Skip to content

Характеристика электрического тока: 1)Основные параметры электрического тока – Электрический ток — Википедия

Содержание

Ток и напряжение. Виды и правила. Работа и характеристики

Ток и напряжение являются количественными параметрами, применяемыми в электрических схемах. Чаще всего эти величины меняются с течением времени, иначе не было бы смысла в действии электрической схемы.

Напряжение

Условно напряжение обозначается буквой «U». Работа, затраченная на перемещение единицы заряда из точки, имеющей малый потенциал в точку с большим потенциалом, является напряжением между этими двумя точками. Другими словами, это энергия, освобождаемая после перехода единицы заряда от высокого потенциала к малому.

Напряжение еще могут называть разностью потенциалов, а также электродвижущей силой. Этот параметр измеряется в вольтах. Чтобы переместить 1 кулон заряда между двумя точками, которые имеют напряжение 1 вольт, нужно выполнить работу в 1 джоуль. Кулонами измеряются электрические заряды. 1 кулон равен заряду 6х1018 электронов.

Напряжение разделяется на несколько видов, в зависимости от видов тока.
  • Постоянное напряжение. Оно присутствует в электростатических цепях и цепях постоянного тока.
  • Переменное напряжение. Этот вид напряжения имеется в цепях с синусоидальными и переменными токами. В случае синусоидального тока рассматриваются такие характеристики напряжения, как:
    амплитуда колебаний напряжения – это максимальное его отклонение от оси абсцисс;
    — мгновенное напряжение, которое выражается в определенный момент времени;
    — действующее напряжение, определяется по выполняемой активной работе 1-го полупериода;
    — средневыпрямленное напряжение, определяемое по модулю величины выпрямленного напряжения за один гармонический период.

При передаче электроэнергии по воздушным линиям устройство опор и их размеры зависят от величины применяемого напряжения. Величина напряжения между фазами называется линейным напряжением, а напряжение между землей и каждой из фаз – фазным напряжением. Такое правило применимо для всех типов воздушных линий. В России в электрических бытовых сетях, стандартным является трехфазное напряжение с линейным напряжением 380 вольт, и фазным значением напряжения 220 вольт.

Электрический ток

Ток в электрической цепи является скоростью движения электронов в определенной точке, измеряется в амперах, и обозначается на схемах буквой «I». Также используются и производные единицы ампера с соответствующими приставками милли-, микро-, нано и т.д. Ток размером в 1 ампер образуется передвижением единицы заряда в 1 кулон за 1 секунду.

Условно считается, что ток в электрической цепи течет по направлению от положительного потенциала к отрицательному. Однако, из курса физики известно, что электрон движется в противоположном направлении.

Необходимо знать, что напряжение измеряется между 2-мя точками на схеме, а ток течет через одну конкретную точку схемы, либо через ее элемент. Поэтому, если кто-то употребляет выражение «напряжение в сопротивлении», то это неверно и неграмотно. Но часто идет речь о напряжении в определенной точке схемы. При этом имеется ввиду напряжение между землей и этой точкой.

Напряжение образуется от воздействия на электрические заряды в генераторах, батареях, солнечных элементах и других устройствах. Ток возникает путем приложения напряжения к двум точкам на схеме.

Чтобы понять, что такое ток и напряжение, правильнее будет воспользоваться осциллографом. На нем можно увидеть ток и напряжение, которые меняют свои значения во времени. На практике элементы электрической цепи соединены проводниками. В определенных точках элементы цепи имеют свое значение напряжения.

Ток и напряжение подчиняются правилам:
  • Сумма токов, входящих в точку, равняется сумме токов, выходящих из точки (правило сохранения заряда). Такое правило является законом Кирхгофа для тока. Точка входа и выхода тока в этом случае называется узлом. Следствием из этого закона является следующее утверждение: в последовательной электрической цепи группы элементов величина тока для всех точек одинакова.
  • В параллельной схеме элементов напряжение на всех элементах одинаково. Иначе говоря, сумма падений напряжений в замкнутом контуре равна нулю. Этот закон Кирхгофа применяется для напряжений.
  • Работа, выполненная в единицу времени схемой (мощность), выражается следующим образом: Р = U*I. Мощность измеряется в ваттах. Работа величиной 1 джоуль, выполненная за 1 секунду, равна 1 ватту. Мощность распространяется в виде теплоты, расходуется на совершение механической работы (в электродвигателях), преобразуется в излучение различного вида, накапливается в емкостях или батареях. При проектировании сложных электрических систем, одной из проблем является тепловая нагрузка системы.
Характеристика электрического тока

Обязательным условием существования тока в электрической цепи является замкнутый контур. Если контур цепи разрывается, то ток прекращается.

По такому принципу действуют все защиты и выключатели в электротехнике. Они разрывают электрическую цепь подвижными механическими контактами, и этим прекращают течение тока, выключая устройство.

В энергетической промышленности электрический ток возникает внутри проводников тока, которые выполнены в виде шин, кабелей, проводов и других частей, проводящих ток.

