бытовых электроприборов опасного для жизни человека потенциала. В странах СНГ достаточно распространена проблема отсутствия заземления в квартире по причине питания от устаревших сетей конфигурации TN-C, в которых не предусмотрено заземление домашней электропроводки.
Для решения данной проблемы, некоторые умельцы выполняют заземление электропроводки посредством переделки системы TN-C в TN-C-S. В итоге, неправильно выполненное заземление делает эксплуатацию электропроводки еще более опасной, чем при отсутствии заземления как такового.
Основная ошибка при самостоятельном выполнении заземления заключается в том, что система TN-C представляется просто как система TN-C-S, в которой нет разделения защитного проводника.
Зачастую переделка системы TN-C в TN-C-S сводится просто к разделению в главном распределительном щитке совмещенного проводника PEN. На рабочий нулевой N и защитный PE. При этом не учитывается текущее состояние питающей сети.
Если изначально в данной сети не предусмотрено заземления, то высока вероятность, что причина заключается в несоответствии электрических сетей требованиям ТКП 45-4.04-149-2009, ТКП 339-2011. Во-первых, это техническое состояние электрической сети.
Если оно неудовлетворительное, то соответственно ни о какой механической устойчивости к повреждению PEN-проводника речи не может идти. Во-вторых, отсутствие на линии достаточного количества повторных заземлений нулевого проводника.
Такое подключение, еще больше увеличивает шансы появления на заземляющем проводнике опасного потенциала, который возникнет в результате обрыва нуля на линии. То есть в таком случае самостоятельно выполненное заземление будет источником опасности для жителей, эксплуатирующих заземленные бытовые электроприборы.
Все существующие системы устройства заземления предназначены для обеспечения надежного и безопасного функционирования электрических приборов и оборудования, подключенных на стороне потребителя, а также исключения случаев поражения электрическим током людей, использующих это оборудование.
При проектировании и устройстве систем энергоснабжения, необъемлемыми элементами которых является как функциональное, так и защитное заземление, должна быть уменьшена до минимума возможность появления на токопроводящих корпусах бытовых приборов и промышленного оборудования напряжения, опасного для жизни и здоровья людей. Система заземления должна либо снять опасный потенциал с поверхности предмета, либо обеспечить срабатывание соответствующих защитных устройств с минимальным запаздыванием. В каждом таком случае ценой технического совершенства, или наоборот, недостаточного совершенства используемой системы заземления, может быть самое ценное — жизнь человека.
Справочно:
В системе TN-C рабочий нулевой проводник N и защитный заземляющий проводник PE совмещены в одном проводе на всем протяжении линии от трансформаторной подстанции до потребителя. Это так называемый PEN проводник.
При этом, данный совмещенный проводник заводится в квартиру или частный дом без разделения на нулевой рабочий и защитный проводники. Нередко встречаются рекомендации относительно защиты домашних электроприборов путем зануления — присоединения заземляющего контакта в розетке к нулевому совмещенному проводнику PEN.
В данном случае при появлении фазного напряжения на корпусе бытового электроприбора произойдет короткое замыкание. И отключится автоматический выключатель в распределительном щитке.
Основной недостаток зануления заключается в том, что в случае обрыва нулевого провода от домашнего распределительного щитка до места зануления на корпусах оборудования появится фазное напряжение. Тоже самое будет и в случае обрыва нулевого провода от трансформаторной подстанции до ввода в дом.
На корпусе зануленного оборудования гарантировано появится фазное напряжение электросети. В связи с этим, зануление в сети TN-C выполнять запрещено. То есть такая система в быту эксплуатируется как двухпроводная – используется только фазный и нулевой рабочий проводник для питания электроприборов.
Система TN-C-S отличается от системы TN-C тем, что совмещенный проводник PEN при заходе в здание разделяется на рабочий нулевой N и защитный PE.
В данной сети, как и в сети TN-C на заземляющем проводнике появится опасный потенциал в случае обрыва совмещенного проводника PEN до точки разделения. Поэтому для предотвращения негативных последствий обрыва нуля в сети конфигурации TN-C-S согласно ТКП 45-4.
04-149-2009, ТКП 339-2011 предъявляются требования относительно механической устойчивости к повреждению проводника PEN. На линии электропередач организуют надежные повторные заземления проводника PEN, а также надежность шины заземления PE непосредственно в доме.
Только при соблюдении данных требований электрическую сеть можно эксплуатировать, как сеть конфигурации TN-C-S. То есть использовать защитный проводник PE для заземления домашней электропроводки.
Системы заземления TN-C-S, TN-C, TN-S, TN-C-S, TT, IT
Всем известны системы энергоснабжения с напряжением до 1000 вольт, на уровне конечного потребителя. Они бывают всего двух видов:
- трехфазная (три фазы и рабочий нуль), где напряжение между фазами составляет 380 вольт, а между каждой фазой и нулем — 220 вольт.
- однофазная (одна из трех фаз с общего ввода на объект, и рабочий нуль), напряжение между каждой фазой и нулем составляет 220 вольт.
А вот с системами безопасности, ситуация гораздо сложнее. Для организации искусственного заземления, ГОСТ предусматривает 5 систем: TN-C, TN-S, TN-C-S, TT, IT.
Правила устройства электроустановок (ПУЭ) определяют условия, на основании которых проектировщики выбирают систему заземления объекта. Она отражается в проектной документации, и не может быть изменена после сдачи объекта в эксплуатацию.
В большинстве случаев, применяется система заземления TN, которая предусматривает обязательное заземление нейтрали источника питания. При этом открытые токоведущие части конечных электроустановок, могут быть соединены с нейтралью источника питания различными способами.
Каждая из предложенных систем искусственного заземления имеет свои преимущества и недостатки. При этом, любая из них направлена на решение вопросов безопасной эксплуатации электроустановок, и нахождения людей на объекте.
Условные обозначения
Для лучшего понимания материала, разберем принятые условные обозначения:
- L1, L2, L3 — проводник, на который подключена фаза источника питания. В однофазных системах, обозначается буквой L.
- N — рабочий нуль источника питания (нулевой проводник).
- PE — защитный нуль: он же заземляющий проводник, соединенный с заземлителем.
- PEN — проводник, совмещающий в себе рабочий и защитный нули.
TN-S
Самая безопасная система, это TN-S.