Также существуют другие способы создания внутреннего тока в:
  • Жидкостях и газах за счет передвижения заряженных ионов.
  • Вакууме, газе и воздухе с помощью термоэлектронной эмиссии.
  • Полупроводниках, вследствие движения носителей заряда.
Условия возникновения электрического тока:
  • Нагревание проводников (не сверхпроводников).
  • Приложение к носителям заряда разности потенциалов.
  • Химическая реакция с выделением новых веществ.
  • Воздействие магнитного поля на проводник.
Формы сигнала тока:
  • Прямая линия.
  • Переменная синусоида гармоники.
  • Меандром, похожий на синусоиду, но имеющий острые углы (иногда углы могут сглаживаться).
  • Пульсирующая форма одного направления, с амплитудой, колеблющейся от нуля до наибольшей величины по определенному закону.

Виды работы электрического тока:
  • Световое излучение, создающееся приборами освещения.
  • Создание тепла с помощью нагревательных элементов.
  • Механическая работа (вращение электродвигателей, действие других электрических устройств).
  • Создание электромагнитного излучения.
Отрицательные явления, вызываемые электрическим током:
  • Перегрев контактов и токоведущих частей.
  • Возникновение вихревых токов в сердечниках электрических устройств.
  • Электромагнитные излучения во внешнюю среду.

Создатели электрических устройств и различных схем при проектировании должны учитывать вышеперечисленные свойства электрического тока в своих разработках. Например, вредное влияние вихревых токов в электродвигателях, трансформаторах и генераторах снижается путем шихтовки сердечников, применяемых для пропускания магнитных потоков. Шихтовка сердечника – это его изготовление не из цельного куска металла, а из набора отдельных тонких пластин специальной электротехнической стали.

Но, с другой стороны, вихревые токи используют для работы микроволновых печей, духовок, действующих по принципу магнитной индукции. Поэтому, можно сказать, что вихревые токи оказывают не только вред, но и пользу.

Переменный ток с сигналом в форме синусоиды может различаться частотой колебаний за единицу времени. В нашей стране промышленная частота тока электрических устройств стандартная, и равна 50 герцам. В некоторых странах используется частота тока 60 герц.

Для различных целей в электротехнике и радиотехнике используют другие значения частоты:
  • Низкочастотные сигналы с меньшей величиной частоты тока.
  • Высокочастотные сигналы, которые намного выше частоты тока промышленного использования.

Считается, что электрический ток возникает при движении электронов внутри проводника, поэтому он называется током проводимости. Но существует и другой вид электрического тока, который получил название конвекционного. Он возникает при движении заряженных макротел, например, капель дождя.

Электрический ток в металлах

Движение электронов при воздействии на них постоянной силы сравнивают с парашютистом, который снижается на землю. В этих двух случаях происходит равномерное движение. На парашютиста действует сила тяжести, а противостоит ей сила сопротивления воздуха. На движение электронов действует сила электрического поля, а сопротивляются этому движению ионы решеток кристаллов. Средняя скорость электронов достигает постоянного значения, так же как и скорость парашютиста.

В металлическом проводнике скорость движения одного электрона равна 0,1 мм в секунду, а скорость электрического тока около 300 тысяч км в секунду. Это объясняется тем, что электрический ток течет только там, где к заряженным частицам приложено напряжение. Поэтому достигается большая скорость протекания тока.

При перемещении электронов в кристаллической решетке существует следующая закономерность. Электроны сталкиваются не со всеми встречными ионами, а только с каждым десятым из них. Это объясняется законами квантовой механики, которые можно упрощенно объяснить следующим образом.

Движению электронов мешают большие ионы, которые оказывают сопротивление. Это особенно заметно при нагревании металлов, когда тяжелые ионы «качаются», увеличиваются в размерах и уменьшают электропроводность решеток кристаллов проводника. Поэтому при нагревании металлов всегда увеличивается их сопротивление. При снижении температуры повышается электрическая проводимость. При снижении температуры металла до абсолютного нуля можно добиться эффекта сверхпроводимости.

Похожие темы:

Глава 13. Постоянный электрический ток

46

§ 13.1 Электрический ток и его характеристики

Электрическим током называется направленное (упорядоченное) движение электрических зарядов (рис.13.1). Сами эти частицы называются носителями тока.

Ток может идти в твёрдых телах, жидкостях и газах. Если среда является проводником с большим количеством свободных электронов, то течение электрического тока осуществляется за счёт дрейфа этих электронов. Дрейф электронов в проводниках, не связанный с перемещением вещества, называют током проводимости. К току проводимости относится упорядоченное движение электронов в проводниках, ионов в электролитах, электронов и дырок в полупроводниках, ионов и электронов в газах. Упорядоченное перемещение электрических зарядов, связанное с перемещением в пространстве заряженного тела, называют конвекционным током.

За направление тока

принят дрейф положительных зарядов (электроны проводимости всегда движутся в направлении, противоположном направлению тока (от «+» к «-»)). Это может показаться неудобным, но зато теперь не нужно различать направление тока в проводнике и электростатического поля, вызывающего этот ток: эти направления всегда совпадают.

Сила тока – скалярная величина, равная отношению количества электричества dq, которое за время dt переносится через данное сечение проводника, ко времени dt:

(13.1)

Постоянным током называют электрический ток, сила и направление которого с течением времени не изменяются. Для постоянного тока

где q — электрический заряд, проходящий за время t через поперечное сечение проводника.

Единица силы тока – ампер (А).

Определим скорость, с которой осуществляется дрейф электронов в проводнике с током.

Путь за время Δt через сечение проводника S прошло N электронов с суммарным зарядом Δq = Nе. Если скорость направленного движения электронов равна υ, то за время Δt все они окажутся в пределах участка длиной ℓ = υ Δt и объёмом V=Sℓ. Таким образом,

(13.2)

выразив здесь число носителей тока через их концентрацию (N = nV= nSℓ)

Отношение силы тока І к площади поперечного сечения проводника S, перпендикулярного направленню тока – есть векторная величина называемая плотностью тока.

(13.3)

Тогда скорость электронов в проводнике можно записать , отсюда

Плотность тока может быть вычислена по формуле

j = ne‹υ› (13.4)

Таким образом, плотность тока в проводнике пропорциональна концентрации свободных электронов в нём и скорости их движения.

Вектор j направлен вдоль направления тока, т.е. совпадает с направлением упорядоченного движения положительных зарядов.

Сила тока сквозь произвольную поверхность S определяется как поток вектора j, т.е.

(13.5)

где dS = n∙dS (n = единичный вектор нормали к площадке dS, составляющей с вектором j угол α ).

Электрическое поле постоянного тока называется стационарным. В отличии от электростатического поля стационарное электрическое поле создаётся движущимися зарядами. Однако распределение этих зарядов в проводнике с постоянным током не меняется со временем: на место уходящих электрических зарядов непрерывно приходят новые. Поэтому электрическое поле, создаваемое этими зарядами, оказывается почти таким же, как и поле неподвижных зарядов.

Отличаются же они тем, что электростатическое поле внутри проводника отсутствует, в то время как стационарное поле постоянных токов существует и внутри проводников (иначе по ним не шёл бы ток).

1. Электрический ток. Его виды.

Электрическим током называется направленное движение заряженных частиц. За направление тока принимается движение положительных зарядов.

Характеристики тока:

1. Сила тока — это скалярная физическая величина, равная отношению заряда, протекающего через поперечное сечение проводника, ко времени его протекания.

I = q/t

[ I ] = 1A

2. Плотность тока – величина, равная отношению силы тока к площади поперечного сечения проводника.

j = I/S

[ j ] = 1 A/м²

Постоянным называется ток, сила и направление которого с течением времени не изменяется.

I

t

Переменным называется ток, величина и направление которого изменяется с течением времени (например, это может быть периодический ток — здесь заряд , сила тока и напряжение изменяются по периодическим законам .

Различают ток проводимости– он обусловлен перемещением электронов металла относительно ионов решетки. При перемене полюсов заряды создают колебательное движение.

Различают также ток смещения– он обусловлен смещением электрических зарядов на границе проводник- диэлектрик.

По форме кривой зависимости Iотtразличают:

  • синусоидальный ток;

  • прямоугольный ток;

  • треугольный ток;

  • трапециевидный ток;

  • игольчатоэкспаненциальный ток.

I

t

t

t

t

t

Для практических целей чаще применяется синусоидальный ток.

Переменный ток характеризуется действующими (эффективными) значениями силы тока и напряжения.

Iдейств. = Imax / 2

Uдейств. =Umax / 2

Действующее значение силы переменного тока равно значению силы постоянного тока, эквивалентного данному переменному по своему тепловому действию.

Первичное действие переменного тока заключается в смещении ионов в растворах электролитов и их перераспределении, а также в изменении поляризации диэлектрика. Т.к. подвижность ионов различна, то происходит изменение их концентрации по обе стороны клеточной мембраны. Это вызывает изменение функционального состояния клетки.

Наиболее сильное раздражающее действие оказывает импульсный ток.

Виды импульсных токов:

1.прямоугольный

2.треугольный

3.пилообразный.

I

t

t

t

Где t– длительность импульса,

to– длительность паузы,

х- амплитуда (максимальное значение тока).

Раздражающее действие зависит от длительности импульса, его формы, частоты, амплитуды. Оно проявляется для возбудимых тканей – нервной, мышечной, железистой.

В зависимости от условийток оказывает лечебное или поражающее действие. К лечебным действиям относятся:

Вопрос № 2.

Особенности импеданса живых тканей.

Импеданс – суммарное сопротивление цепи переменному току.

R C L

R – активное сопротивление

Xc реактивное

X сопротивление

Xc- емкостное сопротивление

Xc=1/wc=1/2πνс

X — индуктивное сопротивление

X =wL=2πνL

Z=R²+(Xc-X) ² — импеданс (суммарное сопротивление).

При пропускании переменного тока живую ткань можно рассматривать, как электрическую цепь, состоящую из определенных элементов. Экспериментально установлено, что эта цепь обладает активным и емкостным сопротивлениями. Аналогов индуктивности в живых тканях не обнаружено.

Т.о. живая ткань, как цепь переменного тока , является неполной цепью.

R C

Z=R²+Xc²

С увеличением частоты тока емкостное сопротивление, а, следовательно, и импеданс, снижаются.

§6. Основные характеристики постоянного электрического тока

Рассмотрим проводящую среду, в которой созданы условия для возникновения направленного движения свободных электрических зарядов, т.е. электрического тока проводимости. Предположим, что свободные носители тока имеют положительный заряд (рис. 6.1).