Силовой кабель для соединения потребителя электроэнергии с источником питания, выполнен по пятижильной схеме: три фазы (L1, L2, L3), рабочий нуль (N) и рабочее заземление (PE). Объединение нуля и «земли» происходит на ближайшей подстанции. При аварийной ситуации, если рабочий нуль отгорит, корпуса электроустановок все равно остаются присоединенными к заземлению. Защита от поражения электротоком обеспечивается независимо от состояния нулевого провода. Соответственно, внутренняя разводка к потребителям выполняется трехжильным проводом (для однофазного подключения), либо тем же пятижильным (при наличии трехфазных электроустановок: например, электропечей или отопительных систем).
На вводных щитках в каждом помещении, монтируются по две раздельные клеммные колодки: рабочий нуль и защитная земля.
Причем после «земляной» колодки нельзя устанавливать коммутационные устройства: выключатели, защитные автоматы. По всей длине, заземляющий проводник от заземлителя до электроустановки, не должен иметь размыкающих устройств.
Вы спросите: «а как же розетка?» При извлечении из нее вилки, линия заземления действительно размыкается. Но при этом электроустановка полностью обесточивается, и перестает быть опасной.
TN-C
Системой заземления TN-S сегодня оборудуются все современные жилые и нежилые объекты. К сожалению, такая схема применяется только на объектах, введенных в строй не раньше, чем 15–20 лет назад. Подавляющее большинство жилого фонда, построенного во времена СССР, оборудованы системой TN-C. Это не значит, что все эти объекты построены с нарушениями СНиП. Просто в те времена, стандарты (включая ПУЭ) были иными.
В идеале, необходимо переоснастить все существующие сети до стандарта TN-S. Но это потребует огромных капиталовложений. К тому-же, прокладка дополнительных линий «земли» от питающих подстанций не всегда возможна технически. А значит, в некоторых местах придется менять всю сеть силовых кабелей.
Заземление TN-C не обеспечивает полной безопасности по следующей причине:
«Земля» и рабочий нуль представляют собой одну линию, которая расположена в силовом кабеле от источника питания, до потребителя. Заземлитель (контур заземления, физически соединенный с грунтом), расположен в непосредственной близости от питающей подстанции. Такой способ организации заземления называется глухозаземленной нейтралью. Силовой кабель состоит из четырех жил: три фазы (L1, L2, L3), и рабочий нуль, совмещенный с рабочим заземлением (PEN).
Поскольку рабочий нуль находится под нагрузкой (через него протекает активный электрический ток), он находится в так называемой зоне риска. Нередки случаи, когда от перегрева этот проводник просто отгорал. Что происходит при этом с конечными потребителями, оставим за скобками — напряжение может скакнуть до 600 вольт. Главная опасность в том, что все электроустановки в этом случае теряют защитное заземление. Прикоснувшись к корпусу, на котором может оказаться потенциал фазы, человек гарантированно будет поражен электротоком. Особую опасность при такой аварии, представляет одновременное прикосновение к электроустановке, находящейся под напряжением, и металлическим конструкциям, имеющим физический контакт с грунтом: системы отопления, водопровода, арматура в стенах. Даже влажный цементный пол, соединенный с арматурой в стяжке, может стать причиной трагедии.
В многоквартирных домах, и других объектах, оборудованных системой TN-C, вообще отсутствует защитное заземление в привычном понимании. Все знают, как выглядят розетки советского образца: в них нет контактов заземления. Даже если владельцы производят замену на трех контактные современные розетки, клемма защитного заземления остается невостребованной: ее просто не к чему подключить.
По этой причине, на объектах, оснащенных заземлением TN-C, в помещениях с повышенной влажностью (санузлы, бани, прачечные), запрещено использовать незаземленные электроприборы. Если вы устанавливаете бойлер, или стиральную машину — подводить к ней заземление (или организовывать систему дополнительного уравнивания потенциалов) на основе рабочей нейтрали, запрещено!
Необходимо организовать заземлитель (полноценный контур, имеющий физический контакт с грунтом). Причем параметры такого заземлителя должны соответствовать требованиям Правил устройства электроустановок.
Металлический уголок длиной 50 см, забитый в палисадник у подъезда, заземлителем не является!
Затем в квартиру заводится заземляющий проводник (сечением не менее 2.5 мм², и не имеющий разъединителей на всей протяженности), который соединяется непосредственно с электроустановкой. Разумеется, необходимо установить щиток или клеммную колодку заземления, завести на нее розетки и корпуса опасных электроприборов.
TN-C-S
Для минимизации проблем со схемой TN-C, введена система заземления TN C S. Это некий компромисс, переходный вариант от старой C к современной S.
Как она устроена, и в чем отличие от TN-S?
В произвольном месте, глухозаземленная нейтраль объединяется с защитным заземлением. Точнее, от рабочего нуля выполняется ответвление. Как правило, такая точка организуется на входе силового кабеля в объект.
На вводном щитке потребителя (обычно, это общий ввод на объекте: многоквартирный дом, офисное здание и прочее) имеются уже две шины: рабочий нуль, и защитное заземление. Далее к потребителям идут привычные и безопасные силовые кабели: трехжильный к однофазным электроустановкам, и пятижильный к трехфазным.
В каждый вводной щиток квартиры, или обособленного помещения внутри объекта, линии защитного заземления и нуля заходят уже в разделенном виде. Для конечного потребителя, система заземления по схеме TN-C-S выглядит, как обычная и безопасная TN-S. На самом деле, уровень безопасности далеко не 100%.
Почему система TN-C-S не обеспечивает полную защиту от поражения электротоком? Слабое место находится на участке от питающей подстанции до точки объединения нуля и защитного заземления. Если на пути от подстанции, где глухозаземленная нейтраль соединена с заземлителем, до вводного распределительного устройства на объекте, произойдет разрыв линии PEN, все потребители останутся без контура заземления.
При проведении капитального ремонта на объектах жилого фонда советской постройки, обязательно организуется система заземления. Для экономии средств, выполняется она по схеме TN-C-S. В лучшем случае, при объединении линии PEN с вновь проложенной шиной защитного заземления, производится электрическое подключение к реальному контуру заземления. В большинстве домов присутствует основная система уравнивания потенциалов, имеющая надежный контакт с грунтом. Но зачастую, чтобы упростить себе задачу, бригады ремонтников просто устанавливают перемычку между новой шиной заземления и рабочей нейтралью, внутри вводного распределительного устройства.
Совет. При заключении договора с исполнителем работ по капитальному ремонту, необходимо заранее оговаривать вопрос заземления.
Как быть, если ваш дом подключен по системе TN-C, а до ближайшего капремонта еще много лет? Организовывать индивидуальное заземление в квартире, или объединяться хотя бы с соседями по подъезду. Иначе использование современных электроприборов (бойлеры, электрические духовки, стиральные машинки и пр.) станет источником повышенной опасности.