Свободные электрические заряды со средней скоростью упорядоченного движения перемещаются вдоль условных линий, которые называются линиями тока. Часть проводящей среды, ограниченной цилиндрической поверхностью, образованной линиями тока, называется трубкой тока. Трубкой тока, в частности, может быть обычный металлический проводник осветительной сети.

Через поперечное сечение S трубки тока за некоторый промежуток времени dt переносится заряд dq. Заряд, прошедший через поперечное сечение трубки тока в единицу времени, является интегральной количественной характеристикой электрического тока и называется силой тока

(6.1)

Сила тока I — скалярная величина, измеряемая в системе SI в «Амперах». Сила тока в 1 А обеспечивает протекание через поперечное сечение S 1 Кл электрического заряда за 1 секунду. Производные единицы силы тока приведены в таблице 6.1.

Таблица 6.1

1 кА = 103А

1 мА = 10-3А

1 мкА = 10-6А

Для измерения силы тока используются приборы, которые называются амперметрами.

Локальной характеристикой тока проводимости является векторная физическая величина плотность тока. Рассмотрим элемент трубки тока в виде цилиндра, высота которого равна Vdt (рис. 6.2).

Плотность тока – определяется количеством электрического заряда, прошедшего в единицу времени через единичное поперечное сечение, перпендикулярное направлению движения заряженных частиц

(6.2)

где единичный вектор нормали к поверхности dS.

Если постоянный электрический ток возникает в проводниках 1-го рода, то заряд dq, прошедший через поперечное сечение dS за время dt, будет равен суммарному заряду свободных зарядов (электронов) в объеме цилиндра высотой V.dt и сечением dS (рис. 6.2):

(6.3)

где n – концентрация свободных зарядов,

e – заряд электрона.

Подставив (6.3) в (6.2), получим:

(6.4)

где

Плотность тока характеризует ток проводимости в любой точке проводящей среды. Если проводящая среда электрически однородна, то плотность тока во всех точках сечения трубки тока (проводника) одинакова. Если среда по своим проводящим свойствам не однородна, то зная распределение плотности тока по сечению S можно найти силу тока в сечении S:

(6.5)

где (рис. 6.3).

Сила и плотность постоянного электрического тока не изменяются во времени. Это позволяет определить условия постоянства тока следующим образом:

(6.6)

В более общем случае условие стационарности тока можно получить из уравнения непрерывности.

Рассмотрим некоторую область V проводящей среды, в которой находится избыточный заряд q. Через поверхность S, ограничивающую область избыточного заряда, будет протекать ток i. Воспользовавшись определением силы тока (6.1) и соотношением (6.5), можно записать:

Если рассматриваемый объем стягивать в точку (V  0), то получим:

где q — объемная плотность заряда в заданной точке.

Выражение

(6.7)

называется уравнением непрерывности. Уравнение непрерывности выражает в дифференциальной форме закон сохранения заряда. Если в рассматриваемой точке объемная плотность заряда не изменяется, то q = const и можно записать:

(6.8)

т.к. q/∂t = 0. Это выражение является необходимым и достаточным условием стационарности (постоянства) тока во всех точках среды, где оно выполняется. Уравнение (6.8) математически отражает тот факт, что в рассматриваемой точке нет источников и нет стоков электрических зарядов.

В интегральной форме условие стационарности тока можно представить в виде

(6.9)

Смысл этого выражения в том, что ток, протекающий через любую замкнутую поверхность S постоянен, если величина входящего внутрь поверхности потока вектора равна выходящему потоку.

15. Электрический ток, сила и плотность тока

В электродинамике — разделе учения об электричестве, в котором рассматриваются явления и процессы, обусловленные движением электрических зарядов или макроско­пических заряженных тел, — важнейшим понятием является понятие электрического тока. Электрическим током называется любое упорядоченное (направленное) движение электрических зарядов. В проводнике под действием приложенного электрического поля Е свободные электрические заряды перемещаются: положительные — по полю, отрицательные — против поля (рис. 146, а), т. е. в проводнике возникает электричес­кий ток, называемый током проводимости. Если же упорядоченное движение электрических зарядов осуществляется перемещением в пространстве заряженного макроскопического тела (рис. 146, б), то возникает так называемый конвекционный ток.

Для возникновения и существования электрического тока необходимо, с одной стороны, наличие свободных носителей тока — заряженных частиц, способных переме­щаться упорядоченно, а с другой — наличие электрического поля, энергия которого, каким-то образом восполняясь, расходовалась бы на их упорядоченное движение. За направление тока условно принимают направление движения положительных зарядов.

Количественной мерой электрического тока служит сила тока I скалярная физи­ческая величина, определяемая электрическим зарядом, проходящим через поперечное сечение проводника в единицу времени:

Если сила тока и его направление не изменяются со временем, то такой ток называется постоянным. Для постоянного тока

где Q электрический заряд, проходящий за время t через поперечное сечение провод­ника. Единила силы тока — ампер (А).

Физическая величина, определяемая силой тока, проходящего через единицу площа­ди поперечного сечения проводника, перпендикулярного направлению тока, называется плотностью тока:

Выразим силу и плотность тока через скорость v упорядоченного движения зарядов в проводнике. Если концентрация носителей тока равна n и каждый носитель имеет элементарный заряд е (что не обязательно для ионов), то за время dt через поперечное сечение S проводника переносится заряд dQ=ne v S dt. Сила тока

а плотность тока

(96.1)

Плотность тока — вектор, ориентированный по направлению тока, т. е. направление вектора j совпадает с направлением упорядоченного движения положительных зарядов. Единица плотности тока — ампер на метр в квадрате (А/м2).

Сила тока сквозь произвольную поверхность S определяется как поток вектора j, т. е.

(96.2)

где dS=ndS (n — единичный вектор нормали к площадке dS, составляющей с век­тором j угол ).

16. Сторонние силы. Электродвижущая сила и напряжение

Если в цепи на носители тока действуют только силы

электростатического поля, то происходит перемещение носителей (они предполагаются положительными) от точек с большим потенциалом к точкам с меньшим потенциалом. Это приведет к выравнива­нию потенциалов во всех точках цепи и к исчезновению электрического поля. Поэтому для существования постоянного тока необходимо наличие в цепи устройства, способ­ного создавать и поддерживать разность потенциалов за счет работы сил неэлект­ростатического происхождения. Такие устройства называются источниками тока. Силы неэлектростатического происхождения, действующие на заряды со стороны источников тока, называются сторонними.

Природа сторонних сил может быть различной. Например, в гальванических элементах они возникают за счет энергии химических реакций между электродами и электролитами; в генераторе — за счет механической энергии вращения ротора генератора и т. п. Роль источника тока в электрической цепи, образно говоря, такая же, как роль насоса, который необходим для перекачивания жидкости в гидравлической системе. Под действием создаваемого поля сторонних сил электрические заряды движутся внутри источника тока против сил электростатического поля, благодаря чему на концах цепи поддерживается разность потенциалов и в цепи течет постоянный электрический ток.

Сторонние силы совершают работу по перемещению электрических зарядов. Физи­ческая величина, определяемая работой, совершаемой сторонними силами при переме­щении единичного положительного заряда, называется электродвижущей силой (э.д.с.), действующей в цепи:

(97.1)

Эта работа производятся за счет энергии, затрачиваемой в источнике тока, поэтому величину можно также называть электродвижущей силой источника тока, включен­ного в цепь. Часто, вместо того чтобы сказать: «в цепи действуют сторонние силы», говорят: «в цепи действует э.д.с.», т. е. термин «электродвижущая сила» употребляет­ся как характеристика сторонних сил. Э.д.с., как и потенциал, выражается в вольтах (ср. (84.9) и (97.1)).

Сторонняя сила Fст, действующая на заряд Q0, может быть выражена как

где Е — напряженность поля сторонних сил. Работа же сторонних сил по перемещению заряда Q0 на замкнутом участке цепи равна

(97.2)

Разделив (97.2) на Q0, получим выражение для э. д. с., действующей в цепи:

т. е. э.д.с., действующая в замкнутой цепи, может быть определена как циркуляция вектора напряженности поля сторонних сил. Э.д.с., действующая на участке 12, равна

(97.3)

На заряд Q0 помимо сторонних сил действуют также силы электростатического поля Fe=Q0E. Таким образом, результирующая сила, действующая в цепи на заряд Q0, равна

Работа, совершаемая результирующей силой над зарядом Q0 на участке 12, равна

Используя выражения (97.3) и (84.8), можем записать

(97.4)

Для замкнутой цепи работа электростатических сил равна нулю (см. § 83), поэтому в данном случае

Напряжением U на участке 12 называется физическая величина, определяемая работой, совершаемой суммарным полем электростатических (кулоновских) и сторон­них сил при перемещении единичного положительного заряда на данном участке цепи. Таким образом, согласно (97.4),

Понятие напряжения является обобщением понятия разности потенциалов: напря­жение на концах участка цепи равно разности потенциалов в том случае, если на этом участке не действует Э.д.с., т. е. сторонние силы отсутствуют.

Условия существования постоянного электрического тока.

 

Для существования постоянного электрического тока необходимо наличие свободных заряженных частиц и наличие источника тока. в котором осуществляется преобразование какого-либо вида энергии в энергию электрического поля.

Источник тока — устройство, в котором осуществляется преобразование какого-либо вида энергии в энергию электрического поля. В источнике тока на заряженные частицы в замкнутой цепи действуют сторонние силы. Причины возникновения сторонних сил в различных источниках тока различны. Например в аккумуляторах и гальванических элементах сторонние силы возникают благодаря протеканию химических реакций, в генераторах электростанций они возникают  при движении проводника в магнитном поле, в фотоэлементах — при действия света на электроны в металлах и полупроводниках.

Электродвижущей силой источника тока называют отношение работы сторонних сил к величине положительного заряда, переносимого от отрицательного полюса источника тока к положительному.

 

Основные понятия.

 

Сила тока — скалярная физическая величина, равная отношению заряда, прошедшего через проводник, ко времени, за которое этот заряд прошел.

где I — сила тока, q  величина заряда (количество электричества), t — время прохождения заряда.

Плотность тока — векторная физическая величина, равная отношению силы тока к площади поперечного сечения проводника.

где j плотность тока,  S — площадь сечения проводника.

Направление вектора плотности тока совпадает с направлением движения положительно заряженных частиц.