Есть горе мастера, немного разбирающиеся в электротехнике, но не понимающие ответственности за нарушение ПУЭ. Зачастую, вместо организации контура заземления по ГОСТу, шина защитного заземления соединяется с металлическими элементами инфраструктуры. В лучшем случае, со стояками холодной или горячей воды, в худшем — с системой отопления.
Действительно, при строительстве дома, эти трубы соединялись с контуром основной системы уравнивания потенциалов. Изначально был организован физический контакт с «землей». Но в процессе эксплуатации (особенно если вашему дому несколько десятков лет), целые участки трубопроводов заменены на полипропилен. Разумеется, ни о каком заземлении в этом случае не может быть и речи.
Организовав такое подключение, владелец квартиры пребывает в ложной уверенности, что у него с безопасностью полный порядок. Мало того, при появлении на корпусе электроустановки опасного потенциала (достаточно напряжения более 42 вольт), опасности подвергаются все соседи.
Вывод
Единственный безопасный способ — установить недалеко от подъезда контур заземления (согласно ПУЭ), и завести на объект надежный проводник.
После чего, можно развести полноценное заземление по квартирам. Разумеется, лучше поручить эту работу квалифицированным специалистам.
Видео по теме
Системы заземления TN,TT,TN-C,TN-S,TN-C-S, IT | elesant.ru
Основные понятия в теме типы заземления
Чтобы разобраться с системами заземления определюсь с основными понятиями, которые будут использоваться в этой статье. Вы, конечно, можете прочитать пункты 1.7.3-1.7.7 главы 7, ПУЭ, если любите первоисточники. Здесь я не буду переписывать ПУЭ, просто расскажу, что нужно понимать под отдельными словами в этой статье.
Прежде всего, что такое заземление эклектической сети, по сути
Заземление электрической сети это соединение всех открытых для прикосновения токопроводящих частей электроприборов (например, корпусов) и доступной арматуры (например, металлические водопроводные трубы) с землей (в буквальном смысле).
Зачем нужно заземление?
Земля, вернее проводящая часть земли, имеет нулевой электрический потенциал в любой своей точке. Части электроприборов, по которым в нормальном режиме не протекает электрический ток, совершенно безопасны для человека. Другая ситуация в аварийной ситуации при которой по корпусу бытового прибора начинает течь ток. В такой аварийной ситуации прикосновение к корпусу будет представлять серьезную опасность для человека. Именно для защиты человека от поражения электрическим током, а также для защиты от последствий электроаварий (например, пожара) и предназначено ЗАЗЕМЛЕНИЕ.
Почему заземление защищает человека?
Как я сказал, проводящая часть Земли имеет нулевой электрический потенциал. Если на стороне проводника соединенного с землей возникает электрический потенциал (возникает аварийная ситуация), то он будет стремиться сравняться с нулевым потенциалом земли и ток потечет по направлению земли. Специальный электроприбор, отвечающий за аварийное отключение электропитания, также соединен с землей. Между аварийным проводником и устройством защиты возникает электрическая цепь, которая и отключает аварийный участок от электропитания.
Но эта схема защиты сработает, если все элементы электросети соединены с землей. Причем говоря обо всех элементах сети, имеется в виду элементы сети от генераторов подающих электропитания до простой розетки в квартире.
При этом. Схема, по которой сделано заземление основного генератора (источника) электропитания электросети должна совпадать со всеми схемами заземления этой сети. Вернее наоборот. Схемы заземления сети должны соответствовать схеме заземления источника электропитания.
Разделяют три основные системы заземления электросети TN;TT; IT
Система заземления TN (открытые части соединены с нейтралью)
При системе заземления TN одна точка источника питания электрической сети соединяется с землей при помощи заземляющего электрода и заземляющих проводников. Заземляющий электрод имеет непосредственный контакт с землей. При системе заземления TN открытые проводящие части соединяются с нейтралью, а нейтраль соединяется с землей.
Система TN-C
Если нейтраль объединена с защитными проводами (землей) на всем протяжении электросети, такая система называется и обозначается TN-C.
Система TN-S
Если нейтраль и защитный проводники разделены на всем протяжении электросети, а объединяются только у источника питания, такая система называется TN-S.
Система заземления TN-C-S
Система заземления, при которой разрешено применение и системы заземления TN-C (4-х/2-х проводной) и системы заземления TN-S (5-ти/3-х проводной).
Важно! При системе заземления TN-C-S, запрещено использовать систему TN-C ниже системы TN-S,так как любой обрыв нейтрали в системе TN-C приведет к обрыву защитного провода после системы TN-S.(смотри рисунок)
Система заземления TT-заземленная нейтраль
При системе заземления ТТ средняя точка источника питания соединяется с землей. Все проводящие части электросети соединяются с землей через заземляющий электрод отличный от электрода источника питания. При этом зоны растекания обоих электродов могут пересекаться.
Система заземления IT –изолированная нейтраль
При системе заземления IT полностью изолирована для всей электросети или сопротивление соединения с землей стремится к бесконечности.
На этом все! Относитесь к электрике с почтением!
©Elesant.ru
Другие статьи раздела: Электрические сети
Монтаж заземляющих устройств (TNC, TN-S, TNC-S, TT)
Заземление низковольтных сетей
Заземление низковольтных сетей в Великобритании в значительной степени определяется положениями Low Voltage Supply . Однако, если входящие источники питания находятся под напряжением 11 кВ и трансформаторы находятся в собственности пользователя, источники питания низкого напряжения могут быть заземлены менее традиционным способом с использованием высокого импеданса. Такое расположение не допускается для общественных поставок.
Процедуры монтажа заземляющих устройств (TNC, TN-S, TNC-S и TT) — фото предоставлено: Эдвард CSANYIТем не менее, это полезная система, когда более важно поддерживать электропитание, чем устранять первое замыкание на землю. .
ПРИМЕР: Схема аварийного освещения для эвакуации персонала из опасной зоны могла бы использовать систему с высоким сопротивлением, если бы считалось менее опасным поддерживать электропитание после первого замыкания на землю, чем полностью отключать свет. Туннель под Ла-Маншем может быть таким случаем.
Даже в этих обстоятельствах исходное замыкание на землю следует устранять как можно быстрее.
Более традиционные схемы заземления:
- TN-C , где земля и нейтраль объединены (PEN) и
- TN-S , где они разделены (5 проводов) или
- TN-C- S .