Напряжение — скалярная физическая величина, равная отношению полной работе кулоновских и сторонних сил при перемещении положительного заряда на участке к значению этого заряда.

где A  полная работа сторонних и кулоновских сил,  q — электрический заряд.

Электрическое сопротивление — физическая величина, характеризующая  электрические свойства участка цепи.

где ρ — удельное сопротивление проводника, l  длина участка проводника,  S  площадь поперечного сечения проводника.

 

Проводимостью называется величина, обратная сопротивлению

где  G  проводимость.

 

 

Законы Ома.

 

Закон Ома для однородного участка цепи.

Сила тока в однородном участке цепи прямо пропорциональна напряжению при постоянном сопротивлении участка  и обратно пропорциональна сопротивлению участка при постоянном напряжении.

где U  напряжение на участке,  R — сопротивление участка.

 

 

Закон Ома для произвольного участка цепи, содержащего источник постоянного тока.

где   φ1  φ2 + ε = U напряжение на заданном участке цепи, R — электрическое сопротивление  заданного участка цепи.

 

 

Закон Ома для полной цепи.

Сила тока в полной цепи равна отношению электродвижущей силы источника к сумме сопротивлений внешнего и внутреннего участка цепи.

где R  электрическое сопротивление внешнего участка цепи,  r — электрическое сопротивление внутреннего участка цепи.

 

Короткое замыкание.

Из закона Ома для полной цепи следует, что сила тока в цепи  с заданным источником тока зависит только от сопротивления внешней цепи R.

Если к полюсам источника тока подсоединить проводник с сопротивлением  R<< r, то тогда только  ЭДС источника тока и его сопротивление будут определять  значение силы тока в цепи. Такое значение силы тока будет являться предельным для данного источника тока и называется током короткого замыкания. 

Электродвижущая сила. Любой источник тока характеризуется электродвижущей силой, или, сокращенно, ЭДС. Так, на круглой батарейке для карманного фонарика написано: 1,5 В. Что это значит?    Соедините проводником два металлических шарика, несущих заряды противоположных знаков. Под влиянием электрического поля этих зарядов в проводнике возникает электрический ток (рис.15.7). Но этот ток будет очень кратковременным. Заряды быстро нейтрализуют друг друга, потенциалы шариков станут одинаковыми, и электрическое поле исчезнет.

   Сторонние силы. Для того чтобы ток был постоянным, надо поддерживать постоянное напряжение между шариками. Для этого необходимо устройство (источник тока), которое перемещало бы заряды от одного шарика к другому в направлении, противоположном направлению сил, действующих на эти заряды со стороны электрического поля шариков. В таком устройстве на заряды, кроме электрических сил, должны действовать силы неэлектростатического происхождения (рис.15.8). Одно лишь электрическое поле заряженных частиц (кулоновское поле) не способно поддерживать постоянный ток в цепи.

   Любые силы, действующие на электрически заряженные частицы, за исключением сил электростатического происхождения (т. е. кулоновских), называют сторонними силами.    Вывод о необходимости сторонних сил для поддержания постоянного тока в цепи станет еще очевиднее, если обратиться к закону сохранения энергии. Электростатическое поле потенциально. Работа этого поля при перемещении в нем заряженных частиц вдоль замкнутой электрической цепи равна нулю. Прохождение же тока по проводникам сопровождается выделением энергии — проводник нагревается. Следовательно, в цепи должен быть какой-то источник энергии, поставляющий ее в цепь. В нем, помимо кулоновских сил, обязательно должны действовать сторонние, непотенциальные силы. Работа этих сил вдоль замкнутого контура должна быть отлична от нуля. Именно в процессе совершения работы этими силами заряженные частицы приобретают внутри источника тока энергию и отдают ее затем проводникам электрической цепи.    Сторонние силы приводят в движение заряженные частицы внутри всех источников тока: в генераторах на электростанциях, в гальванических элементах, аккумуляторах и т. д.    При замыкании цепи создается электрическое поле во всех проводниках цепи. Внутри источника тока заряды движутся под действием сторонних сил против кулоновских сил (электроны от положительно заряженного электрода к отрицательному), а во внешней цепи их приводит в движение электрическое поле (см. рис.15.8).    Природа сторонних сил. Природа сторонних сил может быть разнообразной. В генераторах электростанций сторонние силы — это силы, действующие со стороны магнитного поля на электроны в движущемся проводнике.    В гальваническом элементе, например элементе Вольта, действуют химические силы. Элемент Вольта состоит из цинкового и медного электродов, помещенных в раствор серной кислоты. Химические силы вызывают растворение цинка в кислоте. В раствор переходят положительно заряженные ионы цинка, а сам цинковый электрод при этом заряжается отрицательно. (Медь очень мало растворяется в серной кислоте.) Между цинковым и медным электродами появляется разность потенциалов, которая и обусловливает ток в замкнутой электрической цепи.    Электродвижущая сила. Действие сторонних сил характеризуется важной физической величиной, называемой электродвижущей силой (сокращенно ЭДС).   Электродвижущая сила источника тока равна отношению работы сторонних сил при перемещении заряда по замкнутому контуру к величине этого заряда:

   Электродвижущую силу, как и напряжение, выражают в вольтах.    Можно говорить также об электродвижущей силе и на любом участке цепи. Это удельная работа сторонних сил (работа по перемещению единичного заряда) не во всем контуре, а только на данном участке. Электродвижущая сила гальванического элементаесть величина, численно равная работе сторонних сил при перемещении единичного положительного заряда внутри элемента от одного полюса к другому. Работа сторонних сил не может быть выражена через разность потенциалов, так как сторонние силы непотенциальны и их работа зависит от формы траектории перемещения зарядов. Так, например, работа сторонних сил при перемещении заряда между клеммами источника тока вне самого источника равна нулю.    Теперь вы знаете, что такое ЭДС. Если на батарейке написано 1,5 В, то это означает, что сторонние силы (химические в данном случае) совершают работу 1,5 Дж при перемещении заряда в 1 Кл от одного полюса батарейки к другому. Постоянный ток не может существовать в замкнутой цепи, если в ней не действуют сторонние силы, т. е. нет ЭДС.

ПАРАЛЛЕЛЬНОЕ И ПОСЛЕДОВАТЕЛЬНОЕ СОЕДИНЕНИЕ ПРОВОДНИКОВ

Включим в электрическую цепь в качестве нагузки ( потребителей тока) две лампы накаливания, каждая из которых обладает каким-то определенным сопротивлением, и каждую из которых  можно заменить проводником с таким же сопротивлением.

ПОСЛЕДОВАТЕЛЬНОЕ СОЕДИНЕНИЕ

Расчет параметров электрической цепи  при последовательном соединении сопротивлений:

1. сила тока во всех последовательно соединенных участках цепи одинакова 2. напряжение в цепи, состоящей из нескольких последовательно соединенных участков,  равно сумме напряжений на каждом участке 3.сопротивление цепи, состоящей из нескольких последовательно соединенных участков,  равно сумме сопротивлений каждого участка

4. работа электрического тока в цепи, состоящей из последовательно соединенных участков, равна сумме работ на отдельных участках

А = А1 + А2 5. мощность электрического тока в цепи, состоящей из последовательно соединенных участков, равна сумме мощностей на отдельных участка

Р = Р1 + Р2

ПАРАЛЛЕЛЬНОЕ СОЕДИНЕНИЕ

 

Расчет параметров электрической цепи при параллельном соединении сопротивлений:

1. сила тока в неразветвленном участке цепи равна сумме сил токов во всех параллельно соединенных участках

2. напряжение на всех параллельно соединенных участках цепи одинаково

  3. при параллельном соединении сопротивлений складываются величины, обратные сопротивлению :

( R — сопротивление проводника, 1/R — электрическая проводимость проводника)

Если в цепь включены параллельно только два сопротивления, то:

( при параллельном соединении общее сопротивление цепи меньше меньшего из включенных сопротивлений )

4. работа электрического тока в цепи, состоящей из параллельно соединенных участков,  равна сумме работ на отдельных участках: A=A1+A2 5. мощность электрического тока в цепи, состоящей из параллельно соединенных участков,  равна сумме мощностей на отдельных участках: P=P1+P2

Для двух сопротивлений:  т.е. чем больше сопротивление, тем меньше в нём сила тока.

Закон Джоуля-Ленца — физический закон, который позволяет определить тепловое дествие тока в цепи, по этому закону: , где I — сила тока в цепи, R — сопротивление, t — время. Данная формула была вычесленена путём создания цепи: гальванический эллемент (батарейка), резистор и амперметр. Резистор окунали в жидкость, в которую вставляли термометр и мерили темпиратуру. Вот так они и вывели свой закон и навсегда себя впечатали в историю, но даже без их опытов можно было вывести этот же закон:

U=A/q   A=U*q=U*I*t=I^2*R*t   но даже не смотря на это честь и хвала этим людям.

Закон Джоуля Ленца определяет выделенное количество тепла на участке электрической цепи обладающей конечным сопротивлением при прохождении тока через нее. Обязательным условием является тот факт, что на этом участке цепи должны отсутствовать химические превращения.

РАБОТА ЭЛЕКТРИЧЕСКОГО ТОКА

Работа электрического тока показывает, какая работа была совершена электрическим полем при перемещении зарядов по проводнику.

Зная две формулы: I = q/t ….. и ….. U = A/q  можно вывести формулу для расчета работы электрического тока: Работа электрического тока равна произведению силы тока на напряжение и на время протекания тока в цепи.

Единица измерения работы электрического тока в системе СИ: [ A ] = 1 Дж = 1A. B . c

НАУЧИСЬ, ПРИГОДИТСЯ !  При расчетах работы электрического тока часто применяется  внесистемная кратная единица работы электрического тока: 1 кВт.ч (киловатт-час).

1 кВт.ч = ………..Вт.с = 3 600 000 Дж

В каждой квартире для учета израсходованной электроэнергии устанавливаются специальные приборы-счетчики электроэнергии, которые показывают работу электрического тока,  совершенную за какой-то отрезок времени при включении различных бытовых электроприборов.  Эти счетчики показывают работу электрического тока ( расход электроэнергии) в «кВт.ч».

Необходимо научиться рассчитывать стоимость израсходованной электроэнергии! Внимательно разбираемся в решении задачи на странице 122 учебника (параграф 52) ! 