Последний очень распространен, поскольку он позволяет питать однофазные нагрузки по фазе и нейтрали с полностью отдельной системой заземления, соединяющей вместе все открытые проводящие части, прежде чем подключать их к проводнику PEN через главную клемму заземления, которая является также подключен к нейтральному выводу.
Принципы заземленияДля защитных проводов из того же материала, что и фазный провод, площадь поперечного сечения должна быть того же размера, что и фазный провод , до 16 мм 2 . ВАЖНО: Когда фазный провод превышает 16 мм 2 , тогда защитный провод может оставаться на 16 мм 2 , пока фазовый провод не станет 35 мм 2 , после чего защитный провод должен быть вдвое меньше фазного проводника.
Для проводников из разных материалов площадь поперечного сечения должна быть скорректирована в соотношениях коэффициента k из таблицы 43A в BS 7671. Коэффициент k учитывает удельное сопротивление, температурный коэффициент и теплоемкость проводников. материалы проводника, а также начальную и конечную температуры.
Наконец, есть система TT, которая использует материнскую землю как часть возврата земли.
Нейтраль и заземленная часть соединяются вместе только через систему электродов обратно к заземлению источника (и нейтрали). Чтобы проверить, что обычные системы являются удовлетворительными, т. Е. Что защита срабатывает при возникновении замыкания на землю, необходимо рассчитать полное сопротивление контура замыкания на землю (Z s ) и убедиться, что ток короткого замыкания через него вызовет защита для работы.
Это довольно утомительный процесс, включающий расчет импедансов, обеспечиваемых не только заземлением, но также:
- Фазный провод
- Питающий трансформатор
- Питание сеть
- Любое полное сопротивление нейтрали.
Эту информацию необходимо запрашивать заранее. Распределитель электроэнергии должен иметь возможность указать уровень неисправности или эквивалентный импеданс питающей сети, а производитель может предоставить соответствующие импедансы для трансформатора.
Однако для получения ответов потребуется время, поэтому запросы следует делать в начале проекта.
На подстанции будут установлены автоматические выключатели предохранителей для подключения основных кабелей к распределительным щитам и центрам управления двигателями. Эти защитные устройства должны отличаться от устройств, расположенных дальше по линии, ближе к предельным нагрузкам. Следовательно, системное исследование должно установить правильные характеристики оборудования подстанции, чтобы его можно было отличить от распределительной сети.
Заземление оборудования должно быть электрически полным и подтверждено механически прочным и герметичным.
Болт заземления на крыше распределительного щитаЗаземляющие проводники (, ранее называвшиеся заземляющими проводами ) должны быть проверены на соответствие требованиям IEE, т.е. они не должны быть алюминиевыми и должны быть не менее 25 мм 2 для меди и 50 мм 2 для стали , если они не защищены от коррозии.Эти проводники предназначены для подключения к заземляющим электродам.
Защитные проводники, ранее известные как проводники непрерывного заземления , также должны соответствовать BS 7671 (Правила IEE) и в целом для фазных проводов менее 16 мм 2 ; это означает, что защитные проводники должны быть того же размера, что и фазные проводники. Когда фазный провод превышает 16 мм 2 , тогда защитный проводник остается на 16 мм 2 до тех пор, пока фазовый провод не станет 35 мм 2 , после чего защитный провод должен быть половиной площади поперечного сечения фазового проводника. .
Еще один важный момент, на который следует обратить внимание, это то, что заземляющий провод к заземляющему электроду должен иметь четкую и постоянную маркировку « БЕЗОПАСНОЕ ЭЛЕКТРИЧЕСКОЕ СОЕДИНЕНИЕ — НЕ УДАЛЯТЬ », и он должен быть размещен на соединении проводника с электродом. Наклейка
: БЕЗОПАСНОЕ ЭЛЕКТРИЧЕСКОЕ СОЕДИНЕНИЕ — НЕ УДАЛЯЙТЕ.Номиналы предохранителей также должны быть проверены по отношению к другим номиналам предохранителей в цепи питания или по уставкам защитных реле, чтобы гарантировать правильную последовательность работы и селективность.Для обеспечения безопасной работы выключателей и разъединителей необходимо заполнить монтажные схемы распределительных щитов и наклеить ярлыки с обозначениями.
Все испытания должны проводиться в соответствии с требованиями стандарта BS 7671, часть 7, и сертификата электроустановки, выдаваемого подрядчиком лицу, заказавшему работы.
Многие установки теперь включают устройства защиты от УЗО и тока короткого замыкания. Они также должны быть протестированы с использованием соответствующего испытательного оборудования, полную информацию о котором можно найти в BS 7671 или для более сложных устройств в BS 7430 и Руководящих указаниях, которые публикуются отдельно и дополняют требования Британского стандарта.
Номинальные напряжения в настоящее время составляют:
- 230 В + 10% и -6%
- 400 В + 10% и -6%
Ссылка: Справочник по практике электромонтажа, четвертое издание — Eur Ing GEOFFREY STOKES
Типы систем заземления в соответствии со стандартом IEEE
Заземление (Заземление) — это система электрических цепей, соединенных с землей, которая функционирует, когда ток утечки может разрядить электричество в землю.
Согласно Стандарту 142 ™ 2007 Института инженеров по электротехнике и радиоэлектронике (IEEE), цель системы заземления:
- Ограничить величину напряжения на землю в допустимых пределах
- Обеспечьте путь для прохождения тока, который может обеспечить обнаружение возникновения нежелательной взаимосвязи между системным проводом и землей. Это обнаружение приведет к срабатыванию автоматического оборудования, которое определяет подачу напряжения от проводника.
В соответствии со стандартами IEEE система заземления делится на:
- TN-S (Terre Neutral — отдельный)
- TN-C-S (Terre Neutral — комбинированный — раздельный)
- TT (Дабл Терре)
- TN-C (Neutral Terre — комбинированный)
- IT (Изолированная земля)
Терре происходит от французского языка и означает земля.
Первая буква обозначает соединение между землей и источником питания, а вторая буква показывает соединение между землей и электронным оборудованием, на которое подается электричество.Значение каждой буквы следующее:
- T (Terra) = прямое подключение к земле.
- I (Изоляция) = Нет соединения с землей (даже при высоком импедансе)
- N (нейтраль) = подключение напрямую к нейтральному кабелю питания (если этот кабель также заземлен в источнике питания)
TN-S (Terre Neutral — отдельный)
В системе TN-S нейтральная часть источника электроэнергии соединена с землей в одной точке, так что нейтральная часть установки потребителя напрямую подключена к нейтральному источнику электроэнергии.Этот тип подходит для установок, близких к источникам электроэнергии, например, для крупных потребителей, у которых есть один или несколько трансформаторов высокого / низкого напряжения для собственных нужд и если установка / оборудование находится рядом с источником энергии (трансформаторы).
TN-C-S (Terre Neutral — комбинированный — отдельный)
Система TN-C-S имеет нейтральный канал от основного распределительного оборудования (источника питания), подключенный к земле и заземленный на определенном расстоянии вдоль нейтральных каналов, ведущих к потребителям, обычно называемый защитным множественным заземлением (PME).В этой системе нейтральный проводник может функционировать для восстановления тока замыкания на землю, который может возникнуть на стороне потребителя (установки), обратно к источнику питания. В этой системе установка оборудования у потребителя только соединяет землю с клеммой (каналом), обеспечиваемой источником питания.
TT (Дабл Терре)
В системе ТТ нейтральная часть источника электроэнергии не связана напрямую с заземлением нейтрали на стороне потребителя (установка оборудования).В системах ТТ потребители должны обеспечивать собственное подключение к земле, а именно путем установки заземляющего электрода, подходящего для данной установки.
TN-C (Neutral Terre — комбинированный)
В системе TN-C нейтральный канал основного распределительного оборудования (источника питания) подключается непосредственно к нейтральному каналу потребителя и корпусу установленного оборудования.
В этой системе нейтральный провод используется в качестве защитного проводника, а комбинация нейтральной и заземляющей боковых рам оборудования известна как проводник PEN (защитное заземление и нейтраль).
Эта система не разрешена для проводов диаметром менее 10 мм. 2 или переносного оборудования. Это связано с тем, что при возникновении короткого замыкания по PEN-проводнику одновременно проходит ток дисбаланса фаз, гармонический ток третьего уровня и его кратные.
Чтобы уменьшить воздействие на оборудование и живые существа вокруг оборудования, при применении системы TN-C провод PEN должен быть подключен к нескольким электродным стержням для заземления на установке.
IT (Изолированная земля)
Из первой буквы (I) ясно, что в этом типе IT-системы нейтраль изолирована (не соединена) с землей. Точка PE не подключена к нейтральному каналу, а напрямую подключена к заземлению.
В своем применении нейтральная точка IT-системы на самом деле не изолирована от земли, но все же связана с импедансом Zs, который имеет очень высокое значение от 1000 до 3000 Ом.Это служит для ограничения уровня перегрузки по напряжению при наличии помех в системе.
TT | IT | TN-S | TN-C | TN-C-S | |
Полное сопротивление контура замыкания на землю | Высокая | Наивысший | Низкая | Низкая | Низкая |
Предпочтительно УЗО | Есть | НЕТ | Дополнительно | № | Дополнительно |
Требуется заземляющий электрод на объекте | Есть | Есть | № | № | Дополнительно |
Стоимость PE проводника | Низкая | Низкая | Наивысший | Минимум | Высокая |
Риск выхода из нейтрального положения | № | № | Высокая | Наивысший | Высокая |
Безопасность | Сейф | Менее безопасный | Самый безопасный | Наименее безопасный | Сейф |
Электромагнитные помехи | Минимум | Минимум | Низкая | Высокая | Низкая |
Риски безопасности | Высокое сопротивление контура (ступенчатое напряжение) | Двойная неисправность, перенапряжение | Нейтраль оборвана | Нейтраль оборвана | Нейтраль оборвана |
Преимущества | Безопасность и надежность | Непрерывность работы, стоимость | Самый безопасный | Стоимость | Безопасность и стоимость |
Не стесняйтесь обращаться к нам по адресу marketing @ phoenixcontact.com.sg, чтобы узнать больше!
Какие бывают системы питания переменного тока (заземление TN, TT и IT) и какую из них выбрать? — E-Mobility Simplified
Какие они? Чем они отличаются друг от друга? Почему у нас не может быть единой стандартной схемы заземления? Какие причины заставляют монтажников и производителей электрооборудования выбирать эти разные схемы?
Эта статья может дать быстрое (и, надеюсь, упрощенное) объяснение всего вышеперечисленного.
Электромонтажники по всему миру могут называть системы распределения по-разному: например, трехфазная трехпроводная система, трехфазная четырехпроводная система, однофазная — одна проводная, однофазная = двухпроводная… и т. Д.
Но чтобы привести единообразное определение, Международная электротехническая комиссия (МЭК) в соответствии со стандартом МЭК 60364-3 классифицировала системы распределения питания переменного тока в соответствии с различными методами заземления как: системы TN, TT и IT; а система TN дополнительно разделяется на TN-C, TN-S, TN-C-S.
Характеристики различных систем питания / заземления
Заземление TN-C:
Система электропитания в режиме TN-C использует рабочую нейтральную линию в качестве линии защиты от перехода через нуль, которую можно назвать защитной нейтральной линией и обозначить как PEN.Заземление TN-C-S:
Для временного источника питания системы TN-CS, если передняя часть питается по методу TN-C, а строительный кодекс указывает, что на строительной площадке должна использоваться система питания TN-S, общая распределительная коробка может быть разделен в задней части системы.TN-S заземление
Система электропитания в режиме TN-S — это система электропитания, которая строго отделяет рабочую нейтраль N от выделенной защитной линии PE. Она называется системой питания TN-S.Система питания ТТ
Метод TT относится к защитной системе, которая напрямую заземляет металлический корпус электрического устройства, которая называется системой защитного заземления, также называемой системой TT. Первый символ T указывает, что нейтральная точка энергосистемы напрямую заземлена; второй символ T указывает на то, что проводящая часть нагрузочного устройства, не контактирующая с токоведущим телом, напрямую связана с землей, независимо от того, как заземлена система.Все заземление нагрузки в системе ТТ называется защитным заземлением.Характеристики данной системы питания следующие.
1) Когда металлический корпус электрического оборудования заряжен (фазовая линия касается корпуса или изоляция оборудования повреждена и протекает), защита от заземления может значительно снизить риск поражения электрическим током. Однако низковольтные автоматические выключатели (автоматические выключатели) не обязательно срабатывают, в результате чего напряжение утечки на землю устройства утечки превышает безопасное напряжение, которое является опасным.
2) При относительно небольшом токе утечки даже предохранитель может не перегореть. Следовательно, для защиты также требуется устройство защиты от утечки. Поэтому популяризировать систему TT сложно.
3) Заземляющее устройство системы TT потребляет много стали, и его трудно утилизировать, время и материалы.
В настоящее время некоторые строительные единицы используют систему ТТ. Когда строительная единица заимствует источник питания для временного использования электроэнергии, используется специальная линия защиты, чтобы уменьшить количество стали, используемой для заземляющего устройства.
Система питания TN
В системе TN, то есть трехфазной пятипроводной системе, линия N и линия PE прокладываются отдельно и изолированы друг от друга, а линия PE подключается к корпусу электрического устройства вместо N-линия.Следовательно, самое важное, о чем мы заботимся, — это потенциал провода PE, а не потенциал провода N, поэтому повторное заземление в системе TN-S не является повторным заземлением провода N. Если линия PE и линия N заземлены вместе, поскольку линия PE и линия N соединены в повторяющейся точке заземления, линия между повторяющейся точкой заземления и рабочей точкой заземления распределительного трансформатора не имеет разницы между линией PE и линия N.
Исходная строка — это строка N. Предполагаемый ток нейтрали разделяется линией N и линией PE, а часть тока шунтируется через повторяющуюся точку заземления. Поскольку можно считать, что на передней стороне повторяющейся точки заземления нет линии PE, только линия PEN, состоящая из исходной линии PE и линии N, включенных параллельно, преимущества исходной системы TN-S будут потеряны, поэтому линия PE и линия N не могут быть общим заземлением.
По вышеуказанным причинам в соответствующих правилах четко указано, что нейтральная линия (т.е.N line) не следует повторно заземлять, за исключением нейтральной точки источника питания.
IT-система
Система питания в режиме IT «I» указывает на то, что сторона источника питания не имеет рабочего заземления или заземлена с высоким сопротивлением. Вторая буква T означает, что электрическое оборудование на стороне нагрузки заземлено.Система питания в режиме IT отличается высокой надежностью и хорошей безопасностью, когда расстояние до источника питания невелико. Как правило, он используется в местах, где отключение электроэнергии запрещено, или в местах, где требуется строгое постоянное электроснабжение, например, в сталеплавильном производстве, в операционных в крупных больницах и в подземных шахтах.
Условия электроснабжения в подземных шахтах относительно плохие, а кабели подвержены воздействию влаги. При использовании системы с питанием от IT, даже если нейтральная точка источника питания не заземлена, после утечки в устройстве относительный ток утечки на землю остается небольшим и не нарушит баланс напряжения источника питания. Следовательно, это более безопасно, чем система заземления нейтрали источника питания. Однако, если источник питания используется на большом расстоянии, распределенную емкость линии электропитания относительно земли нельзя игнорировать.
Когда короткое замыкание или утечка нагрузки приводят к тому, что корпус устройства становится под напряжением, ток утечки образует путь через землю, и устройство защиты не обязательно срабатывает. Это опасно. Это безопаснее, только если расстояние от источника питания не слишком велико. На стройплощадке такой вид электроснабжения встречается редко.
Причины использования разных систем заземления
Почему у нас разные системы заземления, такие как TN, TN-C, TN-S, TT и IT? Почему у нас не может быть единой стандартной схемы заземления? Какие причины заставляют монтажников и производителей электрооборудования выбирать эти разные схемы?Выбор схемы заземления не такой прямой; Все дело в экономии денег и обеспечении достаточной защиты от поражения электрическим током.
Например,
➤ TT- в основном предназначен для бытовых источников питания. Владелец должен установить защиту от заземления путем собственного подключения к земле. Преимущество — снижение шума высокой или низкой частоты, отсутствие риска отказа и пригодность для помещений, где все цепи питания переменного тока защищены устройством защитного отключения (УЗО).
➤ IT-Эта система похожа на систему TT, но отличается от источника заземления. Система распределителя имеет только соединение с высоким сопротивлением.Этот тип не идеален для электропитания потребителей и используется для распределителей энергии, таких как подстанция или зона генераторов.
➤ Система TN-S Клемма заземления потребителя обычно подключается к металлической части распределительного кабеля. Он используется для подземного электроснабжения помещения или завода от распределительной подстанции до подстанции потребителя.
➤ Система TN-C-S — Эта система имеет нулевой провод питания распределительной сети, соединенный с землей в источнике в качестве защитного множественного заземления.
➤ TN-C-Эта система представляет собой комбинированный PEN-проводник, который выполняет функции как PE (защитный провод), так и N (нейтральный) провод.
Выше отражены только общие сценарии; но нужно всегда придерживаться местных правил, если таковые имеются. Как уже упоминалось, стандартного решения не существует, необходимы разные типы заземления для удовлетворения конкретных потребителей, таких как бытовые, промышленные, HT / LT и т. Д.
Введение в заземление и соединение
Заземление и соединение — это два очень разных, но часто путающих метода предотвращения поражения электрическим током.
Принцип заземления состоит в том, чтобы ограничить продолжительность напряжения прикосновения, если вы вступите в контакт с оголенной проводящей частью. Земля создает безопасный путь для прохождения тока вместо поражения электрическим током.
Целью соединения является снижение риска поражения электрическим током, если вы прикасаетесь к отдельным металлическим частям при неисправности в электрической установке. В этом случае защитные заземляющие провода уменьшают величину напряжения прикосновения.
Заземление и соединение являются важными требованиями любой электрической установки и соответствуют требованиям безопасности BS7671.
Что такое система заземления?В простейшем случае система заземления — это устройство, с помощью которого электрическая установка соединяется со средством заземления. Обычно это делается в целях безопасности, но иногда и для функциональных целей, например, в случае телеграфных линий, которые используют землю в качестве проводника, чтобы сэкономить на стоимости обратного провода в длинной цепи.Если в электрической установке возникнет неисправность, человек может получить удар электрическим током, прикоснувшись к находящейся под напряжением металлической части, потому что электричество использует тело как путь к земле. Заземление обеспечивает альтернативный путь прохождения тока короткого замыкания на землю.
В Великобритании существуют три основные системы заземления, используемые для неспециализированных установок и определенные в Правилах проводки IET, две — это системы TN (где оператор распределительной сети (DNO) отвечает за заземление), а другая — система TT ( который не имеет собственного заземления):
Обозначения: T = земля (земля), N = нейтраль, C = комбинированный, S = отдельный
СистемыTN-S имеют одно соединение нейтрали с землей, расположенное как можно ближе к трансформатору питания, и отдельные кабели питания повсюду.В источниках низкого напряжения трансформатор можно даже подключить к оболочке питающего кабеля, что даст отдельный путь обратно к трансформатору подстанции. Максимальное сопротивление внешней цепи замыкания на землю DNO в этих конфигурациях обычно составляет 0,8 Ом.
Это наиболее распространенная конфигурация, используемая в Великобритании. Он также может быть известен как защитное многократное заземление (PME) и обеспечивает подачу низкого напряжения с надежным и безопасным заземлением. Эта система позволяет нескольким пользователям использовать один кабель питания.Возникающее в результате увеличение тока вызывает повышение напряжения в защитной заземленной нейтрали (PEN), которая требует многократного подключения к земле на всем протяжении маршрута питания. Нейтраль заземляется рядом с источником питания, на входе в установку и в необходимых точках распределительной системы. Поскольку DNO использует комбинированный нейтраль и обратный тракт PEN, максимальное сопротивление внешней цепи замыкания на землю составляет 0,35 Ом.
Несмотря на свою популярность, схема TN-C-S может оказаться опасной, если PEN-проводник станет разомкнутой цепью в источнике питания, потому что ток не будет немедленно возвращаться на уровень подстанции.Из-за этого есть определенные объекты, где его нельзя использовать, в том числе заправочные станции, строительные площадки, автостоянки и некоторые хозяйственные постройки.
Конфигурация аналогична системе TN-S, но не дает потребителям индивидуального заземления. Вместо этого потребители должны поставлять свою землю, например, закапывая стержни или плиты под землю, чтобы обеспечить путь с низким сопротивлением. Часто системы TT используются там, где устройства TN-C-S не могут быть использованы (например, в приведенном выше примере заправочной станции) или в сельской местности, где питание осуществляется на воздушных столбах.Меры защиты от ударов, такие как УЗО, часто используются для обеспечения автоматического отключения питания там, где существуют различные типы грунта, которые могут вызвать значения полного сопротивления контура внешнего замыкания на землю.
Что такое склеивание?Электрическое соединение — это практика соединения всех открытых металлических предметов, не предназначенных для проведения электричества в определенной области, с использованием защитного заземляющего проводника, цель которого — защитить людей, которые могут коснуться двух отдельных металлических частей, от поражения электрическим током в случае электрического повреждения.Это снижает напряжение, которое могло быть там.
Как упоминалось ранее, знание того, когда объект следует заземлить, а когда — соединить, может сбивать с толку.
В качестве примера возьмем металлический кабельный лоток, который часто используется в электрических установках. Если:
- Лоток является открытой проводящей частью (т. Е. К нему можно дотронуться, и он обычно не находится под напряжением), его НЕОБХОДИМО заземлить.
- Лоток является внешней проводящей частью (т. Е. Значение омического сопротивления между предполагаемой внешней частью и землей меньше 22 кОм), и он НЕОБХОДИМО соединить.
- Лоток не является открытой или посторонней проводящей частью, поэтому его НЕ нужно заземлять или склеивать.
Узнайте больше о том, как определить посторонние проводящие детали здесь.
Определение стандартных схем заземления
Различные схемы заземления (часто называемые типом энергосистемы или схемами заземления системы) характеризуют метод заземления установки после вторичной обмотки трансформатора СН / НН и средства, используемые для заземления открытых проводящих частей. питаемой от него установки НН
Выбор этих методов определяет меры, необходимые для защиты от опасностей косвенного контакта.
Система заземления квалифицирует три изначально независимых выбора, сделанных проектировщиком системы распределения электроэнергии или установки:
- Тип подключения электрической системы (как правило, нейтрального проводника) и открытых частей к заземляющему электроду (ам)
- Отдельный защитный проводник или защитный проводник и нейтральный проводник, являющиеся одним проводником
- Использование защиты от замыканий на землю коммутационных устройств максимальной токовой защиты, которые сбрасывают только относительно высокие токи короткого замыкания, или использование дополнительных реле, способных обнаруживать и сбрасывать небольшие токи замыкания на землю на землю
На практике эти варианты сгруппированы и стандартизированы, как описано ниже.
Каждый из этих вариантов обеспечивает стандартизированные системы заземления с тремя преимуществами и недостатками:
- Подключение открытых проводящих частей оборудования и нейтрального проводника к заземляющему проводу приводит к эквипотенциальности и снижению перенапряжений, но увеличивает токи замыкания на землю.
- Отдельный защитный проводник стоит дорого, даже если он имеет небольшую площадь поперечного сечения, но гораздо менее вероятно, что он будет загрязнен падениями напряжения, гармониками и т. Д.чем нейтральный проводник. Также исключаются токи утечки в посторонних проводящих частях
- Установка реле защиты от остаточного тока или устройств контроля изоляции намного более чувствительна и позволяет во многих случаях устранять неисправности до того, как произойдет серьезное повреждение (двигатели, пожар, поражение электрическим током). Предлагаемая защита, кроме того, не зависит от изменений в существующей установке
Система TT (заземленная нейтраль)
(см. рис. E3)
Одна точка источника питания подключена непосредственно к земле. Все открытые и посторонние проводящие части подключаются к отдельному заземляющему электроду на установке. Этот электрод может быть или не быть электрически независимым от электрода истока. Две зоны воздействия могут перекрываться, не влияя на работу защитных устройств.
Системы TN (открытые токопроводящие части, подключенные к нейтрали)
Источник заземлен как для системы TT (см. Выше).В установке все открытые и посторонние проводящие части подключены к нейтральному проводу. Ниже показаны несколько версий систем TN.
Система TN-C
(см. , рис. E4)
Нейтральный проводник также используется в качестве защитного проводника и обозначается как PEN ( P защитный провод E arth и N eutral) проводник. Эта система не разрешена для проводов менее 10 мм 2 или переносного оборудования.
Система TN-C требует эффективного эквипотенциального окружения внутри установки с рассредоточенными заземляющими электродами, расположенными как можно более равномерно, поскольку провод PEN является одновременно нейтральным проводником и в то же время несет токи дисбаланса фаз, а также 3 rd порядка гармонические токи (и их кратные).
Следовательно, провод PEN должен быть подключен к нескольким заземляющим электродам в установке.
Осторожно: В системе TN-C функция «защитный провод» имеет приоритет над «функцией нейтрали».В частности, PEN-провод всегда должен быть подключен к клемме заземления нагрузки, а для подключения этой клеммы к нейтральной клемме используется перемычка.
Рис. E4 — Система TN-C
Система TN-S
(см. , рис. E5)
Система TN-S (5 проводов) обязательна для цепей с поперечным сечением менее 10 мм. 2 для переносного оборудования.
Защитный провод и нейтральный провод разделены. В подземных кабельных системах, где существуют кабели в свинцовой оболочке, защитным проводником обычно является свинцовая оболочка.Использование отдельных проводов PE и N (5 проводов) обязательно для цепей с поперечным сечением менее 10 мм. 2 для переносного оборудования.
Рис. E5 — система TN-S
Система TN-C-S
(см. рис. E6 и рис. E7)
Системы TN-C и TN-S могут использоваться в одной установке. В системе TN-CS система TN-C (4-х проводная) никогда не должна использоваться после системы TN-S (5-проводная), поскольку любое случайное прерывание нейтрали на восходящей части приведет к прерыванию цепи. защитный провод в выходной части и, следовательно, опасность.
Рис. E6 — система TN-C-S
Рис. E7 — Подключение провода PEN в системе TN-C
IT-система (изолированная или заземленная через сопротивление нейтраль)
IT-система (изолированная нейтраль)
Не выполняется преднамеренное соединение между нейтральной точкой источника питания и землей (см. Рис. E8).
Рис. E8 — IT-система (изолированная нейтраль)
Открытые и посторонние проводящие части установки подключены к заземляющему электроду.
На практике все цепи имеют сопротивление утечки на землю, поскольку идеальная изоляция не является идеальной. Параллельно с этим (распределенным) резистивным трактом утечки существует распределенный путь емкостного тока, оба пути вместе составляют нормальное полное сопротивление утечки на землю (см. рис. E9).
Рис. E9 — Полное сопротивление утечки на землю в системе IT
Пример (см. Рис. E10)
В трехфазной трехпроводной системе низкого напряжения 1 км кабеля будет иметь полное сопротивление утечки из-за C1, C2, C3 и R1, R2 и R3, эквивалентное сопротивлению заземления нейтрали Zct от 3000 до 4000 Ом, без учета фильтрующие емкости электронных устройств.
Рис. E10 — Импеданс, эквивалентный сопротивлению утечки в IT-системе
IT-система (нейтраль с заземленной через сопротивление)
Импеданс Zs (порядка 1000–2000 Ом) постоянно подключен между нейтральной точкой обмотки низкого напряжения трансформатора и землей (см. Рис. E11). Все открытые и посторонние проводящие части подключены к заземляющему электроду. Причины этой формы заземления источника питания заключаются в том, чтобы зафиксировать потенциал небольшой сети относительно земли (Zs мало по сравнению с полным сопротивлением утечки) и снизить уровень перенапряжений, таких как передаваемые скачки напряжения от обмоток среднего напряжения, статические заряды и т. д.по отношению к земле. Однако это приводит к небольшому увеличению уровня тока первого короткого замыкания.
Рис. E11 — IT-система (нейтраль с заземленной через сопротивление)
типов систем заземления, используемых в электроустановках ~ Изучение электротехники
Пользовательский поиск
В международном стандарте IEC60364, часть 4, и в ссылке 10 используется набор диаграмм для объяснения пяти основных методов заземления и обеспечения нейтрали электроустановки там, где это необходимо.Эти пять методов обозначаются сокращенно: TNC , TNS , TNCS , TT и IT . Первая буква обозначает источник питания от обмотки, соединенной звездой. T означает, что точка звезды источника надежно соединена с землей, которая обычно находится в непосредственной близости от обмотки.
I обозначают, что точка звезды и обмотка изолированы от земли. Точка звезды обычно подключается к индуктивному сопротивлению или сопротивлению.Емкостный импеданс никогда не используется.
Вторая буква обозначает потребителя. Потребляющее оборудование необходимо заземлить
. Существует два основных метода заземления корпуса электрооборудования. Эти методы обозначаются буквами T и N . Буква N подразделяется на другие буквы, S и C , что дает NS и NC и NCS.
T означает, что потребитель надежно заземлен независимо от метода заземления источника.
N означает, что провод с низким сопротивлением отводится от заземляющего соединения в источнике и направляется непосредственно к потребителю для конкретной цели заземления потребляющего оборудования.
S означает, что нейтральный проводник, проложенный от источника, отделен от проводника защитного заземления, который также проложен от источника. Это означает, что для трехфазного потребителя необходимо проложить пять проводов.
C означает, что нейтральный проводник и провод защитного заземления являются одним и тем же проводником.Это означает, что для трехфазного потребителя необходимо проложить четыре проводника.
Различные типы заземления показаны на следующих схемах:
(a) Система заземления TNC
(b) Система заземления TNS
(c) Система заземления TNCS
(d) Система заземления TT
(e) Система заземления IT
Выбор правильной системы заземления, Бернард Джовер
Регулирование энергетики
Выбор правильной системы заземления для источника питания имеет решающее значение для защиты людей и имущества.И чтобы сделать правильный выбор, вы должны понимать, как разные системы заземления влияют на электромагнитную совместимость.
Система заземления электроустановки определяет, как нейтраль источника питания (обычно трансформатора) соединяется с землей. Системы заземления были разработаны несколько десятилетий назад для защиты людей и имущества и фиксации потенциального опорного напряжения для источника электричества. Что касается электромагнитной совместимости, разные системы заземления могут вызывать помехи или перенапряжения.Вот почему при проектировании электроустановки важно выбрать правильную систему заземления.
Четыре системы заземления:
- TT: Защитное заземление не зависит от установки.
- IT: Нейтраль изолирована от защитного заземления или соединена сопротивлением.
- TN-C: Нейтраль и защитное заземление совмещены.
- TN-S: Нейтраль и защитное заземление независимы.
Основные характеристики четырех систем заземления:
Стандарты ЕС и международные стандарты рекомендуют систему заземления TN-S, которая вызывает меньше проблем с электромагнитной совместимостью для установок, включающих IT-сети (и, в частности, сети связи).
подсказок
Система заземления должна быть выбрана в начале процесса проектирования установки.
Нейтраль должна быть заземлена в одной точке как можно ближе к трансформатору.
Системы заземления IT, TT и TN-C часто являются источником помех; В этих случаях следует использовать разделительный трансформатор.
Если система заземления неизвестна, используйте специальный трансформатор для питания чувствительного оборудования (устройств автоматизации, электроники, интерфейсов и т. Д.)).
Используйте отдельные трансформаторы для питания чувствительных систем или систем, создающих помехи.
Используйте фильтры ЭМС (подходящего размера и правильно установленные).
Используйте устройства защиты от перенапряжения (подходящего размера и правильно установленные).
Обратите особое внимание на ток утечки, создаваемый фильтром ЭМС (конденсаторы фазы и нейтрали относительно земли).
Теги: Электроустановки, электрические панели, Удар током, электромагнитная совместимость
.