МОЩНОСТЬ ЭЛЕКТРИЧЕСКОГО ТОКА

Мощность электрического тока показывает работу тока, совершенную в единицу времени и равна отношению совершенной работы ко времени, в течение которого эта работа была совершена.

(мощность в механике принято обозначать буквой N, в электротехнике — буквой Р) так как А = IUt, то мощность электрического тока равна:

или 

Единица мощности электрического тока в системе СИ:

[ P ] = 1 Вт (ватт) = 1 А . B

 Законы Кирхгофа – правила, которые показывают, как соотносятся токи и напряжения в электрических цепях.Эти правила были сформулированы Густавом Кирхгофом в 1845 году. В литературе часто называют законами Кирхгофа, но это не верно, так как они не являются законами природы, а были выведены из третьего уравнения Максвелла при неизменном магнитном поле. Но все же, первое более привычное для них название, поэтому и мы будет их называть, как это принято в литературе – законы Кирхгофа.

   Первый закон Кирхгофа – сумма токов сходящихся в узле равна нулю. 

       Давайте разбираться. Узел это точка, соединяющая ветви. Ветвью называется участок цепи между узлами. На рисунке видно, что ток i входит в узел, а из узла выходят токи i1 и i2. Составляем выражение по первому закона Кирхгофа, учитывая, что токи, входящие в узел имеют знак плюс, а токи, исходящие из узла имеют знак минус i-i1-i2=0. Ток i как бы растекается на два тока поменьше и равен сумме токов i1 и i2 i=i1+i2. Но если бы, например, ток i2входил в узел, тогда бы ток I определялся как i=i1-i2. Важно учитывать знаки при составлении уравнения.

   Первый закон Кирхгофа это следствие закона сохранения электричества: заряд, приходящий к узлу за некоторый промежуток времени, равен заряду, уходящему за этот же интервал времени от узла, т.е. электрический заряд в узле не накапливается и не исчезает.

    Второй закон Кирхгофа – алгебраическая сумма ЭДС, действующая в замкнутом контуре, равна алгебраической сумме падений напряжения в этом контуре. 

 Напряжение выражено как произведение тока на сопротивление (по закону Ома). 

 

  В этом законе тоже существуют свои правила по применению. Для начала нужно задать стрелкой направление обхода контура. Затем просуммировать ЭДСи напряжения соответственно, беря со знаком плюс, если величина совпадает с направлением обхода и минус, если не совпадает. Составим уравнение по второму закону Кирхгофа, для нашей схемы. Смотрим на нашу стрелку, E2 и Е3совпадают с ней по направлению, значит знак плюс, а Е1 направлено в противоположную сторону, значит знак минус. Теперь смотрим на напряжения, ток I1 совпадает по направлению со стрелкой, а токи I2 и I3 направлены противоположно. Следовательно:

              -E1+E2+E3=I1R1-I2R2-I3R3

   На основании законов Кирхгофа составлены методы анализа цепейпеременного синусоидального тока. Метод контурных токов – метод основанный на применении второго закона Кирхгофа и метод узловых потенциаловоснованный на применении первого закона Кирхгофа.

Основные характеристики электрического тока — Мегаобучалка

Закон Ома для участка цепи.

В 1826 году немецкий физик Георг Ом экспериментально установил, что I ~ U; I ~

I I

U = const

R = const

 

U R

Закон Ома для участка цепи: сила тока прямо пропорциональна приложенному напряжению U и обратно пропорциональна сопротивлению проводника R.

I =

Электродвижущая сила.

Если два заряженных тела соединить проводником, то через него пойдет кратковременный ток. Избыточные электроны с отрицательно заряженного тела перейдут на положительно заряженное. Потенциалы тел окажутся одинаковыми, значит, напряжение на концах проводника станет равно нулю, и ток прекратится. Для существования длительного тока в проводнике нужно поддерживать разность потенциалов на его концах неизменной. Этого можно достичь, перенося свободные электроны с положительного тела на отрицательное так, чтобы заряды тел не менялись со временем.

Силы электрического взаимодействия сами по себе не способны осуществлять подобное разделение зарядов. Они вызывают притяжение электронов к положительному телу и отталкивание от отрицательного. Поэтому внутри источника тока должны действовать сторонние силы, имеющие неэлектрическую природу и обеспечивающие разделение электрических зарядов.

Сторонние силы — любые силы, действующие на электрические заряженные частицы, за исключение сил, электростатического происхождения (т.е. кулоновских).

ЭДС – электродвижущая сила – физическая величина, определяемая работой , совершаемой сторонними силами при перемещении единичного положительного заряда от «+» полюса к «-» полюсу внутри источника тока. Является энергетической характеристикой источника тока. =В

Закон Ома для полной цепи.

Сила тока прямо пропорциональна ЭДС источника и обратно пропорциональна полному сопротивлению цепи: I =

где: – ЭДС источника тока

R – внешнее сопротивление цепи

r — внутреннее сопротивление цепи

Аст = eIDt Аст = Q ε = IR + Ir = Uвнеш.+ Uист. ηист. =

ЭДС равно сумме падения напряжений на внешнем и внутреннем участках замкнутой цепи.



Частный случай — короткое замыкание, когда R = 0 , Iк.з. =

Основные характеристики электрического тока.

Виды соединений источников тока:

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *