Skip to content

Стекловолокно имеет прочность: Стекловолокно и изделия из него

Содержание

Стекловолокно и изделия из него

Стекловолокном называют материал, полученный из расплавленного стекла путем выдавливания из него тонких нитей.

Стекловолокно обладает редким сочетанием свойств: высокой прочностью при растяжении и сжатии, негорючестью, нагревостойкостью, малой гигроскопичностью, стойкостью к химическому и биологическому воздействию. Из него изготовляют материалы с высокими электро-, тепло-, звукоизоляционными свойствами и механической прочностью. На основе стекловолокнистых материалов изготавливаются различные виды изделий, которые успешно заменяют традиционные материалы,а также, имеют только им присущие области применения.

Различают два вида стекловолокна: непрерывное – длинной сотни и тысячи метров и штапельное – длинной до 0,5 м. По внешнему виду непрерывное волокно напоминает натуральный или искусственный шелк, а штапельное – хлопок или шерсть. Изделия из непрерывного волокна имеют вид однонаправленных волокон, тканых материалов, нетканых материалов и волокнистых световодов.

Однонаправленное стекловолокно представляет собой короткие пряди волокон или комплексных нитей, срезанных с бобин. Длина однонаправленного волокна изменяется в зависимости от периметра бобины или барабана, на который оно наматывается. Однонаправленное волокно с бобин имеет диаметр 5-10 мкм и длину не менее 0,5 м.

Тканые материалы получают в ходе текстильной переработки стекловолокна: размотки комплексной нити с бобин с комплексной круткой трощения нитей и вторичной их крутки, подготовки нитей к ткачеству и изготовления тканых материалов на ткацких станках. Для текстильной переработки используются волокна диаметром 5-10 мкм. Волокна большего диаметра имеют пониженную прочность при изгибе и чаще ломается в ходе текстильной переработки.

Нетканые материалы из непрерывного стекловолокна – жгут, холсты из рубленных и непрерывных нитей, ленты из склеенных нитей и стекловолокнистые анизотропные материалы. Жгут представляет собой прядь, состоящую из большого числа комплексных стеклянных нитей, холсты – рулонные нетканые материалы. В жестких холстах хаотически расположенные нити или обрезки нитей скреплены смолами, в мягких холстах – механической прошивкой. Первичные нити или жгуты могут быть склеены в длинные ленты.

При упорядоченной намотке нитей и жгутов на барабаны и одновременном нанесении связующего получают анизотропные материалы, свойства которых в разных направлениях различны. Эти материалы могут быть как рулонные при непрерывном способе производства, так и листовыми – при периодическом. Для нетканых материалов могут применяться волокна диаметром до 20 мкм.

Виды изделий из штапельного волокна.

Штапельные волокна различаются по длине элементарных волокон (длинноволокнистые и коротковолокнистые) и по их диаметру. По диаметру различают: микроволокно (0,5 мкм), ультратонкое (0,5-1,0 мкм), супертонкое (1-4 мкм), утолщенное (11-20 мкм) и грубое (20 мкм и более).

На основе коротковолокнистых штапельных волокон получают вату, рулонные материалы, маты, плиты и скорлупы. Все эти материалы состоят из хаотически перепутанных волокон. Волокно, осажденное вместе с органическими синтетическими материалами на конвейерной ленте, после обработки принимает вид непрерывного ковра толщиной 20-100 мм.

Рулонный материал представляет собой длинный кусок ковра, свернутый в рулон. Маты и плиты получают из неподпрессованного ковра. Маты в ряде случаев простегиваются нитями из непрерывного стеклянного волокна, тогда толщина из может быть уменьшена до 5 мм. Плиты покрываются с одной или обеих сторон стеклянной тканью.

Из длинноволокнистых штапельных волокон изготовляют холсты, сепараторные пластины, бумагу. Эти материалы (толщиной 0,5-1,5 мм) могут быть свернуты в рулоны или нарезаны на пластины. Для повышения механической прочности они могут армироваться нитями их непрерывного волокна. Из длинноволокнистых волокон получают по аналогии с шерстью штапельную крученую пряжу, ровницу и при последующей текстильной переработке – штапельные ткани, сетки, ленты. Свойства изделий из штапельного волокна в значительной степени зависят от диаметра волокна, состава стекла и вида связующего материала.

Способ производства стекловолокна.

Способы выработки стекловолокна классифицируется по двум основным принципам его формования:

  • утоньшения струйки стекломассы в непрерывное элементарное волокно;
  • разделения и расчленения струи расплавленного стекла, сопровождаемых вытягиванием коротких волокон.

Вытягивание волокна из струйки стекломассы может производиться как механическим путем, так и воздухом или паром. Каждый из этих способов может быть одно- или двухстадийным. При двухстадийном процессе стеклянное волокно вырабатывается из стеклоплавильных сосудов или печей, питаемых стеклянными шариками, штабиками или эрклезом. При одностадийном процессе стеклянное волокно вырабатывается из стекловаренных печей, питаемых шихтой. Механическое вытягивание волокна может осуществляться с помощью барабана, съемных бобин, вытяжных валков или прядильной головки. Способы разделения струи расплавленного стекла делятся на три группы: способы раздува, центробежные и комбинированные.

Состав и свойства стекол для изготовления стекловолокна.

В зависимости от области применения непрерывного стекловолокна требования к его химическому составу могут быть различными. Для электрической изоляции употребляется только бесщелочное (или малощелочное) алюмосиликатное или алюмоборосиликатное стекло; для конструкционных стеклопластиков применяют главным образом бесщелочные магнийалюмосиликатные или алюмоборосиликатные стекла; для стеклопластиков неответственного назначения можно использовать и щелочесодержащие стекла.

Процесс формирования непрерывного стеклянного волокна предъявляет к стеклу ряд требований: интервал вязкостей, в котором устойчиво протекает формирование непрерывного стеклянного волокна из стекол обычных составов.

Основными требованиями, предъявляемыми к стеклам для производства штапельного волокна, являются малая вязкость при температуре выработки и низкое поверхностное натяжение. В зависимости от способа выработки и назначения штапельного волокна применяют стекла различных составов, однако все они отличаются высоким содержанием оксидов щелочноземельных металлов.

Физико-химические свойства неорганических волокон и материалов на их основе.

Механические свойства. Стекловолокно значительно превосходит по механической прочности исходное (массивное) стекло и незначительно отличается от него по некоторым физическим параметрам.

Механические свойства стеклянных волокон зависят от химического состава стекла, метода производства, окружающей среды и температуры. Метод производства оказывает большое влияние на прочность стеклянных волокон: высокой прочностью обладают волокна, вытянутые с большой скоростью из расплавленного стекла (вытягивание из фильер), наименьшей прочностью – волокна, полученные штабиковым способом и раздувом. При формовании волокна из фильер образуется меньше поверхностных дефектов и трещин, чем обусловливаются их лучшие механические свойства, главным образом прочность.

Прочность при растяжении стекловолокна зависит от его состава и диаметра

Наибольшей прочностью обладают непрерывные волокна из кварцевого и бесщелочного магнийалюмосиликатного стекла. Повышенное содержание щелочей в стекле резко снижает прочность стеклянных волокон. Кристаллизация стекла и присутствие в стекломассе мелких газовых включений понижает прочность стеклянного волокна на 25-30%.

Максимальная прочность стеклянных и кварцевых волокон, испытанных в среде жидкого азота, приближается к расчетной теоретической прочности стекла и плавленого кварца.

В зависимости от диаметра и состава стекла техническая прочность стеклянных волокон при их формировании современными промышленными методами составляет 25-30 % теоретической прочности стекла.

Модуль Юнга стеклянных волокон составляет 6-11 ГПа и выше. Разрушающее напряжение при изгибе и кручении повышается с уменьшением диаметра волокон.

Изделия из стекловолокна плохо работают при многократном изгибе и истирании, однако, стойкости к изгибу и истиранию повышаются после пропитки лаками и смолами. Склеивание волокон в нити повышает прочность нити на 20-25 %, а пропитка стекловолокнистых материалов лаками – на 80-100 %.В сухом воздухе прочность стеклянных волокон резко повышается. Смачивание стеклянных волокон и изделий из них неполярной углеводородной жидкостью аналогично действию сухого воздуха и дает наибольшее значение прочности. Значительное (до 50-60 %) понижение прочности стеклянных волокон и изделий из них происходит при адсорбции ими воды и водных растворов поверхностно-активных веществ. Это объясняется тем, что молекулы веществ, адсорбируемых на стеклянных волокнах, способствуют образованию трещин в слабых местах поверхностного слоя.

При погружении химостойких стекловолокнистых материалов в воду прочность их снижается, но после высушивания полностью восстанавливается. Изделия из стеклянного волокна натрийкальцийсиликатного состава, содержащие более 15 % (мас.) оксидов щелочных металлов, после пребывания во влажном воздухе или в воде снижают прочность необратимо в связи с интенсивным выщелачиванием и разрушением. При длительном действии деформирующего усилия у стеклянных волокон развивается упругое последствие, которое зависит от химического состава стекла и относительной влажности воздуха. Влага снижает также сопротивления стеклянных волокон изгибу и трению.

При нагревании стеклянной ткани до 250-300°С прочность ее сохраняется, в то время как волокна органического состава при этой температуре полностью разрушаются.

При низких и высоких температурах устраняется адсорбционное воздействие влаги воздуха на стеклянные волокна, что приводит к повышению их прочности. Однако после термической обработки (нагрев до различных температур и последующее охлаждение) прочность стеклянных волокон и тканей снижается на 50-70 %.

Состав стекла оказывает значительное влияние на прочность стеклянных волокон, подвергнутых термообработке. Волокна из натрийкальцийсиликатного и боратного стекол теряют свою прочность при термообработке, начиная уже с 100-200°С, волокна из кварцевого, кремнеземного и каолинового стекла теряют прочность на 50 % при нагреве до 1000°С и последующем охлаждении.

Прочность волокон из бесщелочного стекла значительно снижается при 300°С; прочность кварцевых волокон при этой температуре практически не изменяется.

После нагрева и охлаждения стеклянных волокон наблюдается небольшое повышение их плотности и показателя преломления.

Нагревостойкость. Стеклянное волокно обладает высокой нагревостойкостью , которая зависит от химического состава стекла . Температурная область применения стеклянных волокон натрийкальцийсиликатного состава ограничена температурами 450-500°С, при более высоких температурах начинается их спекание. Для бесщелочных волокон нагревостойкость выше на 200-300°С и составляет 600-700°С.

Гигроскопичность отдельных стеклянных волокон около 0,2 % (мас.). Поглощение влаги стеклянной тканью значительно выше, так как влага адсорбируется зазорами между волокнами и замасливателем. Гигроскопичность ткани зависит от характера переплетения нитей и химического состава стекла, например ткани из волокна натрийкальцийсиликатного состава обладают гигроскопичностью до 3-4 %.

Химистойкость теклянных волокон не зависит от их диаметра, но абсолютная растворимость тонких волокон выше растворимости толстых вследствие большего отношения их поверхности к массе. Поэтому при воздействии агрессивных реагентов волокна разрушаются быстрее, чем массивное стекло.

Прочность стеклянных волокон в различных агрессивных средах (горячая вода, водяной пар высокого давления, кислоты, щелочи) зависит от химического состава стекла. Наибольшей прочностью и высокой стойкостью к горячей воде и пару обладают волокна из бесщелочного алюмоборосиликатного и магнийалюмосиликатного стекла. По гидролитической классификации этот вид стекла относится к «стеклам, не изменяемым водой».

Материалы из стеклянного волокна, содержащего в своем составе щелочи, значительно теряют прочность при многократной обработке горячей водой или водяным паром даже нормального давления. В этом случае имеет место интенсивное выщелачивание, приводящее к полному распаду структуры стекла.

При длительном воздействии водяного пара различного давления резко снижается прочность материалов и из волокна бесщелочного алюмоборосиликатного стекла. Наиболее стойкими в этих условиях являются стеклянные ткани из бесщелочного безборного стекла.

Стеклянные ткани и волокна из бесщелочного стекла нестойки к воздействию кислот. При обработке кислотой волокон из бесщелочного стекла все компоненты его растворяются и остается лишь малопрочный кремнекислородный скелет.

Высокой стойкостью к воде, пару высокого давления и различным кислотам (кроме плавиковой) обладают волокнистые материалы кварцевого, а также кремнеземного и каолинового состава.

Стекловолокно: характеристики, применение | Строительный портал

Стекловолокно представляет собой волокна или нити, изготовленные из стекла или его производных, но благодаря сложному процессу производства приобретшее в конечном итоге уникальные свойства, нехарактерные для обычного стекла. Оно не разбивается при ударе, а легко гнется, при этом не деформируясь и не повреждаясь. Из материалов, производимых на его основе, изготавливаются различные изделия, успешно заменяющие традиционные привычные материалы, а сферой применения становятся области строительства, автомобилестроение, дорожные работы в другие направления. В статье речь пойдет о разновидностях стекловолокна.

Содержание:

  1. Стекловолокно характеристики
  2. Материалы на основе стекловолокна
  3. Стекловолокно применение

 

Производство искусственного волокна и применение материалов на его основе представляет большой интерес как прогрессивное направление бизнеса. Оно занимает сегодня огромную часть отрасли стекольной промышленности с приличными капиталовложениями. Это говорит о том, что стекловолокно востребованный продукт среди ассортимента производимых товаров в современном мире.

Синтетическое стекловолокно может выпускаться из различного типа сырья, среди которых стекло, шлак, различные горные породы и минералы. Стекловолокно может быть произведено методом непрерывных нитей, или другим способом — в виде штапельного волокна.

Стекловолокно фото

Стекловолокно характеристики

Стекловолокно популярно и востребовано как материал благодаря своим замечательным свойствам, которые в значительной мере отличаются от исходного материала. Особое внимание стоит остановить на следующих характеристиках:

  • высокий уровень прочности, который превосходит прочность легированной стали. Диаметр нитей стекловолокна составляет 7-9 мк. Они  произведены из магнийалюмосиликатного стекла и стекла, не содержащего щелочь, обладают самыми большими показателями прочности;
  • устойчивость к термической обработке. Структура эпоксидного стекловолокна сохраняется даже при сильном нагревании, в условиях, когда природные волокна органического происхождения уже полностью разрушаются;
  • придание дополнительной прочности в составе других материалов. В этом случае стекловолокно играет роль армирующей основы;

  • толерантность некоторых видов стекловолокон к химически и термически агрессивных средам — кислотам, горячей воде и воздействию пара высокого давления. Лучшими показателями обладают волокна кремнеземного, кварцевого и каолинового происхождения;
  • звукопоглощающие свойства. Шумоизолирующий эффект достигается благодаря оригинальному строению материала, в котором пространство, остающееся между волокнами, заполнено микроскопическими пузырьками воздуха;
  • теплоизолирующие свойства. Небольшая плотность и содержание воздуха среди волокон обеспечивают удержание тепла зимой и отсутствие нагрева летом;
  • негорючесть и экологичность. Стекловолокно не воспламеняется, не горит и не плавится, что делает его пожаробезопасным материалом и позволяет избежать токсичных веществ, которые выделяются при горении многих синтетических материалов;
  • способности сохранять первоначальную форму, прекрасно сопротивляться старению и противостоять деформации;
  • изменение свойств материала при намокании. В мокром виде теряет исходные свойства, а при высыхании восстанавливает их снова;
  • плохое отношение стекловолокна к изгибам и многочисленным истираниям. Обработка смолами и лаками меняет дело в положительную сторону;
  • экономичности транспортировки. Стекловолокнистая ткань тонкая, гибкая, но в то же время упругая. При необходимости перевозки ее можно сложить достаточно плотно и структура ткани не будет нарушена. Благодаря этому экономится место в транспорте, а значит, и расходы на транспортировку.

Свойства, которыми будет обладать готовое изделие, в конечном итоге зависят от способа изготовления продукта, химического состава сырья, воздействия факторов окружающей среды и толщины стекловолокна.

Материалы на основе стекловолокна

Само стекловолокно является лишь сырьем для производства различных продуктов — стеклонитей, ровингов и рубленого волокна, из которых впоследствии изготавливаются разные материалы строительного, электроизоляционного, производственного и конструкционного назначения.

Из непрерывных стекловолокнистых нитей получают:

  • стеклоткани, которые производятся таким же ткацким методом, что и обычное полотно — переплетением продольных и поперечных нитей между собой. В зависимости от вида переплетения — сатинового, полотняного, шашечного или саржевого, плотности и извивистости пряжи ткани отличаются между собой свойствами и назначением. Стеклоткани бывают электроизоляционные, строительные, конструкционные, кремнеземные и ровинговые. В зависимости от марки цена стекловолокна составляет 25-200руб/м2$

  • армированное стекловолокно и ленты, отличающиеся размером ячейки, видом и плотностью пропитки и предназначенные для дорожных или строительных наружных и внутренних отделочных работ;
  • пластиковое стекловолокно — композиты с разнообразными свойствами, которые задаются изначально в зависимости от условий эксплуатации. Они позволяют производить изделия любой сложности и конфигурации и поэтому именно стекловолокна в сочетании с полимерами получили самое широкое применение и распространение в самых различных сферах нашей жизни.

Из штапельных стекловолокнистых нитей и рубленых волокон можно купить стекловолокно следующего назначения: 

  • утеплитель — стекловату и стекломаты;
  • стеклохолсты различной степени толстости, стеклопластики;
  • такое сырье используется и как компонент строительных растворов.

Каждый из этих материалов имеет свои присущие только ему особенности и индивидуальные характеристики, что предоставляет неограниченные возможности для широчайшего использования их во всех областях человеческой жизни.

Стекловолокно применение

Сегодня без изделий из стекловолокна не обходятся строительные, ремонтные и отделочные работы. Этот материал применяется также и при проведении дорожных работ. Широкое использование он получил в авто- и судостроении, в сфере производства товаров бытового, спортивного и медицинского назначения. А из-за превосходных диэлектрических свойств давно применяется в энергетической отрасли в качестве изоляционных материалов.

Применение стекловолокна в строительстве

Очень много продуктов из стекловолокна используется в строительстве. Одним из них является стеклопластиковая арматура, которая разрабатывалась как замена для стальной. Дело в том, что долгое время сталь являлась практически единственным материалом, у которого имелись необходимые для армирующего элемента свойства — исключительная прочность и долговечность. Альтернативы не было, а значит, приходилось мириться и с недостатками стали. Когда развитие технологий сделало возможным получение материалов с ранее недоступными свойствами, изменились и стандарты производства стройматериалов, в том числе и армирующих. На смену стальной пришла композитная стеклопластиковая арматура.

  • Она обладает прочностью и надежностью стали, но в то же время в несколько раз легче ее, не подвержена коррозии, устойчива к неблагоприятным воздействиям влаги, имеет низкую теплопроводность, не проводит электричество и полностью химически инертна. Все эти замечательные качества обеспечивают композиту самое широкое использование в самых различных случаях — для армирования фундаментов, бетонных конструкций и дорожного или авиационного полотна, крепления теплоизоляции, в виде армирующих сеток для несущего или облицовочного слоя при строительстве или ремонте зданий, для возведения осветительных опор, ограждений, канализационных и мелиоративных конструкций.
  • Еще одним изделием из стекловолокна является стеклофибра, которую добавляют в бетонный раствор в качестве скрепляющего элемента. Как известно, обычная бетонная смесь в процессе застывания подвержена усадке, в результате которой образуются микротрещины. Что является нежелательным, так как негативно влияет на качество бетона и его долговечность. Добавление в раствор фибры меняет дело. Когда свежий бетон начинает застывать, внутри раствора химические и физические процессы могут приводить к образованию дефектов. Волокна стекловолокна способны остановить прорастание микротрещин на ранних стадиях его твердения. В некоторых случаях такой состав позволяет обойтись без дополнительного армирования. Стеклофибру применяют для создания газобетонов, пенобетонов и ячеистых бетонов, в сухих смесях и штукатурках, стяжках и стеновых панелей для зданий и т. д. Полученная продукция выходит лучшего качества и с более высокими характеристиками.

  • Стекловолокно — прекрасный утеплитель. Чем хорошо пользуются в строительстве для теплоизоляции различных ненагруженных конструкций, внутри и снаружи зданий. Для наружных работ применяется в системе вентилируемых фасадов как самостоятельный элемент утепления или в составе сэндвич-панелей. Может использоваться как в рулонах, так и в матах. Внутренние работы включают в себя утепление кровли, чердачного помещения, теплоизоляцию стен и потолков, внутренних перегородок обычных и каркасных зданий. Стекловолоконными изделиями утепляют также различные подходящие к зданиям коммуникации — трубопроводы, системы канализации и вентиляции, отопления. Для этих целей в основном используют иглопробивные материалы. Обладающими паро- и теплоотражающими качествами фольгированными матами изолируют холодильные камеры, сауны и подобные помещения.
  • Ремонт и отделка помещений также не обходится без изделий из стекловолокна. Их главное назначение — создание армирующего слоя на поверхности при штукатурных работах. Таким образом, реставрация проходит успешно. Множество мелких трещин или одну крупную можно закрыть с помощью шпаклевки стекловолокна.
  • Кроме этого ее используют как армирующий элемент перед заливкой наливного пола, укладкой гидроизоляции, для укрепления соединений листов гипсокартона. Для более тонкой отделки поверхностей под покраску, при работе с гипсокартоном, для предупреждения появления мелких изъянов и получения идеальной картины в целом используется более изящный вариант армирующего материала — нетканый стеклохолст. Финишная отделка с применением стеклохолста дает всегда отличные результаты, качественное однородное покрытие без дефектов и изъянов. К тому же это еще и гарантия того, что идеальное состояние поверхности в ближайшее время не будет нарушено.

  • Еще одним отделочным материалом из стекловолокна являются стеклообои — прекрасное декоративное покрытие, но требующее большого количества краски из-за высоких впитывающих свойств. В отличие от обычных обоев, они выносливы, выдерживают механические нагрузки и воздействия химических сред.
Применение стекловолокна в дорожном и промышленном строительстве
  • Широкое распространение применение стекловолокна получило в промышленном и дорожном строительстве. Здесь оно незаменимо как скрепляющий компонент. Дорожное полотно с уложенной стеклопластиковой арматурой, при условии соблюдения технологии строительства, не растрескивается и не продавливается при нагрузках. Наличие в слоях покрытия дорог стеклосетки гарантирует увеличение производительности и срока их эксплуатации, снижает толщину асфальтного покрытия, предупреждает образование и распространение трещин и выбоин, увеличивает проходимость и долговечность дорог, позволяет увеличить сроки между ремонтами.
  • В гидротехническом строительстве без укрепляющих стекловолоконных сеток не обходится возведение плотин, набережных, мостов, подпорных стенок, ливневых коллекторов. Значительная часть канализационных емкостей (отстойников, фильтров, септиков) выполнена все из того же стеклопластика.

  • Из него изготавливаются сидения, устанавливаемые на стадионах, в аэропортах, авто- и ж/д вокзалах; оборудование остановок, бассейнов. Везде, где предусматривается большое скопление людей.
Применение стекловолокна в авто- и судостроение
  • Стеклоткань и композитный стеклопластик, благодаря малому весу и исключительной прочности, способности хорошо поддаваться механической обработке и окрашиванию, поэтому востребованы в автопромышленности и автоспорте. Из этих материалов производят различные части кузова — двери, крыши, крышки багажников, капоты. А также бампера, спойлеры, обвесы, рейлинги и внутренние детали салона. Стекловолокно применяют для придания дополнительной жесткости шинам, и в глушителях как звукоизоляционный материал.
  • В тюнинговых ателье изделия из стекловолокна используются для создания отделочных элементов благодаря способности легко копировать форму заготовки для воспроизведения необходимой детали. Простота в обработке, небольшая толщина, гибкость и пластичность материала позволяют изготавливать из него изделия разной степени сложности и формы.

  • Те же замечательные качества стекловолокна обеспечивают его применение в промышленном масштабе и в судостроительной отрасли. Корпуса моторных и весельных лодок, гоночных и крейсерных яхт, рыболовецких судов малой тоннажности, скутеров и катеров сегодня частично или полностью выполнены из этого материала. Стеклопластиковыми могут быть и другие части суден.

Лодка из стекловолокна видео

Другие способы применения стекловолокна

В зависимости от толщины стекловолокна из него производят различные товары народного потребления и другие изделия:

  • сантехнические детали — биотуалеты, септики, душевые кабинки, чаши бассейнов;
  • товары для спорта и отдыха — весла для гребли, лыжные палки, удочки и т. д.;
  • ящики и контейнеры для бытовых отходов твердого типа;
  • медицинские изделия, используемые в стоматологии — пломбы и несъемные протезы, ленты для шинирования зубов ;
  • медицинские изделия, используемым в ортопедии — протезы, костыли, трости;
  • разнообразные виды трубок бытового назначения — антенны, держатели, флагштоки;
  • электротехнические изделия — индикаторы, предохранители, заземлители.

Это далеко не полный список перечислений всех мест, где может быть использованы изделия из стекловолокна. С каждым днем область их применения все больше расширяется, охватывая все новые и новые сферы нашей деятельности.

Широкое распространение и применение стекловолокна и изделий на его основе стало возможным благодаря достижениям современного производства, высоким технологиям в области химпромышленности, в частности полимеров и композитных материалов, и высоким требованиям к качеству конечного продукта. Стекловолокно — уникальный продукт, который как нельзя лучше отвечает реалиям времени и требуемым характеристикам и свойствам, присущим современным материалам. Поэтому такое его разностороннее применение совсем неудивительно.

Стекловолокно: характеристики, применение | Строительный портал

Стекловолокно представляет собой волокна или нити, изготовленные из стекла или его производных, но благодаря сложному процессу производства приобретшее в конечном итоге уникальные свойства, нехарактерные для обычного стекла. Оно не разбивается при ударе, а легко гнется, при этом не деформируясь и не повреждаясь. Из материалов, производимых на его основе, изготавливаются различные изделия, успешно заменяющие традиционные привычные материалы, а сферой применения становятся области строительства, автомобилестроение, дорожные работы в другие направления. В статье речь пойдет о разновидностях стекловолокна.

Содержание:

  1. Стекловолокно характеристики
  2. Материалы на основе стекловолокна
  3. Стекловолокно применение

 

Производство искусственного волокна и применение материалов на его основе представляет большой интерес как прогрессивное направление бизнеса. Оно занимает сегодня огромную часть отрасли стекольной промышленности с приличными капиталовложениями. Это говорит о том, что стекловолокно востребованный продукт среди ассортимента производимых товаров в современном мире.

Синтетическое стекловолокно может выпускаться из различного типа сырья, среди которых стекло, шлак, различные горные породы и минералы. Стекловолокно может быть произведено методом непрерывных нитей, или другим способом — в виде штапельного волокна.

Стекловолокно фото

Стекловолокно характеристики

Стекловолокно популярно и востребовано как материал благодаря своим замечательным свойствам, которые в значительной мере отличаются от исходного материала. Особое внимание стоит остановить на следующих характеристиках:

  • высокий уровень прочности, который превосходит прочность легированной стали. Диаметр нитей стекловолокна составляет 7-9 мк. Они  произведены из магнийалюмосиликатного стекла и стекла, не содержащего щелочь, обладают самыми большими показателями прочности;
  • устойчивость к термической обработке. Структура эпоксидного стекловолокна сохраняется даже при сильном нагревании, в условиях, когда природные волокна органического происхождения уже полностью разрушаются;
  • придание дополнительной прочности в составе других материалов. В этом случае стекловолокно играет роль армирующей основы;

  • толерантность некоторых видов стекловолокон к химически и термически агрессивных средам — кислотам, горячей воде и воздействию пара высокого давления. Лучшими показателями обладают волокна кремнеземного, кварцевого и каолинового происхождения;
  • звукопоглощающие свойства. Шумоизолирующий эффект достигается благодаря оригинальному строению материала, в котором пространство, остающееся между волокнами, заполнено микроскопическими пузырьками воздуха;
  • теплоизолирующие свойства. Небольшая плотность и содержание воздуха среди волокон обеспечивают удержание тепла зимой и отсутствие нагрева летом;
  • негорючесть и экологичность. Стекловолокно не воспламеняется, не горит и не плавится, что делает его пожаробезопасным материалом и позволяет избежать токсичных веществ, которые выделяются при горении многих синтетических материалов;
  • способности сохранять первоначальную форму, прекрасно сопротивляться старению и противостоять деформации;
  • изменение свойств материала при намокании. В мокром виде теряет исходные свойства, а при высыхании восстанавливает их снова;
  • плохое отношение стекловолокна к изгибам и многочисленным истираниям. Обработка смолами и лаками меняет дело в положительную сторону;
  • экономичности транспортировки. Стекловолокнистая ткань тонкая, гибкая, но в то же время упругая. При необходимости перевозки ее можно сложить достаточно плотно и структура ткани не будет нарушена. Благодаря этому экономится место в транспорте, а значит, и расходы на транспортировку.

Свойства, которыми будет обладать готовое изделие, в конечном итоге зависят от способа изготовления продукта, химического состава сырья, воздействия факторов окружающей среды и толщины стекловолокна.

Материалы на основе стекловолокна

Само стекловолокно является лишь сырьем для производства различных продуктов — стеклонитей, ровингов и рубленого волокна, из которых впоследствии изготавливаются разные материалы строительного, электроизоляционного, производственного и конструкционного назначения.

Из непрерывных стекловолокнистых нитей получают:

  • стеклоткани, которые производятся таким же ткацким методом, что и обычное полотно — переплетением продольных и поперечных нитей между собой. В зависимости от вида переплетения — сатинового, полотняного, шашечного или саржевого, плотности и извивистости пряжи ткани отличаются между собой свойствами и назначением. Стеклоткани бывают электроизоляционные, строительные, конструкционные, кремнеземные и ровинговые. В зависимости от марки цена стекловолокна составляет 25-200руб/м2$

  • армированное стекловолокно и ленты, отличающиеся размером ячейки, видом и плотностью пропитки и предназначенные для дорожных или строительных наружных и внутренних отделочных работ;
  • пластиковое стекловолокно — композиты с разнообразными свойствами, которые задаются изначально в зависимости от условий эксплуатации. Они позволяют производить изделия любой сложности и конфигурации и поэтому именно стекловолокна в сочетании с полимерами получили самое широкое применение и распространение в самых различных сферах нашей жизни.

Из штапельных стекловолокнистых нитей и рубленых волокон можно купить стекловолокно следующего назначения: 

  • утеплитель — стекловату и стекломаты;
  • стеклохолсты различной степени толстости, стеклопластики;
  • такое сырье используется и как компонент строительных растворов.

Каждый из этих материалов имеет свои присущие только ему особенности и индивидуальные характеристики, что предоставляет неограниченные возможности для широчайшего использования их во всех областях человеческой жизни.

Стекловолокно применение

Сегодня без изделий из стекловолокна не обходятся строительные, ремонтные и отделочные работы. Этот материал применяется также и при проведении дорожных работ. Широкое использование он получил в авто- и судостроении, в сфере производства товаров бытового, спортивного и медицинского назначения. А из-за превосходных диэлектрических свойств давно применяется в энергетической отрасли в качестве изоляционных материалов.

Применение стекловолокна в строительстве

Очень много продуктов из стекловолокна используется в строительстве. Одним из них является стеклопластиковая арматура, которая разрабатывалась как замена для стальной. Дело в том, что долгое время сталь являлась практически единственным материалом, у которого имелись необходимые для армирующего элемента свойства — исключительная прочность и долговечность. Альтернативы не было, а значит, приходилось мириться и с недостатками стали. Когда развитие технологий сделало возможным получение материалов с ранее недоступными свойствами, изменились и стандарты производства стройматериалов, в том числе и армирующих. На смену стальной пришла композитная стеклопластиковая арматура.

  • Она обладает прочностью и надежностью стали, но в то же время в несколько раз легче ее, не подвержена коррозии, устойчива к неблагоприятным воздействиям влаги, имеет низкую теплопроводность, не проводит электричество и полностью химически инертна. Все эти замечательные качества обеспечивают композиту самое широкое использование в самых различных случаях — для армирования фундаментов, бетонных конструкций и дорожного или авиационного полотна, крепления теплоизоляции, в виде армирующих сеток для несущего или облицовочного слоя при строительстве или ремонте зданий, для возведения осветительных опор, ограждений, канализационных и мелиоративных конструкций.
  • Еще одним изделием из стекловолокна является стеклофибра, которую добавляют в бетонный раствор в качестве скрепляющего элемента. Как известно, обычная бетонная смесь в процессе застывания подвержена усадке, в результате которой образуются микротрещины. Что является нежелательным, так как негативно влияет на качество бетона и его долговечность. Добавление в раствор фибры меняет дело. Когда свежий бетон начинает застывать, внутри раствора химические и физические процессы могут приводить к образованию дефектов. Волокна стекловолокна способны остановить прорастание микротрещин на ранних стадиях его твердения. В некоторых случаях такой состав позволяет обойтись без дополнительного армирования. Стеклофибру применяют для создания газобетонов, пенобетонов и ячеистых бетонов, в сухих смесях и штукатурках, стяжках и стеновых панелей для зданий и т. д. Полученная продукция выходит лучшего качества и с более высокими характеристиками.

  • Стекловолокно — прекрасный утеплитель. Чем хорошо пользуются в строительстве для теплоизоляции различных ненагруженных конструкций, внутри и снаружи зданий. Для наружных работ применяется в системе вентилируемых фасадов как самостоятельный элемент утепления или в составе сэндвич-панелей. Может использоваться как в рулонах, так и в матах. Внутренние работы включают в себя утепление кровли, чердачного помещения, теплоизоляцию стен и потолков, внутренних перегородок обычных и каркасных зданий. Стекловолоконными изделиями утепляют также различные подходящие к зданиям коммуникации — трубопроводы, системы канализации и вентиляции, отопления. Для этих целей в основном используют иглопробивные материалы. Обладающими паро- и теплоотражающими качествами фольгированными матами изолируют холодильные камеры, сауны и подобные помещения.
  • Ремонт и отделка помещений также не обходится без изделий из стекловолокна. Их главное назначение — создание армирующего слоя на поверхности при штукатурных работах. Таким образом, реставрация проходит успешно. Множество мелких трещин или одну крупную можно закрыть с помощью шпаклевки стекловолокна.
  • Кроме этого ее используют как армирующий элемент перед заливкой наливного пола, укладкой гидроизоляции, для укрепления соединений листов гипсокартона. Для более тонкой отделки поверхностей под покраску, при работе с гипсокартоном, для предупреждения появления мелких изъянов и получения идеальной картины в целом используется более изящный вариант армирующего материала — нетканый стеклохолст. Финишная отделка с применением стеклохолста дает всегда отличные результаты, качественное однородное покрытие без дефектов и изъянов. К тому же это еще и гарантия того, что идеальное состояние поверхности в ближайшее время не будет нарушено.

  • Еще одним отделочным материалом из стекловолокна являются стеклообои — прекрасное декоративное покрытие, но требующее большого количества краски из-за высоких впитывающих свойств. В отличие от обычных обоев, они выносливы, выдерживают механические нагрузки и воздействия химических сред.
Применение стекловолокна в дорожном и промышленном строительстве
  • Широкое распространение применение стекловолокна получило в промышленном и дорожном строительстве. Здесь оно незаменимо как скрепляющий компонент. Дорожное полотно с уложенной стеклопластиковой арматурой, при условии соблюдения технологии строительства, не растрескивается и не продавливается при нагрузках. Наличие в слоях покрытия дорог стеклосетки гарантирует увеличение производительности и срока их эксплуатации, снижает толщину асфальтного покрытия, предупреждает образование и распространение трещин и выбоин, увеличивает проходимость и долговечность дорог, позволяет увеличить сроки между ремонтами.
  • В гидротехническом строительстве без укрепляющих стекловолоконных сеток не обходится возведение плотин, набережных, мостов, подпорных стенок, ливневых коллекторов. Значительная часть канализационных емкостей (отстойников, фильтров, септиков) выполнена все из того же стеклопластика.

  • Из него изготавливаются сидения, устанавливаемые на стадионах, в аэропортах, авто- и ж/д вокзалах; оборудование остановок, бассейнов. Везде, где предусматривается большое скопление людей.
Применение стекловолокна в авто- и судостроение
  • Стеклоткань и композитный стеклопластик, благодаря малому весу и исключительной прочности, способности хорошо поддаваться механической обработке и окрашиванию, поэтому востребованы в автопромышленности и автоспорте. Из этих материалов производят различные части кузова — двери, крыши, крышки багажников, капоты. А также бампера, спойлеры, обвесы, рейлинги и внутренние детали салона. Стекловолокно применяют для придания дополнительной жесткости шинам, и в глушителях как звукоизоляционный материал.
  • В тюнинговых ателье изделия из стекловолокна используются для создания отделочных элементов благодаря способности легко копировать форму заготовки для воспроизведения необходимой детали. Простота в обработке, небольшая толщина, гибкость и пластичность материала позволяют изготавливать из него изделия разной степени сложности и формы.

  • Те же замечательные качества стекловолокна обеспечивают его применение в промышленном масштабе и в судостроительной отрасли. Корпуса моторных и весельных лодок, гоночных и крейсерных яхт, рыболовецких судов малой тоннажности, скутеров и катеров сегодня частично или полностью выполнены из этого материала. Стеклопластиковыми могут быть и другие части суден.

Лодка из стекловолокна видео

Другие способы применения стекловолокна

В зависимости от толщины стекловолокна из него производят различные товары народного потребления и другие изделия:

  • сантехнические детали — биотуалеты, септики, душевые кабинки, чаши бассейнов;
  • товары для спорта и отдыха — весла для гребли, лыжные палки, удочки и т. д.;
  • ящики и контейнеры для бытовых отходов твердого типа;
  • медицинские изделия, используемые в стоматологии — пломбы и несъемные протезы, ленты для шинирования зубов ;
  • медицинские изделия, используемым в ортопедии — протезы, костыли, трости;
  • разнообразные виды трубок бытового назначения — антенны, держатели, флагштоки;
  • электротехнические изделия — индикаторы, предохранители, заземлители.

Это далеко не полный список перечислений всех мест, где может быть использованы изделия из стекловолокна. С каждым днем область их применения все больше расширяется, охватывая все новые и новые сферы нашей деятельности.

Широкое распространение и применение стекловолокна и изделий на его основе стало возможным благодаря достижениям современного производства, высоким технологиям в области химпромышленности, в частности полимеров и композитных материалов, и высоким требованиям к качеству конечного продукта. Стекловолокно — уникальный продукт, который как нельзя лучше отвечает реалиям времени и требуемым характеристикам и свойствам, присущим современным материалам. Поэтому такое его разностороннее применение совсем неудивительно.

Прочность стекловолокнитов — Справочник химика 21

    Прочность стеклянного волокна па разрыв более чем в 10 раз превосходит прочность большинства других синтетических волокон. Установлено, что прочность стеклянного волокна резко повышается с уменьшением его диаметра при уменьшении диаметра от 20 .I до 2 л прочность стекловолокна увеличивается почти в 10 раз. Волокно заданного диаметра можно получать путем изменения вязкости стекломассы и главным образом изменением скорости вытягивания волокна из расплавленного стекла и диаметра фильеров. Как будет показано в дальнейшем, наиболее прочные анизотропные структуры получаются из стекловолокна аметром около 15 ц. (см. стр. 35). [c.8]
    Технологический процесс производства стеклотекстолитов аналогичен описанному выше процессу производства текстолита. Прессование стеклотекстолита нельзя производить при высоких давлениях, так как при этом разрушается стеклянная ткань. Следует помнить, что влага, выделяющаяся при отверждении феноло-формальдегидных резолов в процессе прессования, значительно снижает прочность стекловолокна. [c.36]

    По мнению Аслановой [3383], ослабление прочности стекловолокна после отжига вызвано его кристаллизацией. [c.464]

    Натуральный или искусственный свет и повышение температуры до 80—90° практически не вызывают уменьшения прочности стекловолокна. [c.209]

    Прочность смолы также оказывает определенное влияние на механические свойства стеклопластиков. Прочность стекловолокна будет полностью реализована в том случае, когда относительное удлинение при растяжении смолы меньше относительного удлинения при растяжении применяемого стекловолокна. Прочность смолы может повысить прочность стеклопластика, если относительное удлинение ее при растяжении превосходит относительное удлинение стекловолокна. Полное использование прочности смолы и стекловолокна возможно тогда, когда они имеют одинаковое относительное удлинение (оптимальный случай). Смолы с низким относительным удлинением при растяжении, т. е. хрупкие, использовать не следует. [c.152]

    Более сильно е влияние процесса выветривания и адсорбционных явлений на прочность стекловолокна по сравнению с блочным стеклом объясняется его чрезвычайно развитой поверхностью. [c.11]

    Наряду с обратимым понижением прочности стеклопластиков при пребывании их во влажных условиях и в воде могут частично протекать н необратимые процессы, связанные с химическими и структурными изменениями связующих, их гидролизом и последующими превращениями продуктов гидролиза, а также с необратимой потерей прочности стекловолокна за счет вымывания компонентов стекла и развития поверхностных дефектов на его поверхности. [c.173]

    Высокопрочные высокомодульные волокна характеризуются худшей адгезией к связующим по сравнению с углеродным волокном средней прочности, стекловолокном и даже борным волокном адгезия снижается с увеличением модуля Юнга [74]. Поэтому для высокомодульных волокон особенно необходима предварительная обработка с целью улучшения адгезии к связующему. Предварительно обработанные волокна больше поглощают связующего по сравнению с необработанными. [c.298]

    Применение новых углеродных (графитных) волокон расширяет возможности производства рукавов. Однако из-за высокой стоимости это волокно не получило широкого распространения и его применяют только в рукавах для авиации и ракетостроения. Такое положение сохранится в течение ближайших лет. Необходимо отметить, что разрывная прочность графитного волокна близка к прочности стекловолокна, а плотность этих материалов одинаково мала и составляет примерно 25% от плотности стали. Однако основное преимущество графитных волокон заключается в том, что удельный модуль материала, армированного этим волокном, примерно в 5 раз превышает удельный модуль высокопрочной стали или в 6 раз превышает удельный модуль стекловолокна. [c.99]


    В табл. 93 сопоставлена прочность волокон различного диаметра, испытанных в условиях атмосферной влажности, с прочностью волокон, высушенных над хлористым кальцием в течение нескольких дней, и с вычисленной прочностью стекловолокна в ориентированных стеклопластиках, полученных на основе этих волокон и бутваро-фенольной смолы. [c.351]

    Текстильные методы переработки, будучи вполне приемлемыми для гибких и эластичных органических волокон, повреждают хрупкие, не способные к значительным удлинениям и не стойкие к истиранию стеклянные волокна. В то же время отсутствие текстильных и ткацких процессов и прямолинейное расположение волокон в ориентированных стеклопластиках позволяют сохранить в этих материалах высокую исходную прочность стекловолокна. [c.4]

    Химическая стойкость стекловолокон к действию различных химических веществ зависит от состава стекла и характеризуется потерей прочности. Так, минеральные кислоты (азотная, соляная, серная) снижают прочность стекловолокна на 15%, а растворы едкого натра — на 30%- Органические растворители практически не оказывают влияния на прочность стекловолокна. [c.470]

    Полипропилен с высоким содержанием наполнителя (асбест, тальк, окись цинка, каолин и др.) обладает улучшенной стойкостью к высоким температурам. Полипропилен можно вспенивать. Вспененный полипропилен является хорошим звукоизоляционным материалом, напрнмер для оболочек телефонных и телевизионных кабелей [131]. Для повышения прочности полипропилен армируют стекловолокном [132, 133]. Разработан способ получения пленок для изготовления мешков [134]. [c.305]

    В качестве наполнителя широко применяется стекловолокно. Прочность стеклянных волокон зависит от химического состава стекла, диаметра волокна и технологии его изготовления. В основном применяют бесщелочное алюмоборсиликатное стекло, так как с увеличением содержания щелочей прочность стекловолокна снижается. Борсиликатное стекло наиболее устойчиво против атмосферных воздействий, является хорошим диэлектриком, обладает высокой огнестойкостью и термостойкостью. [c.176]

    Перспективно применение в кач-ве наполнителя базальтового волокна (рубленое, жгуты, нити, ткани, бумага), формуемого из расплава (1100-1200°С) природных базальтов через фильеры диаметром 3-12 мкм. Прочность их сопоставима с прочностью стекловолокна (2,6-3,4 ГПа), модуль упругости неск. выше (100-110 ГПа). Теплостойкость выше, чем у асбестовых волокон (прочность начинает снижаться при 400Х, при 600°С сохраняется 60% прочности). Волокна хрупкие и жесткие, как стекловолокна, но они стойки в кислотных и щелочных средах, а в отличие от асбеста не набухают в воде и остаются диэлектриками при увлажнении. [c.206]

    Марцокки [3382] привел некоторые данные о строении и свойствах стеклянного волокна. Внутренняя структура стекловолокна состоит из непрерывной решетки, размеры которой определяются длиной и диаметром волокон. Гибкость волокон достигается за счет вытягивания их до чрезвычайно малого диаметра. Удлинение стеклянного волокна составляет — 3—4%. Стеклянное волокно не имеет предела текучести и обладает большой упругостью усталости стекла при изгибе не наблюдается. Прочность стекловолокна на растяжение составляет — 280 /сг/ иж . Волокна не ориентированы. Отжиг стекловолокна при повышенных температурах цриводит к постепенному снижению прочности на растяжение наряду с возрастанием плотности, что объясняется уплотнением рыхлой структуры стекловолокна. [c.464]

    Прочность стекловолокна может быть увеличена введением небольших количеств окиси берилия. При этом модуль упругости стекловолокна =1,2X10 (для стали =2,1 X10 , для обычного стекловолокна = 0,5—0,7X10°). [c.270]

    На прочность стекловолокна также оказывает влияние химический состав стекла. В табл. 2 приведены составы типовых стекол, применяемых в Советском Союзе для выработки стек.човолокна. [c.8]

    Прочность стекловолокна щелочного состава примерно на 20% ниже прочности волокна бесщелочного состава наряду с этим щелочное стекло обладает большей гигроскопичностью, меньщей химической устойтовостью [c.8]

    Прочность стекловолокна в значительной степени зависит от его диаметра. Чем тоньше волокно, тем выш е его относительная прочность. Стеклянное волокно, применяемое в качестве наполнителя непосредственно после его изготовления (при производстве СВАМ), и.меет диаметр 13—20 мк, а волокно, предварительно перерабатываемое в нити, жгуты и стеклянные ткани разных переплетений,— от 7 до 13 мк. Эти волокна при выходе из печи в целях облегчения съема прядей с бобины и предохранения их от истирания в процессе дальнейшей переработки та масливают специальным составом для склеивания их г одну прядь. Замасливатель не должен содержать огнеопасных 1 токсичных веществ, а также веществ, ухудшающих свойства стеклопластиков. Обычно для этого служат парафин, желатин и некоторые другие вещества. [c.221]

    Достоинства стеклопластиков — высокая прочность при относительно небольшой плотности и ударостойкость. Химическая стойкость стеклопластиков определяется стойкостью смолы, а механическая прочность — прочностью стекловолокна, которая зависит от условий работы. [c.196]

    Теоретические расчеты и экспериментальные исследования показали, что в стек-лотекстолитах далеко не полностью реализованы потенциальные прочностные возможности стеклянных волокон. Дело в том, что в процессе прядения, ткачества и отмывки замасливающих составов прочность стекловолокна снижается более чем в 20 раз. Это обусловлено такими специфическими особенностями стекловолокна, как хрупкость, нестойкость к истиранию, малые удлинения, гидрофильность. Поиски [c.86]


    Р азработано несколько методов нанесения на стекловолокно различных металлических покрытий. Такие покрытия повышают стойкость волокон к истиранию и изгибу. Кроме того, металлические покрытия увеличивают прочность стекловолокна при растяжении и дают возможность создать новые тугоплавкие и теплоотражающие материалы. Один из таких методов запатентован фирмой Нэшэнл Ресерч Корпорейшн (США) для получения пряжи и затем ткани с высокой отражательной способностью. Эти ткани по износоустойчивости и воздухопроницаемости не отличались от непокрытых материалов. Покрытия наносятся пропусканием натянутых стеклянных нитей через вакуумную камеру, в которой происходит испарение металла, например алюминия, при 1300 «С. Для равномерного осаждения металла каждая нить поворачивается. [c.204]

    Для сравнения следует отметить, что применение для тех же композиций аппретуры HTS дало прочность стекловолокна в пределах от 286 до 295 кПмм . Эти результаты говорят о том, что для композиций, армированных параллельно уложенЙ81 1и волокнами и нагруженных на растяжение в направлении армирования, связь между стекловолокном и полимерной матрицей может оказаться звеном, определяющим прочность композиции в целом. Этот вопрос будет освещен более подробно в следующем разделе. [c.116]

    Прочность стекловолокна была найдена как отношение раарушакяцей нагрузки к площади, занимаемой в NOL-кольце стекловолокном. Размеры NOL-кольца внутренний диаметр 103,2 лип, толщина 0,35 мм, ширина 12,7 мм растяжение колец производилось при помощи составных дискоа [c.135]

    В работе [21 ] приведены результаты расчета эффективности использования прочности стекловолокна армированных материалов и сопоставление расчетной прочности + ОвлФл и опытных значений для разных видов наполнителя (табл. 7). [c.176]

    Для того чтобы определить, насколько волокна могут сохранить свою первоначальную прочность, были изучены обычные волокна. обработанные специальным аппретом фирмы Owens- orningr . По предварительным данным, первоначальная прочность стекловолокна составляет 42 000 кГ/ см . Однако практически получена прочность лишь 17 500 KFj M [21]. [c.63]

    Оболочки ракетных двигателей, изготовленные из стеклоров-ницы марки Е. с прочностью стекловолокна на разрыв от 14 000 до 17 600 кПсм имеют теоретическую окружную прочность материала, по крайней мере, от 12 000 до 14 800 кГ/см . Если сделать скидку на содержание смолы и на дефекты при намотке или при обращении с основными материалами, то такие конструкции могут дать окружную прочность на разрыв всего от 5600 до 9100 кГ/см . [c.227]

    В последнее время значительное распространение получили порщпсвые кольца из пластмасс на основе фторопласта. Поршневые кольца из фторопласта по многим качествам превосходят чугунные п графитовые. Для повышения механической прочности фторопласт применяется с наполнителями и армирующими материалами. В качестве наполнителей используют стекловолокно, ас- [c.201]

    Б табл. 94 приведены характеристики стеклошпонов, изготовленых нами на лабораторной установке [183] из стеклянных волокон бесщелочного состава диаметром около 10—12 мк и различных полимерных связующих. Количество испытанных образцов в каждой партии стеклошпонов не менее 8—10 вариационный коэффициент не превышал 5—7 %. В таблице приведены также расчетные данные, иллюстрирующие использование прочности стекловолокна в стеклошнонах. [c.355]

    Пин1ь при хорошей адгезии между стекловолокном и смолой можно использовать повышенный модуль стекловолокна. Более высокая прочность стекловолокна проявляется в стеклопластике только в том случае, когда удли[гение при разрыве стекловолокгга имеет значительно меньшую величину, чем соответствующий показатель смолы. Механические свойства стеклопластика зависят от свойств стекловолокнистого наполнителя и смолы, соотношения между ними и расположения армирующего материала. Если волокна распределены в материале произвольно, как, например, в стекломатах, то свойства стеклопластика будут [c.163]

    Прочность стеклопластиков определяется в первую- очередь прочностью стекловолокнистого материала, применяемого для армирования. Механическая прочность стеклоткани в результате механического разрушения части волокон при текстильной переработке, отмывке замасливателя, сушке и других операциях в 10—20 раз меньше прочности стекловолокна. Кроме того, вследствие неравпомерного натяжения крученых и переплетенных нитей в стеклотекстолите волокно работает неодновременно, что также снижает его физико-механические показатели. [c.495]

    Применение однокомпонентных низковязких связующих позволяет не только улучшить санитарно-гигиенические условия труда, но и получить на основе этих смол высокопрочные АП. Методом протяжки, или пултрузии, изготавливают изделия небольшой массы из одноосно-ориентированных АП с заданными показателями электрической и механической прочности. При производстве АП этим методом кроме собственно протяжки осуществляют следующие операции разравнивание, уплотнение стекловолокна и его пропитку. Пултрузией могут быть получены изделия с наибольшим содержанием волокна, а следовательно, с максимальной жесткостью и прочностью в этих изделиях можно достичь наивысшей эффективности использования прочности стекловолокна благодаря его точной ориентации в процессе формования. Армированные пластики, полученные этим методом, дешевле, чем стали с покрытием и бронза, но требуют в процессе изготовления использования хромированной оснастки из высокопрочной стали. Протяжка стекловолокна через дополнительную фильеру, придающую ему форму тонкой полоски, способствует улучшению условий теплообмена при формовании и повышению качества изделия. [c.314]

    Политетрафторэтилен — пластичный материал, известный также под названиями фторопласт-4 и тефлон, применяют для поршневых колец и уплотняющих элементов сальников не в чистом виде, а с различными наполнителями, повышающими его прочность, износоустойчивость и теплопроводность. В качестве наполнителей используют стекловолокно (15—25%), бронзу (до 60%), двухсернистый молибден (5%), графит или порошковый кокс. Отечественные заводы чаще всего применяют для колец фторопластовые материалы двух марок для влажных газов 4К-20 (фторопласт-4 с добавкой порошкового кокса) и для сухих газов АФГМ (фторопласт-4 с добавкой графита и двухсернистого молибдена). Фторопластовые кольца изготовляют с одним разрезом, а при диаметрах более 620 мм применяют сегментные кольца, состоящие из трех частей. Вследствие малой упругости фторопласта уплотняющие кольца устанавливают вместе с экспандером из нержавеющей стали или из бронзы. Для направления поршня в цилиндре служат направляющие кольца, выполненные из тех же композиций, что и уплотняющие. ЬЕаправляющие кольца могут быть цельными и с разрезом. Цельные кольца напрессовывают на поршень в холодном состоянии. [c.243]


Cтекловолокно: виды, применение, характеристики, свойства, тепло проводимость, фото, видео

Стекловолокно – это распространенный материал на основе кварцевого песка. Он используется для изготовления стройматериалов, а также различных высокотехнологичных и прочных легких конструкций.

Из чего делают стекловолокно

Впервые стекольное волокно получились случайно. На производстве стекла произошла авария, при которой расплавленная масса была раздута подаваемым под давлением воздухом. В результате получились нити, отличающиеся некой долей гибкости. Это стало неожиданностью, поскольку толстое стекло после застывания является очень твердым. С тех пор прошло уже более 150 лет. Технология немного изменилась, но принцип остался прежним.

Для производства стекловолокна применяется кварцевый песок или битое стекло. Применяемая технология не подразумевает использования сложного оборудования, она является довольно простой. При этом получаемый материал обладает рядом свойств, зависящих от способа подготовки волокна.

Процесс изготовления стекловолокна заключается в выдувании из него тонких ниток. Для этого осуществляется разогрев битого стекла или кварцевого песка до температуры 1400°С. Расплавленная тягучая масса подается на формирующее оборудование. Если ее пропустить через центрифугу, то получится стекловата с переплетенными, замешанными между собой волокнами. Если же применять специальное сито с микроотверстиями, через которые масса выдувается под давлением пара, то получаются ровные длинные волокна. В дальнейшем они могут использоваться как сырье для изготовления сложных изделий.

 

Технические особенности
Стекловолокно имеет целый ряд положительных качеств, делающих его отличным сырьем для изготовления строительных материалов. К его неоспоримым достоинствам можно отнести:
  • Теплопроводность.
  • Устойчивый химический состав.
  • Высокую плотность.
  • Повышенную температуру плавления.
  • Устойчивость к горению.

Одним из самых важных достоинств стекловолокна является низкая теплопроводность. Это позволяет делать из данного сырья теплоизоляционные материалы. Из всей группы изделий, которые можно получить из данного сырья, самым лучшим теплоизолятором является стекловата.

Стекловолокно имеет высокую химическую устойчивость, поскольку практически полностью состоит из кварцевого песка. При воздействии на него щелочами отсутствует любая химическая реакция, что делает волокно практически универсальным для сочетания с любыми стройматериалами.

Нити имеют высокую плотность, которая составляет 2500 кг/м³. Однако благодаря тому, что они являются распушенными, готовые из них изделия имеют большой объем, при этом малый вес. Чтобы расплавить даже тонкие волокна, их необходимо разогреть до температуры как минимум 1200°С. Такое возможно только при целенаправленном воздействии горелки. Это негорючий материал, что позволяет его использовать для создания различных пожаробезопасных конструкций. Теоретически возможно воссоздание определенных условий, при которых отдельные сорта стекловолокна могут гореть. При этом они должны содержать связующие полимерные компоненты, что встречается редко.

Свойства и характеристики

Использование стекловолокна в промышленности и строительстве обусловлено его отличными техническими характеристиками и свойствами. Именно они и привели к высокой популярности этого материала.

Ниже мы рассмотрим основной перечень технических характеристик и потребительских качеств изделий из стеклянных волокон:

Теплопроводность

Стекло само по себе имеет очень низкую теплопроводность, поэтому изделия из него обладают отличными теплоизоляционными свойства.

Самым низким коэффициентом среди всех изделий из стекловолокна обладает стекловата. Для этой продукции он составляет 0,05 Вт/м*К, что и определяет сферы ее использования.

Стекловата применяется для термоизоляции различных строительных конструкций, трубопроводов, промышленных объектов и т. д.

Химический состав

Эта характеристика зависит от состава исходного сырья. В любом неорганическом стекле основным компонентом является кварцевый песок, поэтому содержание SiO2 в стеклянных нитях варьируется от 50% до 99% в зависимости от их назначения.

Кроме этого компонента в стеклянном волокне присутствуют Al2O3, CaO и некоторые другие соединения.

От химического состава зависят физические характеристики стекловолокна и свойства изделий из него. В частности — щелочестойкость, которая определяется содержанием диоксида циркония (ZrO2) в стекле. Чем больше этого компонента, тем более щелочестойким является стекловолокно.

Плотность

Этот параметр непосредственно у стеклянных нитей подобен плотности стекла, из которого они изготовлены и равен 2500 кг/м³.

Плотность изделий из стеклянных волокон может колебаться в широких пределах. У стекловаты она минимальна, а такие продукты из этого материала, как листы, ткань и т. д. имеют максимальную плотность.

Для комбинированных материалов, таких как стеклопластик, плотность рассчитывается на основании плотности исходных материалов.

Температура плавления

Плавится любое стекловолокно при температуре от 1200 до 1400 °C.

Температура плавления зависит от состава стекла, из которого изготовлены волокна.

Чем больше в составе кварцевого песка, тем выше температура плавления. Поэтому для качественной переработки стеклянных отходов в стекловолокно необходимо точно знать его химический состав.

Стойкость к возгоранию

Стекло — полностью негорючий материал, поэтому изделия из него не способны поддерживать горение.

Все это в полной мере относится и к стеклянным волокнам – стекловолоконная продукция является пожаробезопасным материалом. Правда, некоторые композитные материалы, изготовленные на основе стекловолокна, могут возгораться при определенных условиях.

Таким образом, горит стекловолокно или нет, зависит от марки и компонентов, входящих в их состав.

Химические и физические характеристики стекловолокна определили виды продукции, которые можно изготовить из этого материала.

Марки

Перечень марок стекловолокна с соответствующими им характеристиками вы можете увидеть в таблице:

Ниже мы рассмотрим основные типы изделий из стеклянных волокон, наиболее популярные на современном рынке.

Стекловолокно применение

Сегодня без изделий из стекловолокна не обходятся строительные, ремонтные и отделочные работы. Этот материал применяется также и при проведении дорожных работ. Широкое использование он получил в авто- и судостроении, в сфере производства товаров бытового, спортивного и медицинского назначения. А из-за превосходных диэлектрических свойств давно применяется в энергетической отрасли в качестве изоляционных материалов.

Применение стекловолокна в строительстве

Очень много продуктов из стекловолокна используется в строительстве. Одним из них является стеклопластиковая арматура, которая разрабатывалась как замена для стальной. Дело в том, что долгое время сталь являлась практически единственным материалом, у которого имелись необходимые для армирующего элемента свойства — исключительная прочность и долговечность. Альтернативы не было, а значит, приходилось мириться и с недостатками стали. Когда развитие технологий сделало возможным получение материалов с ранее недоступными свойствами, изменились и стандарты производства стройматериалов, в том числе и армирующих. На смену стальной пришла композитная стеклопластиковая арматура.

  • Она обладает прочностью и надежностью стали, но в то же время в несколько раз легче ее, не подвержена коррозии, устойчива к неблагоприятным воздействиям влаги, имеет низкую теплопроводность, не проводит электричество и полностью химически инертна. Все эти замечательные качества обеспечивают композиту самое широкое использование в самых различных случаях — для армирования фундаментов, бетонных конструкций и дорожного или авиационного полотна, крепления теплоизоляции, в виде армирующих сеток для несущего или облицовочного слоя при строительстве или ремонте зданий, для возведения осветительных опор, ограждений, канализационных и мелиоративных конструкций.
  • Еще одним изделием из стекловолокна является стеклофибра, которую добавляют в бетонный раствор в качестве скрепляющего элемента. Как известно, обычная бетонная смесь в процессе застывания подвержена усадке, в результате которой образуются микротрещины. Что является нежелательным, так как негативно влияет на качество бетона и его долговечность. Добавление в раствор фибры меняет дело. Когда свежий бетон начинает застывать, внутри раствора химические и физические процессы могут приводить к образованию дефектов. Волокна стекловолокна способны остановить прорастание микротрещин на ранних стадиях его твердения. В некоторых случаях такой состав позволяет обойтись без дополнительного армирования. Стеклофибру применяют для создания газобетонов, пенобетонов и ячеистых бетонов, в сухих смесях и штукатурках, стяжках и стеновых панелей для зданий и т. д. Полученная продукция выходит лучшего качества и с более высокими характеристиками.
  • Стекловолокно — прекрасный утеплитель. Чем хорошо пользуются в строительстве для теплоизоляции различных ненагруженных конструкций, внутри и снаружи зданий. Для наружных работ применяется в системе вентилируемых фасадов как самостоятельный элемент утепления или в составе сэндвич-панелей. Может использоваться как в рулонах, так и в матах. Внутренние работы включают в себя утепление кровли, чердачного помещения, теплоизоляцию стен и потолков, внутренних перегородок обычных и каркасных зданий. Стекловолоконными изделиями утепляют также различные подходящие к зданиям коммуникации — трубопроводы, системы канализации и вентиляции, отопления. Для этих целей в основном используют иглопробивные материалы. Обладающими паро- и теплоотражающими качествами фольгированными матами изолируют холодильные камеры, сауны и подобные помещения.
  • Ремонт и отделка помещений также не обходится без изделий из стекловолокна. Их главное назначение — создание армирующего слоя на поверхности при штукатурных работах. Таким образом, реставрация проходит успешно. Множество мелких трещин или одну крупную можно закрыть с помощью шпаклевки стекловолокна.
  • Кроме этого ее используют как армирующий элемент перед заливкой наливного пола, укладкой гидроизоляции, для укрепления соединений листов гипсокартона. Для более тонкой отделки поверхностей под покраску, при работе с гипсокартоном, для предупреждения появления мелких изъянов и получения идеальной картины в целом используется более изящный вариант армирующего материала — нетканый стеклохолст. Финишная отделка с применением стеклохолста дает всегда отличные результаты, качественное однородное покрытие без дефектов и изъянов. К тому же это еще и гарантия того, что идеальное состояние поверхности в ближайшее время не будет нарушено.
  • Еще одним отделочным материалом из стекловолокна являются стеклообои — прекрасное декоративное покрытие, но требующее большого количества краски из-за высоких впитывающих свойств. В отличие от обычных обоев, они выносливы, выдерживают механические нагрузки и воздействия химических сред.

Применение стекловолокна в дорожном и промышленном строительстве

  • Широкое распространение применение стекловолокна получило в промышленном и дорожном строительстве. Здесь оно незаменимо как скрепляющий компонент. Дорожное полотно с уложенной стеклопластиковой арматурой, при условии соблюдения технологии строительства, не растрескивается и не продавливается при нагрузках. Наличие в слоях покрытия дорог стеклосетки гарантирует увеличение производительности и срока их эксплуатации, снижает толщину асфальтного покрытия, предупреждает образование и распространение трещин и выбоин, увеличивает проходимость и долговечность дорог, позволяет увеличить сроки между ремонтами.
  • В гидротехническом строительстве без укрепляющих стекловолоконных сеток не обходится возведение плотин, набережных, мостов, подпорных стенок, ливневых коллекторов. Значительная часть канализационных емкостей (отстойников, фильтров, септиков) выполнена все из того же стеклопластика.

  • Из него изготавливаются сидения, устанавливаемые на стадионах, в аэропортах, авто- и ж/д вокзалах; оборудование остановок, бассейнов. Везде, где предусматривается большое скопление людей.

Применение стекловолокна в авто- и судостроение
  • Стеклоткань и композитный стеклопластик, благодаря малому весу и исключительной прочности, способности хорошо поддаваться механической обработке и окрашиванию, поэтому востребованы в автопромышленности и автоспорте. Из этих материалов производят различные части кузова — двери, крыши, крышки багажников, капоты. А также бампера, спойлеры, обвесы, рейлинги и внутренние детали салона. Стекловолокно применяют для придания дополнительной жесткости шинам, и в глушителях как звукоизоляционный материал.
  • В тюнинговых ателье изделия из стекловолокна используются для создания отделочных элементов благодаря способности легко копировать форму заготовки для воспроизведения необходимой детали. Простота в обработке, небольшая толщина, гибкость и пластичность материала позволяют изготавливать из него изделия разной степени сложности и формы.
  • Те же замечательные качества стекловолокна обеспечивают его применение в промышленном масштабе и в судостроительной отрасли. Корпуса моторных и весельных лодок, гоночных и крейсерных яхт, рыболовецких судов малой тоннажности, скутеров и катеров сегодня частично или полностью выполнены из этого материала. Стеклопластиковыми могут быть и другие части суден.
Другие способы применения стекловолокна

В зависимости от толщины стекловолокна из него производят различные товары народного потребления и другие изделия:

  • сантехнические детали — биотуалеты, септики, душевые кабинки, чаши бассейнов;
  • товары для спорта и отдыха — весла для гребли, лыжные палки, удочки и т. д.;
  • ящики и контейнеры для бытовых отходов твердого типа;
  • медицинские изделия, используемые в стоматологии — пломбы и несъемные протезы, ленты для шинирования зубов ;
  • медицинские изделия, используемым в ортопедии — протезы, костыли, трости;
  • разнообразные виды трубок бытового назначения — антенны, держатели, флагштоки;
  • электротехнические изделия — индикаторы, предохранители, заземлители.

Это далеко не полный список перечислений всех мест, где может быть использованы изделия из стекловолокна. С каждым днем область их применения все больше расширяется, охватывая все новые и новые сферы нашей деятельности.

Широкое распространение и применение стекловолокна и изделий на его основе стало возможным благодаря достижениям современного производства, высоким технологиям в области химпромышленности, в частности полимеров и композитных материалов, и высоким требованиям к качеству конечного продукта. Стекловолокно — уникальный продукт, который как нельзя лучше отвечает реалиям времени и требуемым характеристикам и свойствам, присущим современным материалам. Поэтому такое его разностороннее применение совсем неудивительно.

Виды стеклопластиков на основе их свойств

 

Как уже говорилось выше, существует много видов стеклопластика в зависимости от состава. Основные типы стекловолокна будут перечислены ниже:

1. A-Стекловолокно (A-glass)

A-glass также известен как щелочное стекло или содово-известковое стекло. Это наиболее часто доступный тип стекловолокна. Около 90% стекла — это щелочное стекло. Это самый распространенный тип, который используется при производстве стеклянной тары, такой как банки и бутылки для пищевых продуктов и напитков, а также оконные стекла. Иногда, формы для выпечки, которые вы используете, сделаны из закаленного натриево-известкового стекла.

Натриево-известковое стекло химически устойчиво, относительно недорого, чрезвычайно обрабатываемо и довольно твердо. Его можно многократно переплавлять и размягчать, поэтому стеклопластик типа А-стекло является идеальным типом стекла для вторичной переработки .

Сырье, используемое для изготовления а-стекловолокна

Основные материалы, которые используются для изготовления а-стекла, включают в себя:

  • Сода (карбонат натрия)
  • Лайм
  • Кремнезем (диоксид кремния)
  • Доломит
  • Глинозем (оксид алюминия)
  • Мелющие агенты, такие как хлорид натрия и сульфат натрия
2. C-Стекловолокно

C-стекло или химическое стекло показывает самую высокую устойчивость к химическому воздействию. Он обеспечивает структурное равновесие в агрессивных средах. Это свойство обусловлено наличием большого количества боросиликата кальция. Значение рН химических веществ, которые используются при изготовлении стеклопластика типа А-стекло, обеспечивает достаточно высокую стойкость стеклопластика этого типа независимо от окружающей среды (кислой или щелочной).

С-стекло используется в наружном слое ламината в виде поверхностной ткани для труб и резервуаров, которые удерживают воду и химикаты.

3. D-Стекловолокно

D-стекло-это тип стекловолокна, который известен своей низкой диэлектрической проницаемостью, что связано с присутствием в его составе триоксида Бора. Благодаря этой характеристике D-glass является идеальным типом стекловолокна для использования в оптических кабелях. D-стекло также содержит боросиликат, который придает этому типу стекловолокна чрезвычайно низкий коэффициент теплового расширения. Благодаря этим свойствам D-стекло часто используется в электроприборах и кухонной посуде.

4. E-Стекловолокно

Электронное стекло более широко известно как электрическое стекло. Это легкий композитный материал, который используется в аэрокосмической,  морской и других видах промышленности. Стеклоткань E-glass — это отраслевой стандарт, обеспечивающий баланс между производительностью и стоимостью, что делает его наиболее часто используемым.

Сырье, используемое для производства электронного стекловолокна

Е-стекло-это щелочное стекло. Сырьем, которое используется при производстве стеклопластика E-glass, являются:

  • Кремнезем (двуокись кремния)
  • Глинозем (оксид алюминия)
  • Оксид кальция
  • Оксид магния
  • Триоксид Бора
  • Оксид натрия
  • Оксид калия

Свойства волокна е-стекла

Ключевыми свойствами, которые делают E-glass популярным типом стекловолокна, являются:

  • Низкая стоимость
  • Высокая прочность
  • Низкая плотность
  • Высокая жесткость
  • Устойчивость к нагреву
  • Невоспламеняемость
  • Хорошая устойчивость к химическим веществам
  • Относительно нечувствительный к влаге
  • Хорошая электрическая изоляция
  • Способность поддерживать прочность в различных условиях

Применения волокна е-стекла

E-стекло изначально использовалось электрической отрасли, но сейчас оно используется в во многих отраслях. Это привело к производству стеклопластика в сочетании с термореактивными смолами. Листы и панели из стеклопластика достаточно широко используются практически во всех промышленных зонах. Он защищает структурную целостность от любого механического воздействия.

5. Стекловолокно Advantex

Стекло Advantex -это новый промышленный стандарт, который сочетает в себе механические и электрические свойства электронного стекла с кислотной коррозионной стойкостью стекловолокна типа ECR. Этот тип стеклопластика соответствует стандартам кислотной коррозионной стойкости стекла ECR по стоимости, которая аналогична E-glass. Стеклоткань Advantex имеет более высокую температуру плавления, что дает возможность ее использования при больших тепловых колебаниях.

Стекловолокно Advantex содержит оксид кальция в больших количествах, как и стекловолокно ECR. Он используется в тех случаях, когда конструкции более подвержены коррозии. Кроме того, этот тип стекловолокна широко используется в нефтяной, газовой и горнодобывающей промышленности, на электростанциях и в судостроении (канализационные системы и системы канализации).

6. стекловолокно ECR

Стекловолокно ECR также называют электронным стекловолокном. Он обладает высокой механической прочностью, хорошей гидроизоляцией, а также устойчивостью к щелочной и кислотной коррозии. Самое большое преимущество ECR glass перед другими видами стекловолокна заключается в том, что его способ изготовления является экологически чистым.

Стекло ECR имеет более высокую термостойкость, лучшие механические свойства, более низкую электрическую утечку, лучшую гидроизоляцию и более высокое поверхностное сопротивление по сравнению с электронным стеклом. ECR-волокно используется при изготовлении прозрачных стеклопластиковых панелей. Он изготовлен из алюмосиликатов кальция, которые обеспечивают его прочность, стойкость к кислотной коррозии и электропроводность, что делает его пригодным для применения там, где эти свойства необходимы.

Срок службы ECR-стекла более длительный. Это более прочный тип стекловолокна из-за его превосходной стойкости к воде, кислоте и щелочам.

7. AR-Стекловолокно

AR-стекло или щелочестойкое стекло было разработано специально для использования в бетоне. Его состав был разработан специально с цирконием на оптимальном уровне. Добавление циркония-это то, что делает этот тип стекловолокна пригодным для использования в бетоне.

AR-стекло предотвращает растрескивание бетона, обеспечивая прочность и гибкость. AR-стекло трудно растворить в воде, и на него не влияют изменения рН. Кроме того, его можно легко добавлять в бетонные и стальные смеси.

AR-стекловолокно используется в различных материалах для армирования бетона и строительных растворов. Он обладает высоким модулем упругости и прочностью на растяжение. Более того, в отличие от Стали, оно не ржавеет.

8. R-стекло, S-стекло или T-Стекловолокно

R-Glass, S-Glass и T-glass являются торговыми названиями для одного и того же типа стекловолокна. Они имеют большую прочность на растяжение и модуль по сравнению со волокнами е-стекла. Смачивающие свойства и кислотная прочность этого типа стекловолокна также выше. Эти свойства получены путем уменьшения диаметра нити.

Этот тип стекловолокна разрабатывается для оборонной и аэрокосмической промышленности. Он также используется при создании жесткой баллистической брони. Объем производства этого вида стеклопластика ниже, а значит, и его себестоимость относительно выше. Объем производства невелик, поскольку этот тип стеклопластика является высокоэффективным и используется только в определенных отраслях промышленности.

9. S2-Стекловолокно

S2-стекловолокно-это самый высокоэффективный тип стекловолокна, который доступен. S2-стекло имеет более высокий уровень кремнезема в своем составе по сравнению с другими видами стекловолокна. В результате он обладает улучшенными свойствами, лучшими весовыми характеристиками, высокой термостойкостью, высокой прочностью на сжатие и улучшенной ударопрочностью. Прежде всего, S2-glass более экономичен.

Прочность на растяжение S2-стекла примерно на 85% больше, чем у обычного стекловолокна. Это обеспечивает стабильную высокую производительность и долговечность. Он обладает лучшей прочностью волокон и модулем сопротивления, что обеспечивает улучшенные ударные характеристики готовых деталей, а также более высокую устойчивость к повреждениям и долговечность композита. Он обеспечивает примерно на 25% большую линейную упругую Жесткость и демонстрирует отличную устойчивость к повреждениям.

S2-стекловолокно в основном используется в композитной и текстильной промышленности благодаря своим физическим свойствам, которые лучше, чем у обычных видов стекловолокна.

10. М-Стекловолокно

М-стекловолокно имеет в своем составе бериллий. Этот элемент придает стеклопластику дополнительную эластичность.

11. Z-Стекловолокно

Z-стекло применяется во многих отраслях промышленности, в том числе в арматурной промышленности бетона, в которой оно используется для создания изделий, которые выглядят прозрачными. Он также используется для создания волокон 3D-принтера. С высоким сопротивлением механических, ультрафиолетовых, кислоты, щелочи, соли, царапин, износостойкости и температуры, волокно Z-стекла один из самых прочных и самых надежных типов стеклоткани.

Процесс производства стекловолокна

Три основных метода изготовления стекловолокна — это открытое формование, закрытое формование и центробежное формование. При открытом формовании стекловолокна слой гелевого покрытия наносится и отверждается в цельной форме или конструкции. После наслоения в форму стекловолокну и распыленной смоле дают затвердеть. Открытое формование выделяет больше выбросов, чем два других процесса.

При закрытом формовании исходное гелевое покрытие наносится в форме, состоящей из двух частей. Волокна в виде рубленых волокон или ламинированных листов распыляются или помещаются в охватывающую часть формы поверх гелевого покрытия. Деталь затвердевает после герметизации в форме с помощью вакуума, и катализированная смола впрыскивается в форму под давлением.

При центробежном формовании гелькоут наносится на стороны вращающейся цилиндрической формы. Слой за слоем, катализированные смолы, насыщенные короткими волокнами, распыляются в форму до достижения желаемой толщины.

Центробежное формование используется для формования цилиндрических изделий, таких как трубы и резервуары. Во всех процессах конечные продукты затем извлекаются из формы и обрезаются. Гофрированное стекловолокно, пожалуй, является наиболее широко используемым сегодня продуктом из стекловолокна.

Оно прочное, может быть однотонным (часто зеленым) или прозрачным для пропускания света в здания. Он в основном используется в строительстве для изготовления сайдинга или кровли, а также часто используется для строительства теплиц и навесов.

 

Гофрированное стекловолокно обычно состоит из двух склеенных между собой слоев. Внешний слой представляет собой твердую, устойчивую к атмосферным воздействиям поверхность из смолы. Центробежное формование используется для формования цилиндрических изделий, таких как трубы и резервуары.

Во всех процессах конечные продукты затем извлекаются из формы и обрезаются. Гофрированное стекловолокно, пожалуй, является наиболее широко используемым сегодня продуктом из стекловолокна.

Преимущества стекловолокна

Стекловолокно часто превосходит многие другие материалы, особенно алюминий, который является основной альтернативой стекловолокну. Пултрузионные (Пултру́зия — технология изготовления высоконаполненных волокном композиционных деталей с постоянной поперечной структурой) профили из стекловолокна имеют ряд преимуществ по сравнению с аналогичными штампованными алюминиевыми профилями.

Пултрузионное стекловолокно обладает превосходной устойчивостью к широкому спектру химикатов. Профили из стекловолокна составляют около 70% веса алюминиевых профилей, но имеют такую ​​же плотность. Пултрузионное стекловолокно не является проводящим с высокой диэлектрической способностью, в то время как алюминий является проводником.

Стекловолокно — гораздо лучший изолятор, чем алюминий, поскольку он имеет гораздо более низкую теплопроводность. Пигмент, добавленный к смолам стекловолокна, может обеспечить цвет всей детали, в то время как алюминий требует предварительной отделки, анодного покрытия или окраски.

Стекловолокно прозрачно для радиоволн и передач EMI / RFI и часто используется для корпусов и опор радаров и антенн. Алюминий обладает высокой отражающей способностью, что делает его непригодным для таких приложений.

Формы из пултрузионного стекловолокна могут быть легко изготовлены в полевых условиях с помощью обычных столярных инструментов и не требуют горелок или сварки.

Наконец, стекломат в форме пултрузионного стекловолокна равномерно распределяет ударную нагрузку, в то время как алюминий легко деформируется.

Армированный стекловолокном пластик — отличный строительный материал для широкого спектра изделий.

Пластмассы, армированные алюминием и стекловолокном, обладают одинаковой плотностью и универсальностью, но с некоторыми ключевыми отличиями. Различные области применения могут сделать алюминий или стекловолокно более желательными.

  • Легче — по сравнению с его основной альтернативой, алюминием, стекловолокно, как правило, составляет около 70% веса при аналогичной плотности и прочности. Это соотношение также выгодно отличается от любого количества других пластиков, композитов и металлов.
  • Неотражающий — хотя не во всех областях применения, во многих случаях неотражающие свойства стекловолокна для света, радио и других волн делают его идеальным материалом.
  • Равномерное распределение силы — одно из уникальных свойств стекловолокна заключается в том, как оно распределяет силу. Хотя это может быть идеальным не для всех приложений, во многих случаях это очень ценно.
  • Простота изготовления — по сравнению с процессом изготовления алюминия и других сопоставимых материалов, стекловолокно чрезвычайно легко изготовить и настроить в соответствии с вашими потребностями. Это включает пигментацию, вторичные покрытия и многие другие соображения.
  • Превосходная изоляция — Уникальные термические свойства стекловолокна делают его отличным решением для изоляции в широком диапазоне применений. Он остается основным изоляционным материалом в строительстве, HVAC и подобных отраслях.

Физико-химические свойства неорганических волокон и материалов на их основе.

Механические свойства. Стекловолокно значительно превосходит по механической прочности исходное (массивное) стекло и незначительно отличается от него по некоторым физическим параметрам.

Механические свойства стеклянных волокон зависят от химического состава стекла, метода производства, окружающей среды и температуры. Метод производства оказывает большое влияние на прочность стеклянных волокон: высокой прочностью обладают волокна, вытянутые с большой скоростью из расплавленного стекла (вытягивание из фильер), наименьшей прочностью – волокна, полученные штабиковым способом и раздувом. При формовании волокна из фильер образуется меньше поверхностных дефектов и трещин, чем обусловливаются их лучшие механические свойства, главным образом прочность.

Прочность при растяжении стекловолокна зависит от его состава и диаметра

Наибольшей прочностью обладают непрерывные волокна из кварцевого и бесщелочного магнийалюмосиликатного стекла. Повышенное содержание щелочей в стекле резко снижает прочность стеклянных волокон. Кристаллизация стекла и присутствие в стекломассе мелких газовых включений понижает прочность стеклянного волокна на 25-30%.

Максимальная прочность стеклянных и кварцевых волокон, испытанных в среде жидкого азота, приближается к расчетной теоретической прочности стекла и плавленого кварца.

В зависимости от диаметра и состава стекла техническая прочность стеклянных волокон при их формировании современными промышленными методами составляет 25-30 % теоретической прочности стекла.

Модуль Юнга стеклянных волокон составляет 6-11 ГПа и выше. Разрушающее напряжение при изгибе и кручении повышается с уменьшением диаметра волокон.

Изделия из стекловолокна плохо работают при многократном изгибе и истирании, однако, стойкости к изгибу и истиранию повышаются после пропитки лаками и смолами. Склеивание волокон в нити повышает прочность нити на 20-25 %, а пропитка стекловолокнистых материалов лаками – на 80-100 %.В сухом воздухе прочность стеклянных волокон резко повышается. Смачивание стеклянных волокон и изделий из них неполярной углеводородной жидкостью аналогично действию сухого воздуха и дает наибольшее значение прочности. Значительное (до 50-60 %) понижение прочности стеклянных волокон и изделий из них происходит при адсорбции ими воды и водных растворов поверхностно-активных веществ. Это объясняется тем, что молекулы веществ, адсорбируемых на стеклянных волокнах, способствуют образованию трещин в слабых местах поверхностного слоя.

При погружении химостойких стекловолокнистых материалов в воду прочность их снижается, но после высушивания полностью восстанавливается. Изделия из стеклянного волокна натрийкальцийсиликатного состава, содержащие более 15 % (мас.) оксидов щелочных металлов, после пребывания во влажном воздухе или в воде снижают прочность необратимо в связи с интенсивным выщелачиванием и разрушением. При длительном действии деформирующего усилия у стеклянных волокон развивается упругое последствие, которое зависит от химического состава стекла и относительной влажности воздуха. Влага снижает также сопротивления стеклянных волокон изгибу и трению.

При нагревании стеклянной ткани до 250-300°С прочность ее сохраняется, в то время как волокна органического состава при этой температуре полностью разрушаются.

При низких и высоких температурах устраняется адсорбционное воздействие влаги воздуха на стеклянные волокна, что приводит к повышению их прочности. Однако после термической обработки (нагрев до различных температур и последующее охлаждение) прочность стеклянных волокон и тканей снижается на 50-70 %.

Состав стекла оказывает значительное влияние на прочность стеклянных волокон, подвергнутых термообработке. Волокна из натрийкальцийсиликатного и боратного стекол теряют свою прочность при термообработке, начиная уже с 100-200°С, волокна из кварцевого, кремнеземного и каолинового стекла теряют прочность на 50 % при нагреве до 1000°С и последующем охлаждении.

Прочность волокон из бесщелочного стекла значительно снижается при 300°С; прочность кварцевых волокон при этой температуре практически не изменяется.

После нагрева и охлаждения стеклянных волокон наблюдается небольшое повышение их плотности и показателя преломления.

Нагревостойкость. Стеклянное волокно обладает высокой нагревостойкостью которая зависит от химического состава стекла Температурная область применения стеклянных волокон натрийкальцийсиликатного состава ограничена температурами 450-500°С, при более высоких температурах начинается их спекание. Для бесщелочных волокон нагревостойкость выше на 200-300°С и составляет 600-700°С.

Гигроскопичность отдельных стеклянных волокон около 0,2 % (мас.). Поглощение влаги стеклянной тканью значительно выше, так как влага адсорбируется зазорами между волокнами и замасливателем. Гигроскопичность ткани зависит от характера переплетения нитей и химического состава стекла, например ткани из волокна натрийкальцийсиликатного состава обладают гигроскопичностью до 3-4 %.

Химистойкость теклянных волокон не зависит от их диаметра, но абсолютная растворимость тонких волокон выше растворимости толстых вследствие большего отношения их поверхности к массе. Поэтому при воздействии агрессивных реагентов волокна разрушаются быстрее, чем массивное стекло.

Прочность стеклянных волокон в различных агрессивных средах (горячая вода, водяной пар высокого давления, кислоты, щелочи) зависит от химического состава стекла. Наибольшей прочностью и высокой стойкостью к горячей воде и пару обладают волокна из бесщелочного алюмоборосиликатного и магнийалюмосиликатного стекла. По гидролитической классификации этот вид стекла относится к «стеклам, не изменяемым водой».

Материалы из стеклянного волокна, содержащего в своем составе щелочи, значительно теряют прочность при многократной обработке горячей водой или водяным паром даже нормального давления. В этом случае имеет место интенсивное выщелачивание, приводящее к полному распаду структуры стекла.

При длительном воздействии водяного пара различного давления резко снижается прочность материалов и из волокна бесщелочного алюмоборосиликатного стекла. Наиболее стойкими в этих условиях являются стеклянные ткани из бесщелочного безборного стекла.

Стеклянные ткани и волокна из бесщелочного стекла нестойки к воздействию кислот. При обработке кислотой волокон из бесщелочного стекла все компоненты его растворяются и остается лишь малопрочный кремнекислородный скелет.

Высокой стойкостью к воде, пару высокого давления и различным кислотам (кроме плавиковой) обладают волокнистые материалы кварцевого, а также кремнеземного и каолинового состава.

Вредна ли стекловата для здоровья

Стекловата вредна для здоровья: она раздражает глаза, кожу и органы дыхания. Потенциальные симптомы включают раздражение глаз, кожи, носа, горла, появление одышки, затрудненное дыхание, боль в горле, охриплость и кашель.

вред стекловаты для человека подтверждают научные и медицинские исследования.

Срок хранения стекловаты довольно большой, но со временем она теряет свои эластичные свойства, становится хрупкой и при механическом воздействии или монтаже очень сильно распространяется по воздуху в виде стеклянной пыли.

Все волокна из стекловолокна, обычно используемые для тепловой и акустической изоляции, были реклассифицированы Международным агентством по исследованию рака в октябре 2001 года как не классифицируемые в отношении канцерогенности для людей. Проще говоря, данное агентство не может сказать о последствиях воздействия на человека вредных факторов стекловаты.

Утеплитель из стекловолокна устойчив к плесени, не требует особых условий хранения. Если плесень находится внутри или на стекловолокне, то это вызвано только внешним воздействием, связующие вещества часто являются органическими и более гигроскопичными, чем стекловата. В тестах стеклянная вата оказалась очень устойчивой к росту плесени внутри волокна. Рост плесневых культур внутри самого материала возможен только при очень высокой относительной влажности (96% и выше).

ПОХОЖИЕ СТАТЬИ:

Cлоистые стеклопластики

Категория: Плотничкие работы


Cлоистые стеклопластики

Свойства стеклопластиков

Для получения стеклопластиков стеклянные волокна пропитывают смолой. Стеклянные волокна применяют в виде жгута (штапельные волокна, идущие в одном направлении, иногда предварительно напряженные), ткани (волокна в двух перпендикулярных направлениях, причем в каждом направлении их число различно) и, наконец, в виде холста (с произвольной ориентацией волокон).

Для пропитки используют полиэфирные, мочевиномеламиноформальдегидные и эпоксидные смолы, последние, правда, значительно дороже, но воспринимают намного большее количество наполнителя, обладают иными электрическими свойствами и т. д.

Прочность обычного стеклопластика при растяжении приближается к прочности стали — нагрузку воспринимают стеклянные волокна. Напряжения сжатия воспринимает смола, обладающая относительно высокой прочностью — около 30 % прочности стали. Показатели продольного сжатия, динамической нагрузки и стойкости такой конструкции ниже, поэтому, применяя стеклопластик как конструкционный материал, следует учитывать его свойства.

Для повышения прочности при растяжении стремятся применить максимум стеклянных волокон и минимум смолы; однако каждое волокно должно быть покрыто смолой, непропитанных мест быть не должно. Воздушные пузырьки снижают прочность материала. В связи с этим прочность стеклопластика, полученного под высоким давлением, гораздо выше, чем прочность материала, изготовленного без давления. В обычных условиях можно добиться объемного содержания стеклянных волокон до 50 %. Плотность стекловолокна равна 2,54 т/м3, смолы — 1,27 т/м3, т. е. при отношении 50 : 50 плотность стеклопластика равна 1,91 т/м3. Поскольку плотность стали равна 7,85 т/м3, стеклопластик той же массы выдержит нагрузку в 4 раза выше, чем сталь.

Стеклопластик обеспечивает герметичность, не корродирует, обладает маслостоикостью, стойкостью против воздействия большинства кислот, щелочей и растворителей. Этот материал удобен для формирования криволинейных поверхностей, а поэтому из него делают изделия, предназначенные для эксплуатации в воде, даже, в морской (от байдарок до небольших яхт, буи, садки). Из него делают кровельные детали (прозрачные). Поскольку его можно обрабатывать на простых станках (в сравнении с прессами для штамповки листовой стали), из стеклопластика изготовляют кузова транспортных средств, выпускаемых небольшими сериями (спортивных автомобилей, трамваев, локомотивов, опытных образцов). Пригоден стеклопластик и для корпусов электрошкафов, антенн, для печатных плат (благодаря изоляционным свойствам). Высокая прочность при малой плотности делает его пригодным для изготовления лыж, удочек, шлемов (для мотоциклистов).

Для любителей представляет интерес использование стеклопластика для ремонта и доработок изделий.

Стеклопластик обладает высокой стойкостью к атмосферным воздействиям, однако речь все же идет об органическом материале, изменяющемся под действием этих факторов. Кроме того, смола нередко начинает выделяться» как, например, на асфальте. Зола, смог, механические’ воздействия также вызывают повреждения стеклопластика, в связи с чем необходимо периодически (каждые 4—10 лет) восстанавливать наружную поверхность изделий из него.

Еще несколько слов о смоле. Она относится к материалам, в ходе полимеризации (образования цепи молекул) которых образуется новая структура. Полиэфир состоит из трех компонентов: смолы (густоватой бесцветной маслянистой жидкости), катализатора (менее густой жидкости, с запахом) и ускорителя (промотора) — обычно нафтената кобальта (темно-фиолетовая жидкость). Катализатор и ускоритель смешивать нельзя — даже небольшое количество смеси приведет к взрыву. Чтобы процесс полимеризации начался, смесь необходимо нагреть до температуры, при которой оба компонента начнут действовать. Для полного отверждения смолы в изделии ее температура должна быть выше точки инициирования и поддерживаться в течение определенного времени — при охлаждении процесс полимеризации прекращается. Об этом следует хорошо помнить в холодную погоду, особенно при изготовлении тонкостенных изделий. На те места, которые быстрее охлаждаются, следует внести больше ускорителя или же подвести теплоту, не забывая об опасности возгорания.

Для наслаивания можно также использовать эпоксидные смолы, которые наносят так же, как полиэфиры. Охлаждение смолы не связано с опасностью быстрого самопроизвольного отверждения.

Технология наслаивания

После того как продумана конфигурация изделия и готова форма, следует выбрать сепаратор — прослойку между формой и изделием, обеспечивающую извлечение готового изделия из формы.

В промышленности применяют специальные сепараторы, непрерывно появляются новые, более эффективные их виды. Сепаратор не должен приклеиваться к изделию, нарушать его поверхность, он должен обеспечивать гладкую поверхность и т. п.

В домашних условиях для плоских деталей в качестве сепаратора применяют стекло, небольшие детали делают вообще без сепаратора — изделие отделяется после усадки. Для поверхностей небольшой кривизны, главным образом выпуклых, достаточного целлофана (желательно, красного цвета, чтобы видеть места контакта). Целлофан смачивают в воде, натягивают, выравнивают и закрепляют по краям кнопками. С вогнутыми формами сложнее: целлофан наклеивают по частям, в местах соединения его следует тщательно обрезать. Формование с целлофаном всегда отражается на изделии — нужна дополнительная зачистка. Натяжение целлофана на форме не должно быть чрезмерным, чтобы он после высыхания (усадки) не отделился. Для поверхностей большой кривизны в качестве сепаратора используют, например, расплавленный парафин, порошкообразный воск и т. п., создавая сплошную жирную прослойку.

Небольшие поверхности можно разделять алюминиевой фольгой с обязательным тщательным разглаживанием во избежание попадания смолы в морщины. Для слоистых поверхностей используют промышленные сепараторы, например, поливиниловый спирт.

Способ приготовления жидкого сепаратора. В 1 л денатурированного спирта при 20 °С тщательно размешивают 320 г порошкообразного поливинилового спирта. В большом сосуде нагревают до 90 °С 3,5 л воды. Снимают сосуд с огня и очень осторожно, постоянно перемешивая, в горячую воду доливают приготовленный ранее раствор. Затем добавляют еще 1 л денатурированного спирта, вносят 40 г любого стирального порошка и тщательно размешивают. Раствор наносят на форму щеткой. С готового изделия этот сепаратор смывают теплой водой.

Прежде чем приступать к наслоению, в чашку насыпают опилки и стиральный порошок, увлажняют и размешивают. Если в процессе работы на руках начинает отверждаться смола, ее стирают этой смесью. Нельзя смывать смолу ацетоном, так как на руках образуется тонкая -пленка, причем даже там, где смолы не было. В рукавицах обычно работать не удается.

После этого готовят стеклянную ткань или холст: ткань целесообразнее использовать для ровных участков, холст — для изгибов. Тонкую ткань (масса до 150 г/м2) используют для тонких изделий, которые должны обладать высокой прочностью. Для вогнутых поверхностей такая ткань неудобна, так как возникают воздушные пузырьки. Легче всего работать с тканью массой 250 г/м2. Более толстые ткани (500—600 г/м2) используют для крупных деталей, однако они часто вздуваются. Вначале на сухую форму накладывают ткань и мягким карандашом или углем очерчивают контуры. В сосуд вместимостью 4 л наливают слоем около 1 см бензол, а затем весь сосуд заполняют пенополистиролом, который мгновенно растворяется. Кистью, смоченной в этом растворе, обводят контур, нанося линию шириной около 2 см. После высыхания бензола стеклоткань обрезают ножницами по этой линии. При такой обработке она не будет «сыпаться». Отдельные куски ткани нумеруют и закатывают в рулон бумаги.

Приготавливают весы, полиэфир, катализатор и ускоритель, несколько чистых жестянок или стаканов, кисть и шпатели, ацетон (для промывки кисти). Необходимо приспособление для перемешивания смеси: в патроне-электродрели закрепляют стальной стержень соответствующего диаметра длиной 40 см, на конце которого

Рис. 1. Лопасть мешалки с хвостовиком для крепления в патроне дрели

приварена лопасть из листовой стали толщиной 2 мм. Этим приспособлением (рис. 1) надежно перемешивают катализатор и смолу. Их необходимое количество целесообразно приготовить заранее (за несколько дней)с целью совершенного осмотического перемешивания. Следует помнить, что некоторые специальные смолы, особенно импортные, уже содержат ускоритель, а инициируются катализатором.

Рассмотрим обычный для домашнего применения способ — наслоение без давления на вогнутую или выпуклую форму.

Итак, берут приготовленную точно в соответствии с инструкцией по применению смесь смолы с катализатором, используя ее с большой осторожностью. В небольшой сосуд (вместимостью 1 л) наливают смесь и, согласно инструкции, пипеткой вводят немножко фиолетового ускорителя. При этом нужно учитывать температуру формы и окружающей среды: если холодно, ускорителя добавляют больше, если тепло — меньше; в противном случае можно не успеть наложить смесь, и она отвердеет. Если же ускорителя мало, смола останется холодной, не отвердеет и не удастся достичь заданной прочности. Тогда следует сохранить хотя бы то, что можно: нанести на поверхность слой ускорителя, нагреть и т. д. Иногда материал отвердеет через год, иногда не отвердеет вообще.

Следовательно, начинать надо с небольшого количества смеси.

Чистота — важнейшее требование. Каждый раз необходимо пользоваться новой чистой посудой, поскольку даже небольшое количество смолы с катализатором из предыдущей порции намного, ускорит инициацию новой порции и ее не удастся использовать. Ни в коем случае нельзя занести даже каплю смолы с ускорителем в сосуд с чистой смолой или смесью с катализатором. В обоих случаях рано или поздно смола в сосуде отвердеет. Нельзя, разумеется, переносить мешалку куда-либо, тщательно ее не очистив.

Начало операции формования зависит от требований, предъявляемых к поверхности изделия. Если поверхность будет подвергаться обработке или будут присоединяться другие детали, достаточно тонкого слоя смолы на лицевой стороне изделия: на очищенную поверхность сепаратора, начиная с края, накладывают первый слой стеклоткани, инициируют ускорителем смолу, наливают смесь на ткань, растирая ее шпателем или кистью равномерно по всей поверхности. Пропитанная смолой стеклоткань становится прозрачной. Шпателем, кистью или кончиками пальцев равномерно обрабатывают всю поверхность, не оставляя нигде непропитанных мест или воздушных пузырьков под тканью. Пузырьки, особенно в других слоях, можно вскрыть, например лезвием, а их кромки покрыть смолой. Куски стеклоткани накладывают, начиная с одного края, последовательно покрывая всю поверхность, при этом ткань натягивают от центра к краям, избегая морщин. Если это не удается, морщины прорезают ножницами, а кромки разрывают. Для следующего слоя можно нарезать сухую ткань. При накладке стеклоткани ее края должны выступать на 3—6 см.

Следующий слой укладывают сразу же, пока смола не начала нагреваться. В противном случае необходимо подождать, пока она немного остынет, иначе химическая реакция начнется прежде, чем удастся устранить пузырьки и хорошо разгладить ткань. Работать следует быстро, чтобы смола начала отвердевать сразу же после нанесения всех слоев и окончательного выравнивания и обтяжки поверхности целлофаном. При укладке стеклоткани в последующих слоях места стыковки необходимо чередовать. Для последующих слоев потребуется меньше смолы, так как верхний слой частично насыщается снизу. Если новый слой нанести с перерывом, поверхность окажется неровной, с наплывами. Перед отверждением новый слой стеклоткани вдавливается в неровности; после отверждения необходимо наложить более толстый слой смолы только для выравнивания наплывов и создания следующей целостной пленки из новой стеклоткани. Если края ткани приподнимаются, их следует обрезать ножом или ножовкой и разровнять или же укрыть поврежденное место холстом или штапелем, чтобы следующий слой мог лечь на ровную поверхность. Такой расход смолы приводит к увеличению массы изделия и снижению его прочности.

Желательно работать с двумя формами — нижней и верхней (матрицей и пуансоном), чтобы избыточная смола своевременно выдавливалась, а воздух не подсасывался (это происходит при ручном наслаивании, когда ткань отпружинивает от нижнего слоя). Однако две формы можно себе позволить только в редких случаях. С ровными и искривленными в одном направлении поверхностями (гофрами) работать проще.

Для лучшего понимания технологии целесообразно изложить процесс промышленного производства волнистого стеклопластика, в котором применяют стальную матрицу, т. е. плиту с образцом волнистой детали снизу, и пуансон в виде стальных труб, наружный радиус которых равен внутреннему радиусу гофров.

Рис. 2. Фазы 1—3 получения волнистых кровельных материалов из стеклопластика

На плоский рабочий стол вначале кладут целлофановую ленту — сепаратор, разматывают нарезанную ткань, наливают и растирают смолу шпателем шириной 30 см равномерно по всей поверхности, сразу же после этого накладывают второй слой стеклоткани, наливают смолу, вновь растирают шпателем, укладывают верхний слой целлофана, сухим шпателем разглаживают его и удаляют воздушные пузырьки. Затем все набранные слои сдвигают со стола на подготовленную стальную матрицу. Ткань шириной 1 м, уложенную на волнистую матрицу, последовательно нагружают трубами от центра к краям (рис. 2). Необходимо следить за тем, чтобы не возникали наклонные морщины — их выравнивают, подтягивая свободный край целлофана. Стальные матрицы нагревают паром, что значительно ускоряет отверждение. После завершения основной части полимеризации стальные трубы снимают, а кромки изделия отрезают по стальной матрице. Целлофан оставляют как защитную упаковку для погрузочно-разгрузочных и транспортных операций.

При надлежащем технологическом процессе не приходится касаться смолы ни рукой, ни кистью. Нужно подумать, как с помощью простейшего приспособления добиться обжатия всей верхней поверхности стеклопластика. Если в рассмотренном примере вместо свободных труб была бы применена иная форма, возникли бы сложности с исправлением местных дефектов по толщине смолы. Приспособление оказалось бы очень дорогим, возникали бы трудности укладки проклеенных слоев между матрицей и пуансоном. Целлофан обеспечивает получение стеклообразной поверхности без дополнительной оснастки, его можно применять для любых поверхностей большой площади.

Усадка слоистых пластиков — фактор, который необходимо всегда учитывать. Ее значение лежит в пределах 1—15 % в зависимости от температуры наслоения, вида смолы, наполнителей, формы изделия. Устранить усадку нельзя, можно лишь регулировать в определенном интервале температуру — чем выше температура отверждения, тем больше усадка. У плоских и вогнутых форм большой площади и объема усадка способствует извлечению изделий. В больших выпуклых формах, наоборот, изделие напрессовывается, а поэтому форма должна быть разъемной, надувной и т. п. (рис. 3).

Стеклянные волокна применяют обычно в виде ткани или холста. Штапель — полуфабрикат для производства стеклянных тканей и холста, однако в последнее время его используют непосредственно, например, для изготовления витых сосудов, удочек. Для получения стержня стеклянную предварительно напряженную арматуру выдерживают до полного отв.рждения смолы. Прочность таких стержней при изгибе значительно выше, чем с арматурой без предварительного напряжения. Слоистые пластики можно использовать в качестве упругих элементов, например для кресел-качалок (речь идет о дугах длиной около 120 см, устанавливаемых на ножках кресла; сжимаясь, дуги сообщают креслу обратное движение).

Рис. 3. Формы (А) и детали (Б) из стеклопластика: 1 — вогнутая негативная; 2 — выпуклая негативная; 3 — Еыпуклая позитивная; 4 — вогнутая; 5 — выпуклая разъемная; 6 — выпуклая надувная; 7 — лицевая сторона

Существует ряд промышленных технологий наслоения» например, в специальный пистолет-распылитель поступают раздельно смола с катализатором и ускоритель. Капли компонентов уносятся воздухом, падают на форму и смешиваются. Более сложным является пистолет с тремя каналами, в котором третий канал служит для подачи стеклянных волокон, выбрасываемых одновременно с двумя компонентами на полость формы. Пучок стеклянных волокон поступает в пистолет и в потоке воздуха разрезается вращающимся ножом до заданной длины. Речь, собственно, идет о стеклянном холсте, получаемом на месте. Устройство работает с большой скоростью, руки не касаются жидких компонентов, поток воздуха способствует уплотнению изделия. Очистка пистолета не представляет трудности, так как реагенты смешиваются вне сопла. Штапель, конечно, наиболее дешедый материал, холст — дороже, стеклоткань — самый дорогой.

Обычная стеклоткань имеет полотняное переплетение, т. е. число волокон в основе и утке одинаково. Ее применяют для изделий, равномерно нагруженных во все стороны. Ткани выпускаются массой 135, 250, 365, 500, 600, 800 и 1000 г/м2, в небольших количествах — 50 г/м2 для поплавков гидросамолетов, кузовов автомобилей.

Саржевое переплетение характеризуется большим числом волокон в основе, следовательно, выдерживает гораздо большие в сравнении с утком нагрузки в этом направлении.

Стеклянный холст имеет вид войлока. Хаотично расположенные стеклянные волокна соединены различными средствами. Холст очень удобен в работе, особенно при закругленных поверхностях, он не вспучивается, не пружинит, как ткань. Правда, прочность изделий из холста несколько ниже. Его используют, например, для перекрытия соединяемых деталей из слоистого пластика. Из холста можно нарезать ленточки, которые пропитывают смолой и кистью заталкивают в угловые швы, что облегчает отделочное шлифование.

Еще одно замечание. Для асфальтовой изоляции используют стеклоткань, похожую на джутовую ворсовую ткань или на тонкую белую кирзу. Однако она изготовлена не из бесконечных волокон, а из стеклянного штапеля. В связи с этим ее нельзя применять для изделий, подвергающихся воздействию воды и атмосферных факторов: под воздействием влаги стеклопластик разрушается. Для домашнего интерьера можно использовать почти любой материал — ткани, бумажные волокна, пластмассы, древесину и т. д.

Стеклянные волокна для слоистых пластиков необходимо подвергнуть специальной обработке — замасливанию, сообщающей им смачиваемость смолой. Однако за-масливатели не должны снижать прочность слоистого пластика. Такие свойства стеклянных волокон, как хрупкость, острота, требуют особого внимания к технике безопасности работы с ними.

Рассмотрим способ получения качественной глянцевой или цветной поверхности криволинейных изделий непосредственно при изготовлении слоистого пластика, без дополнительного шлифования. Обязательными условиями являются негативная тщательно отполированная форма и сепаратор с твердой и плотной поверхностью. Необходимо также иметь тиксотропную смолу, обычно содержащую так называемую белую сажу, т. е. коллоидную окись кремния. Речь идет об обычной смоле с добавкой 15% по массе коллоидной окиси кремния. Под ее действием полиэфирная смола желатинизируется, не стекает с вертикальных поверхностей и способна образовывать сплошную пленку. В смолу можно добавить и светостойкую минеральную краску, окрасив тем самым геле-образную пленку. Используя краситель впервые, необходимо предварительно проверить, не будет ли он препятствовать отверждению. Однако длительные испытания выполнить трудно. Для смол выпускают специальные красители, большей частью довольно дорогие.

Итак, имеем качественную форму, сепаратор (например поливиниловый спирт) и окрашенную смолу. Удалив сжатым воздухом с сепаратора пыль, доливают в смесь смолы с катализатором ускоритель, перемешивают, равномерно наносят смесь на сепаратор и растирают, как при применении тиксотропных материалов (однако толщина слоя в этом случае должна быть больше, чем у лака). Затем на лицевую сторону осторожно накладывают первый слой тонкого холста без особого нажима, чтобы не вдавить его в лицевую поверхность изделия. Немедленно после этого смешивают смолу для второго слоя (можно без лака и красителя), наносят как обычно, и пропитывают ею ткань сверху. С гелеобразной пленкой дело обстоит проще — она не стекает, ее не нужно растирать. Быстро наносят следующие слои ткани и смолы, устраняя воздушные пузырьки и непропитанные места. В заключение накладывают целлофан или другие пленки, натягивают и нагружают так, чтобы ткань везде прилегала плотно.

Если все операции выполнены правильно и нет пузырьков, на второй день изделие готово. В противном случае основная работа впереди. Вначале необходимо замазать пузырьки: на поверхности их видно хорошо, а внутренние обычно проявляются прогибом тонкой стенки при шлифовании. Пузырьки вскрывают, обрезают кромки или делают надрезы, заполняют полости смолой и полиэфирной мастикой с холстом или штапелем. Учитывая усадку и обработку, материал накладывают с некоторым припуском. Поверхность покрывают целлофаном, закрепляя края лейкопластырем или иным способом. Очень удобна для этого гелеобразная эмаль. Полиэфирная мастика должна быть свежей, тогда она быстро отверждается; при работе с ней следует точно соблюдать требования инструкции по применению. Если изделие не будет подвергаться воздействию воды, достаточно автомобильной мастики.

После того как завершены отделка поверхности стеклопластика окрашенной смолой и шлифование, все изделие полируют тонкой полировальной пастой и фетром. В промышленных условиях дополнительно напыляют слой бесцветного эпоксидного лака.

Иногда после зачистки дефектов и затирки мастикой на поверхность изделия наносят лакокрасочное покрытие. Технология аналогична окраске металлов. Полиэфирные лаки и лаки на базе примененной смолы нельзя рекомендовать для домашних условий (шлифуются и полируются под водой, наносится толстый слой). Эпоксидные лаки наносятся лучше и почти не требуют полировки, однако обладают небольшим сроком службы.

Изготавливаемые на предприятиях лодки окрашивают нитролаком, в домашних условиях этого не делают.

Представляет интерес ремонт поврежденных лодок. Разлохмаченные кромки обрезают, изнутри снимают защитное лакокрасочное покрытие, шероховатят поверхность вокруг отверстия на ширину 5 см, обезжиривают ее и накладывают заплату из материала, аналогичного материалу лодки. Предварительно снаружи накладывают целлофан и планкой или стальной лентой прикрепляют его к дну лодки, копируя ее конфигурацию. Вначале пропитывают смолой трещины в корпусе лодки, затем промазывают шероховатую поверхность, после чего последовательно укладывают слои ткани или холста, пропитывая их смолой до заданной толщины. В заключение валиком накатывают целлофан и поджимают стальным листом, картоном или мешками с песком. После отверждения снимают бандаж и шлифуют восстановленное место до заданной формы, а изнутри — только для удаления наплывов.

Крупные деревянные или железные суда, которые тяжело кантовать, устанавливают на козлы на высоте 1 м от земли. Очищают дно до основного материала и последовательно наклеивают кусок стеклоткани размером 30 X X 30 см с перекрытием 3—4 см. Затем приготавливают небольшое количество смолы с малым временем реакции. Второй слой накладывают с таким расчетом, чтобы чередовать перекрытия первого слоя. Если судно изношено настолько, что стеклопластик уже стал несущим элементом, число слоев должно быть достаточно большим.

Очистка инструмента при работе с полиэфиром довольно проблематична. После отверждения смолы ее нельзя снять никаким растворителем. Ацетоном можно промыть кисть, если смола еще жидкая, однако часть смолы в ней остается, поэтому кисть можно использовать не более 5 раз. Целесообразнее пользоваться шпателем. Жестянки хотя и можно обжечь, но нет смысла тратить время. Руки вначале очищают смесью опилок с моющим средством, а затем моют теплой водой с мылом. Ножницы и другой металлический инструмент приходится очищать острым предметом после высыхания смолы, когда она после усадки несколько отстанет от металла. С одежды смолу можно удалить ацетоном только сразу же после ее попадания. Твердые шарики смолы иногда можно раздробить молотком, не повреждая ткань. Рабочие одежду и обувь очистить практически нельзя.

Отвержденный стеклопластик выдерживает кратковременный нагрев до 100 °С, размягчаясь, что позволяет при необходимости выправить форму изделия. Специальные смолы выдерживают более высокую температуру. В состав пластика можно ввести самогасящее средство, и тогда после удаления непосредственно от пламени изделие перестает гореть. Волнистый пластик с такой добавкой имеет специальное обозначение. Однако испытания показали, что при высоких температурах влияние добавки становится противоположным.

До сих пор речь шла о листах из слоистого пластика — плоских, волнистых, криволинейных. В то же время слоистые пластики обладают исключительными свойствами благодаря возможности выполнять трехслойные пластики — «сандвичи» и объемные несущие системы.

На рис. 4 изображены различные виды арматуры для плит, профилей из слоистых пластиков, в том числе многослойных, из продольной и пространственной арматуры. Продольные ребра могут быть изготовлены из листового алюминия, сотовых конструкций, папье-маше. Плиту из слоистого пластика можно усилить проволочной сеткой для повышения несущей способности, например, для небольших судов. «Сандвичи» можно изготовить с арматурой из пенополистирола, который приклеивают эпоксидным клеем к плитам. В процессе наслаивания следует эпоксидной смолой защитить поверхность полистирола от полиэфирной смолы, так как она мгновенно растворяется в стироле, как в бензоле или ацетоне, и сублимируется при температуре свыше 40 *С.

Рис. 4. Виды армирования многослойных стеклопластиков

В промышленных условиях применяют следующие многослойные конструкции: полиэфирный стеклопластик+ f бальза -f стеклопластик. Например, фирма «Белько бальза» (Франция) поставляет запатентованные материалы «Контуркор», выполненные в середине из бальзовых стоек с волокнами, перпендикулярными к поверхности; толщина материалов 5 мм и более в зависимости от конструкции. Материал обычно имеет вид плит, используемых с учетом их высоких тепло и звукоизоляционных, прочностных свойств, химической стойкости и низкой стоимости. Основные области применения — судостроение (переборки, обшивка танкеров, корпуса судов и т. д.), строительство (изоляционные облицовки, перегородки, стены, временные сооружения), химическое машиностроение (резервуары, сосуды, смесители).

Хорошо выполненный трехслойный материал из стеклопластика толщиной 1,5 мм с обеих сторон и проклеенной смолой бальзовой древесины толщиной 7 мм, т. е. общей толщиной 10 мм, имеет поверхностную массу около 8 кг/м2, причем масса бальзы составляет 1,3 кг. Плита 100 X 100 см с ребрами по контуру выдерживает 10 человек. Однако бальза —- дорогой материал. Если же бальзовую древесину (плотностью 0,2 т/и3) заменить липовой, тополевой, еловой древесиной (0,47 ТЛУГ*), поверхностная масса упомянутого трехслойного пластика возрастает на 1,5 кг/ма или до 9,5 кг/м2, т. е. бальзовая древесина дает лишь 16 % экономии. Для использования в домашних условиях этот материал очень удобен. Такие материалы с основой, например из древесно-стружечных плит, хотя и тяжелее, выдерживают большие нагрузки. Для менее нагруженных конструкций применяют плиты с комбинированной основой, например, с решеткой из древесно-стружечных плит, древесины с пенополистиро-лом или иным поропластом с соответствующими свойствами.

В судостроении материал «Контуркор» применяют В виде плит с использованием их способности изгибаться в небольших пределах. Технология строительства судов из этих плит такая же, как и стальных судов.

Трехслойные пластики обеспечивают получение изделий без применения форм, что очень экономично. Из них можно изготовить несущий каркас в окончательном исполнении согласно проекту, вырезать точные фасонные детали, их можно клеить, монтировать, соединять болтами, комбинировать с металлическими и другими несущими элементами корпуса и палубы. После проверки и тщательной сушки на элементы конструкции можно монтировать трехслойные плиты, изгибая, приклеивая и закрепляя их на каркасе. В местах соединения других плит необходимо выполнить специальной формы рабочие швы (обычно с уклоном 1 : 20, в замок и т. д.). Иногда перед установкой плиты необходимо доработать. Они должны быть тщательно склеены не только между собой, но и с ребрами, балками. Крепление необходимо при клеевом соединении, причем изнутри (рабочими распорками между несущим каркасом) и снаружи (вспомогательной наружной рабочей конструкцией). Специальными шаблонами проверяют отклонения от заданной формы, плавность кривых и симметрию поверхностей. Постепенно подходят к килю, борту или поверхностям большой кривизны, т. е. к местам, где необходимо применять другую технологию.

Полуфабрикаты небольшой площади фирма «Контуркор» изготавливает в негативных формах со следующими слоями: сепаратор, гелеобразная эмаль, поверхностный холст, ткань или несущий холст в заданном количестве с пропиткой смолой, плашки из древесины, внутренний слой стеклопластика, обычно пропитываемый с помощью трехканального пистолета-распылителя (штапель, смола с ускорителем и катализатор).

Лодки обычно склеивают из двух оболочек; одна из них образует дно, другая — палубу.

Рис. 5. Склеивание катамарана из двух оболочек: а — общий вид; 5 — элемент соединения борта; 1 — холст, пропитанный смолой

Их соединение должно быть прочным и водонепроницаемым. Соединяемые поверхности предварительно зачищают, шероховатят и обезжиривают. Ленту холста отрезают по размеру этих поверхностей. Затем готовят медленно отверждающуюся смолу, тщательно наносят ее на поверхность одной оболочки, накладывают ленту холста, пропитывают ее смолой. То же делают со второй оболочкой, а затем их соединяют. На швы накладывают рейки и стягивают несколькими струбцинами по всему контуру, затем нагревают или наносят слой ускорителя, чтобы смола начала полимеризоваться только после стыковки обеих оболочек. После отверждения обрезают выступающие стекло ткань и смолу, снаружи шов заделывают мастикой, а изнутри .заполняют холстом, штапелем и массой из пропитанных смолой древесных опилок, а затем заклеивают лентой холста (рис. 5).

Детали из слоистых пластиков, помимо склеивания, соединяют заклепками или винтами, как деревянные детали. Окончательно на изделие наносят еще один слой ткани, защищающий его от коррозии.

Формы

Существуют различные виды форм. Наиболее типичными являются негативные формы, в которых лицевая поверхность изделия образуется в первом слое формирования, снизу.

В совершенно гладкой форме из тиксотропной смолы получают изделия с высококачественной поверхностью. Сами формы изготавливают из любого материала: гипса, древесины, металла, слоистого пластика, резины, стекла, глины.

При наличии предмета, копию которого необходимо получить из слоистого пластика, форму изготавливают так же, как для отливки. Для детали сложной конфигурации форму делают разъемной в нескольких плоскостях, а в качестве машриала применяют гипс. Вначале изготавливают нижнюю половину формы, после отверждения поверхности разъема шлифуют и лакируют. Для повышения герметичности устанавливают два направляющих штифта (рис. 78). После отверждения второй половины извлекают модель, собирают форму, устраняют неточности и полируют форму. Затем наносят сепаратор, и форма готова к наслоению изделия.

Гипс засыпают в клеевой грунт (с целью замедления схватывания), непрерывно перемешивая до получения не очень густой кашицы. (Клеевой грунт приготавливают следующим образом: в сосуд вместимостью 3 л наливают холодную воду, засыпают 500 г клея и выдерживают 24 ч. Затем воду нагревают, добавляют 150 г гашеной извести и нагревают до кипения. После охлаждения грунт выливают в чистую воду в соотношении 50—100 мл раствора на 1 л воды. С целью ускорения схватывания добавляют поваренную соль или раствор квасцов.)

Рис. 6. Разъемная форма для изделия из стеклопластика: 1 — форма в сборе; 2 — нижняя полуформа со штифтами; 3 — верхняя полуформа с отверстиями для штифтов

Рис. 7. Деревянные формы вращения: 1 — плоскость разъема формы

Гипсовую массу заливают в ящик, в котором закреплена модель, и дают ей высохнуть. После контроля на лицевую сторону наносят сепаратор — шеллак или воск.

Если изделие из слоистого пластика имеет конфигурацию детали вращения, изготавливается «на глазок» или по собственному эскизу, целесообразно применять позитивные деревянные (орех, клен, ольха, липа и др.) формы, вытачиваемые на токарном станке (рис. 7). Поверхность формы не должна быть очень гладкой, так как ее облицовывают целлофановой пленкой, чтобы обеспечить съем изделия после усадки. Эти формы можно сделать разъемными — из двух или четырех деталей, что упрощает снятие изделия. Стенки делают не цилиндрическими, а с конусностью 2°. Иногда вытачивают модель в натуральную величину, наносят на нее слой шеллака и выполняют по ней форму из пластилина. Такая форма является негативной и позволяет наносить на изделие глазурь (гелеобразную эмаль).

Форму для изделий из слоистых пластиков обрабатывают так же, как и сами изделия. Следовательно, ее можно выполнить по модели, например по лодке, для чего на копируемую часть лодки напыляют сепаратор, остальное защищают от загрязнения фольгой, а затем напыляют слой смолы. После этого наносят гелеобразную эмаль, а на нее — несколько слоев стеклоткани или холста. Из древесно-стружечной плиты вырезают поперечины (рис. 80), накладывают их на корпус лодки через 50 см и прикрепляют к оболочке полосками холста. Оболочку между поперечинами скрепляют планками из твердой древесины и укрепляют полосками ткани. В заключение поперечины соединяют между собой продольными брусьями сверху и по бокам, а в плоскости разъема кромку усиливают жесткой планкой. (Возможность выполнения всех этих операций за один процесс определяется конструкцией лодки.) После этого форму снимают. Если борта лодки имеют большую крутизну или если лодка внизу вообще шире, чем палуба, форму вначале снимают — даже если ее придется разрезать, а потом устанавливают арматуру по обмерам. Модель очищают и делают форму палубы или той ее части, которую намечено использовать. После этого обе половины формы собирают, обмеряют, устраняют все дефекты и тщательно полируют.

Рис. 8. Форма из слоистого пластика, полученная снятием оттиска готовой лодки: а — последовательность работы; б — готовая форма в упрочняющем каркасе

Резиновые формы удобны для круглых изделий: достаточно надуть камеру мяча и, если ее размеры устраивают, форма готова. Таким способом делают, например, светильники. На камеру (у клапана) накладывают металлическое кольцо (размер которого обеспечивает проход лампы накаливания). На кольце закрепляют конец лубяной полоски или иного материала, обтягивают ею камеру и закрепляют другой конец на кольце. Так продолжают до полного укрытия поверхности камеры. На поверхность наносят слой инициированной смолы (или прозрачного лака) и выдерживают в течение суток. Если нужно получить не светильник, а просто шар, нарезают из холста полоски, как кожуру апельсина, и накладывают на слой смолы с небольшим перекрытием. Готовый шар подвешивают за кольцо для сушки. Нельзя забывать, что воздух внутри камеры за счет тепла полимеризации нагревается и расширяется. Во избежание разрыва изделия часть воздуха необходимо периодически выпускать. На следующий день выпускают воздух из камеры и извлекают ее из изделия. Шар можно прошлифовать шлифовальным кругом или лентой (лучше — шкуркой или стеклянной крошкой). Окончательную внешнюю отделку выполняют известными способами.

Каучук — еще более эффективный материал для изготовления форм. Обладая хорошей текучестью, он заполняет малейшие полости модели. Благодаря упругости каучука формы легко снимаются даже с очень сложной модели, а значит, число разъемов можно свести к минимуму. В качестве сепаратора достаточно нанести тонкий слой растительного масла, зачастую же сепаратор вообше не требуется.

Сразу же по окончании вулканизации (в зависимости от марки каучука и температуры окружающей среды) форму снимают, каучук разрезают острым ножом и модель извлекают. В каучуковых формах можно получать изделия из эпоксидной и полиэфирной смол.

Поскольку каучуковые формы очень мягкие (а сам каучук дорогой), их делают очень тонкими — 3—6 мм. Поскольку при наслоении пластика в результате вынужденного обжатия при обработке смолы и удалении из него пузырьков форма может изменяться, ее вкладывают в отлитую из гипса толстостенную разъемную оболочку, обеспечивая стабильность каучуковой формы в процессе обработки и отверждения (полимеризации) смолы. После отверждения изделия раскрывают гипсовую оболочку, снимают каучуковую форму, а изделие подвергают необходимой обработке.

Техника безопасности

Смолы, катализатор и ускоритель — горючие вещества, которые необходимо беречь от огня и теплоты. При их хранении следует соблюдать осторожность, чтобы в случае, если разобьются банки, катализатор и ускоритель не смешались. Катализатор раздражает кожу, опасен для роговицы глаз: Смолу счищают с рук древесными опилками в смеси с раствором моющего средства или смывают теплой водой с мылом. По окончании работы на кожу рук наносят очищающую пасту (например-ИЭР-1, ХИОТ-6). При наслоении пластика стеклоткань или химикалии могут вызвать ухудшение самочувствия. Рабочее помещение необходимо тщательно проветривать.



Плотничкие работы — Cлоистые стеклопластики

Что такое стеклоровинг: описание, свойства, виды, применение, хранение

Стеклоровинг представляет собой жгут из нитей непрерывного стекловолокна (которые состоят из волокон алюмоборосиликатного стекла толщиной 10-20 микрон), различается плотностью — количеством нитей стекловолокна в жгуте, имеет обозначение «tex» 200-9600 (вес 1 км в граммах), поставляется в бобинах, герметично упакованных в пленку.

Ровинг используется для производства стеклотканей, стекломатов, стеклофибры, стеклосетки, а также непосредственно для изготовления композитов из стекловолокна — стеклопластиковых изделий различного назначения. При изготовлении изделий он пропитывается связующим — катализированной полиэфирной смолой. Чтобы у него была хорошая адгезия к смоле, каждая из нитей в пучке изначально покрыта особым замасливателем.

   

Преимущества стеклоровинга

  • Высокий уровень коррозионной стойкости (к химическим веществам и различным агрессивным средам).
  • Выдерживает перепады температур любого диапазона.
  • Небольшой вес по сравнению с другими материалами (в том числе легче смолы).
  • Высокая прочность и одновременно пластичность — при вытягивании волокон из стекломассы и охлаждении в их поверхностном слое молекулы приобретают необходимую ориентацию.
  • Диэлектрические свойства — материал не проводит электрический ток, поэтому может быть полезен при изготовлении изделий электроизоляции.
  • Теплоизоляционные свойства — у материала низкая теплопроводность, поэтому конструкции из него могут сохранять тепло.
  • Гидроизоляционные свойства. — материал не пропускает влагу, поэтому активно используется для создания изделий, контактирующих с водой.
  • Звукоизоляционные свойства — материал способен глушить шумы.
  • Экологичный материал.

Виды

Ровинг прямой (однопроцессный, директ-ровинг)

Является жгутом из нескрученных параллельных элементарных нитей. Имеет линейную плотность 140-4800 tex. Путем переплетения этого ровинга с расположением под прямым углом изготавливают тканые материалы (стеклоткани-стеклорогожи), из которых уже получают конечные изделия из стеклоламината.

Ровинг ассемблированный (сложенный)

Является жгутом из нескольких комплексных нитей (скрученных из элементарных нитей).

Ровинг малосложенный (текстурированный)

Применяется для изготовления из стеклопластика изделий цилиндрической формы, профильных изделий, стеклопластиковой арматуры методом намотки и пултрузии (протяжки через фильеру с одновременной пропиткой связующим).

Ровинг многосложенный (рассыпающийся, спрей-ап)

Имеет линейную плотность 2400 tex. Покрывается специальными видами замасливателя. Применяется при изготовлении стеклопластика напылением.

Применение

  • Изготовление стекломатов. Рассыпающийся ровинг рубленый специальным оборудованием на короткие отрезки вместе со связующим (полиэфирная смола) используется для создания стекломатов — нетканого полотна, которое может выбираться в качестве основы при производстве стеклопластика.
  • Изготовление стеклоткани (стеклорогожи). При помощи станков прямой ровинг сплетается в тканые полотна, которые отличаются от стекломатов большей прочностью и подходят не только для изготовления стеклопластика, но и даже для армирования при других работах, так как нити в них непрерывные и надежно сплетены перпендикулярно крест-накрест.
  • Изготовление стекловолоконной непропитанной сетки. Из текстурированного ровинга путем перевивочного переплетения получается прочная сетка, которая используется для штукатурки стен, дорожных, кладочных работ.
  • Изготовление профилей, арматуры. Текстурированный ровинг смазанный смолой протягивается через фильеру с отверстием определенной формы — так изготавливается стеклопластиковый профиль, арматура.
  • Использование в строительстве. Из стекловолокна изготавливают: блоки стекловаты для утепления; стеклофибру — добавку к раствору бетона, наливного пола для улучшения качества монолита; армирующий материал для укрепления и защиты покрытия дорог, конструкций мостов.
  • Изготовление труб и емкостей. Из текстурированного ровинга методом намотки получаются трубы, гидроаккумуляторы, септики, кессоны и прочие виды емкостей и цилиндрических изделий.
  • Использование в автомобилестроении и судостроении. Стекловолокно активно применяется для изготовления кузовов автомобилей и специальной техники, корпусов маломерных и крупных судов.

Условия хранения

Стеклоровинг рекомендуется хранить в прохладном и сухом месте. Температура не должна превышать 35 С°, а относительная влажность должна поддерживаться ниже 75%.

Ровинг должен оставаться упакованным непосредственно до момента использования. Необходимо избегать повреждения упаковки при хранении. При попадании влаги он становится непригодным для дальнейшего использования.

Примечание. Существуют также другие виды стеклоровинга — базальтовый, на основе натуральных волокон и другие типы. Каждый тип используется для определенных приложений и имеет специфические характеристики. Изделия, полученные с применением ровинга разного типа, также обладают специфическими свойствами.

За более подробной информацией по видам стекломатериалов обращайтесь в любое представительство группы компаний «Композит».

 

Промышленное стекловолокно против металла и дерева

Промышленное стекловолокно изначально разрабатывалось как легкая и экономичная альтернатива металлу и дереву в нетребовательных областях применения. Используемый для изготовления небольших компонентов и панелей с низкой плотностью, он изначально использовался как дополнение к материалу, а не как элемент конструкции. Этот статус-кво резко изменился за десятилетия, прошедшие с тех пор, как впервые было реализовано пултрузионное производство промышленного стекловолокна.

Стекловолокно теперь повсеместно используется в промышленности, инфраструктуре и коммерческом секторе, а архитекторы и инженеры все чаще отказываются от традиционных материалов в пользу полимеров, армированных волокном.Этот архитектурный сдвиг вызван множеством причин, в том числе значительным увеличением механической прочности промышленного стекловолокна.

В Strongwell мы неизменно отстаиваем преимущества промышленного стекловолокна для целого ряда требовательных приложений. В этом сообщении блога мы исследуем сильные стороны армированных волокном полимеров в прямом сравнении с некоторыми из наиболее известных строительных материалов во всем мире.

Промышленное стекловолокно против. Дерево

EXTREN® — это эксклюзивная линейка структурных форм, созданных из армированных волокном полимеров на основе винилэфирной смолы или термореактивного полиэстера.Каждая из 100 стандартных форм может быть изготовлена ​​в соответствии с BS EN 13706 (E23) для структурных целей с самыми строгими требованиями к качеству проектирования.

По сравнению со строительной древесиной промышленное стекловолокно EXTREN® имеет более высокую прочность на изгиб и исключительную устойчивость к экстремальным изгибам. Он демонстрирует предел прочности на разрыв до 30 000 фунтов на квадратный дюйм и модуль упругости при изгибе 10 000 фунтов на квадратный дюйм. Прочность конструкционной древесины варьируется в зависимости от породы и методов обработки, используемых для сохранения древесины.Популярная древесина пихты Дугласа обладает прочностью на изгиб до 2800 фунтов на квадратный дюйм.

Прочность на сжатие промышленного стекловолокна почти в 17 раз выше, чем у конструкционной древесины той же породы.

Промышленное стекловолокно против. Алюминий

Предел прочности на изгиб алюминия измеряется примерно при 35 000 фунтов на квадратный дюйм. Это представляет собой умеренное увеличение по сравнению с конструктивными элементами EXTREN®, но промышленное стекловолокно составляет 86% от общего предела текучести алюминия при значительно меньших требованиях к массе.В расчете на фунт за фунт EXTREN® значительно превосходит алюминий с точки зрения прочности.

Подробнее: EXTREN® против алюминия

Промышленное стекловолокно против. Сталь

Сталь

— один из наиболее распространенных строительных элементов, используемых во всем мире, с выдающейся прочностью на разрыв до 60 000 фунтов на квадратный дюйм. Это намного превосходит показатели поверхностной прочности структурных компонентов EXTREN®. Однако, как и в случае с алюминием, промышленное стекловолокно превосходит сталь по соотношению прочности к весу, что означает снижение веса на 75%.Кроме того, он прочнее стали в продольном направлении, что обеспечивает повышенное усиление для несущих конструкций.

Подробнее: EXTREN® vs. Steel

Промышленное стекловолокно от Strongwell

Strongwell — ведущий поставщик промышленного стекловолокна с глобальной сетью поставок, способной предоставить структурные формы EXTREN® в соответствии с индивидуальными требованиями и рецептурами. Мы можем разработать уникальные, экономичные компоненты, способные обеспечить высокую конструктивную прочность и прослужить дольше, чем когда-либо.

Если вам нужна дополнительная информация о наших промышленных изделиях из стекловолокна, свяжитесь с нами.

Стекловолокно как показатель прочности

Полимер, армированный стекловолокном (FRP) ─ обычно называемый стекловолокном ─ представляет собой композит, состоящий из матрицы полимерной смолы, армированной встроенными стекловолокнами.

Прочность профиля из стекловолокна определяется в первую очередь количеством, типом, ориентацией и расположением стекловолокон в композите.

Стекловолокно, также известное как стеклопластик или стеклопластик, используется для производства формованных изделий. Стекловолокно в сочетании со смолой образует прочный композит с высокой прочностью на разрыв.

Стекловолокно можно сплющить в лист, называемый жгутом, или соткать в ткань. Стекловолокно прочное, легкое и стоит меньше, чем композиты из углеродного волокна, а также устойчиво к коррозии и ультрафиолетовому (УФ) повреждению.

Сегодня профили из стекловолокна используются в самых разных отраслях промышленности, включая:

  • Строительство и инфраструктура: в том числе жилищное строительство и кровля
  • Строительство дома: включая резервуары для хранения холодной воды (цельные резервуары и секционные резервуары для хранения холодной воды), коммунальные услуги, такие как душевые поддоны и ванны
  • Телекоммуникации: опоры, опоры
  • Коммунальные услуги: траверсы, штанги, штанги, опорные балки
  • Автомобильная промышленность: кузов, детали и панели автомобиля
  • Авиация: обычно используется для внутренних конструкций, таких как багажные полки.
  • Marine: ремонт лодок и досок для серфинга
  • Электроника: печатные платы, мобильные телефоны и аудио / видеооборудование
  • Досуг: велосипеды, спортивная обувь, спортивно-оздоровительное снаряжение

Как производится стекловолокно? Стекловолокно производится в процессе, называемом пултрузией.Итак, что такое пултрузия? Пултрузия — это метод производства непрерывных отрезков армированных полимерных структурных форм с постоянным поперечным сечением. Сырье, смесь жидких смол и армирующие стекловолокна протягиваются через нагретую стальную формовочную матрицу с использованием устройства непрерывного вытягивания и полностью насыщают арматуру.

Таким образом, структурные профили из стеклопластика могут производиться непрерывно в автоматизированном энергоэффективном процессе. Смола затвердевает в нагретой стальной пултрузионной форме.Конечный продукт представляет собой прочный и легкий продукт, повторяющий форму формы.

В процессе производства, при желании, можно отрегулировать системы смол и содержание стекла, что приведет к изменению композитных матриц для производства пултрузионных труб из стекловолокна. Полученный пултрузионный профиль может иметь различные характеристики и свойства, такие как высокая прочность, устойчивость к различным температурным диапазонам, а также огнестойкие, трековые и коррозионные свойства.

Кроме того, пултрузионные профили можно настраивать и маркировать, добавляя пигменты во время процесса пултрузии. Можно добавить стойкую к ультрафиолетовому излучению обработку, чтобы увеличить долговечность продукта для наружного применения.

Вопросы эффективности

Пултрузионный профиль чрезвычайно прочен. Например, при сравнении пултрузионного стекловолокна и стали необходимо учитывать ряд эксплуатационных характеристик. В частности, следует учитывать два ключевых аспекта:

  1. как продукт работает под нагрузкой
  2. как продукт работает в агрессивных и экстремальных средах

В проектах, связанных с тепловыми нагрузками, стекловолокно во многих отношениях превосходит сталь.Арматура из стекловолокна по прочности не уступает стали, когда доходит до точки изгиба, и с меньшей вероятностью подвержена коррозии при использовании в открытых средах.

Возьмем, к примеру, арматурный стержень из стеклопластика. Исследование арматуры из стеклопластика, используемой в строительстве для уменьшения тепловых мостов, показало, что несущая арматура из стекловолокна имеет более высокий предел прочности на продольное растяжение и более низкий модуль упругости и плотности по сравнению со сталью (1000 МПа и 50 ГПа для арматуры из стекловолокна по сравнению с 550 МПа. и 200ГПа для стали).

Кроме того, пултрузионная арматура из стекловолокна сохраняет свои механические свойства и микроструктурную целостность более 15 лет. Это снижает потребность в замене и обслуживании, а также увеличивает срок его службы. По сравнению с такими материалами, как дерево и сталь, стекловолокно намного прочнее во внешних и экстремальных условиях. Он может выдерживать широкий диапазон высоких и низких температур без деформации и чрезвычайно устойчив к ржавчине и коррозии.

По большому счету, изделия из стеклопластика имеют гораздо более низкие затраты на техническое обслуживание и уровень замены.В среднесрочной и долгосрочной перспективе они представляют собой рентабельный вариант для стали.

Кроме того, арматура из стеклопластика также устойчива к коррозии, электромагнитно нейтральна и не является проводником теплового или электрического тока. Их можно использовать в качестве альтернативного материала для стали в отраслях, где требуются эти свойства.

При строительстве на набережной или в местах с агрессивными элементами стекловолокно также является предпочтительным материалом, поскольку оно не подвержено коррозии. Из-за этого их использование на набережных, мостах над водой и в других местах на берегу океана намного эффективнее, чем с деревом, сталью или другими металлами.Стекловолокно не гниет и устойчиво к повреждениям насекомыми. Композиты FRP могут быть подходящими для внутреннего и наружного применения в отелях, ресторанах и в агрессивных средах, таких как химические заводы, водоочистные сооружения и очистные сооружения.

Пултрузионные изделия могут весить до 75% меньше, чем сталь, и могут снизить общий вес конечных продуктов.

Это делает транспортировку, обработку и установку материалов намного проще, быстрее и дешевле, чем дерево или металл. Кроме того, автомобили, изготовленные из композитных материалов вместо стали, будут иметь меньший вес и, следовательно, меньший расход топлива, что поможет потребителям этой конечной продукции с точки зрения затрат и будет иметь меньшее воздействие на окружающую среду.

Кроме того, изделия из стекловолокна могут производиться с соблюдением ряда мер безопасности. В процессе пултрузии стекловолокно может быть усилено огнестойкими свойствами.

Таким образом, конечный продукт будет соответствовать требованиям пожарной безопасности, что делает его идеальным для использования в таких областях, как жилищное / коммерческое строительство, где действуют строгие правила пожарной безопасности.

Профили из стекловолокна прозрачны для радиоволн, микроволн и других электромагнитных частот и регулярно используются в телекоммуникационных приложениях.

Профили из стекловолокна могут изготавливаться с нескользящими поверхностями, чтобы обеспечить безопасную рабочую среду для сотрудников.

Исключительные физические и механические свойства определяют популярность композитов из стекловолокна (композитов из стекловолокна) в промышленности. К 2024 году объем мирового рынка композитов, по прогнозам, вырастет до 131,6 млрд долларов по сравнению с 90,6 млрд долларов в 2019 году. Стекловолокно займет значительную долю рынка.

В настоящее время рынок стекловолокна оценивается в 17 долларов.1 миллиард и, по прогнозам, будет расти со среднегодовым темпом роста (CAGR) от 7% до 23,9 миллиарда долларов к 2024 году.

Поговорите с нами

Tencom уже более 22 лет работает с компаниями, производителями, строителями и инженерами, чтобы реализовать широкий спектр возможностей продукции. Наша команда опытных инженеров стремится помочь вам в своевременной настройке и реализации ваших проектов. Свяжитесь с нами сегодня.

Углеродное волокно против стекловолокна: текстура, прочность и стоимость | 911 Design

Опубликовано 14 августа, 2019 в Углеродное волокно, Стекловолокно

После нескольких лет ожидания подходящего момента для проекта восстановления или модернизации Porsche®, вы наконец решили купить новый 911 1974 года или Carrera 1984 года.Автомобиль по большей части в довольно хорошем состоянии; он находился в хорошем состоянии, и вы приобрели его у первоначального владельца, но кое-какие детали отсутствуют или повреждены. Вы также не прочь бы поменять часть металла на более легкий, чтобы уменьшить лишний вес.

По мере того, как вы исследуете свои варианты, вы обнаружите, что есть два популярных материала, которые используются для замены автомобильных запчастей: углеродное волокно и стекловолокно. Хотя большинство источников в Интернете сообщают вам, что и то, и другое может быть прочнее и легче стали, помимо этого информации не так много.

Итак, чтобы помочь вам принять наиболее обоснованное решение, мы сравнили три категории, относящиеся к замене и восстановлению автомобильных запчастей, чтобы понять, какой вариант лучше всего соответствует вашим потребностям. (Мы дадим вам подсказку, вы, вероятно, захотите использовать углеродное волокно.)

Текстура

Довольно просто понять, из чего сделан каждый материал. Как следует из названия, стекловолокно состоит из небольших нитей стекла, которые были расплавлены, а углеродное волокно состоит из небольших нитей атомов углерода.Оба материала затем могут быть объединены с эпоксидной смолой для создания жесткого продукта, который может соответствовать любой форме или форме.

Конечные продукты представляют собой гладкие и эластичные соединения, которые, как мы уже упоминали, легче и на фунт за фунтом прочнее стали. Любой из этих вариантов станет эстетически приятным дополнением к вашему проекту.

Прочность

Это то, что разделяет два материала, но это также может стать причиной падения. Оба типа можно изготовить несколькими способами. К обоим можно добавить полиуретановую смолу.Проблема с полиуретаном в том, что он не является очень прочной деталью. В большинстве мест не предлагается вариант изготовления стекловолоконной детали с эпоксидной смолой. Мы бы рекомендовали только карбоновые детали, изготовленные из эпоксидной смолы. Вы также можете сделать карбоновые детали из предварительно пропитанного (pre-preg) угля. Это гораздо более дорогой вариант, но именно так производятся настоящие гоночные автомобили и детали для авиакосмической промышленности. Если все три типа окрашены, они выглядят одинаково. На этом сходство заканчивается. В установленном состоянии стекловолокно является гораздо менее жестким материалом, чем углеродное волокно.Эта гибкость может найти применение в других областях производства, но в автомобильной промышленности вы обычно хотите, чтобы ваши детали оставались максимально жесткими. По этой причине углеродное волокно — лучший вариант для тяжелых компонентов, таких как капоты, спойлеры, двери, а иногда и целые обвесы.

Когда дело доходит до предела прочности на разрыв (величина напряжения, которое может выдержать материал до того, как он сломается), углеродное волокно снова выходит вперед. Углеродное волокно может достигать предела прочности на разрыв до 500 фунтов на квадратный дюйм (килопунт на квадратный дюйм), тогда как наиболее распространенные типы стекловолокна обычно достигают примерно 300 фунтов на квадратный дюйм.

Стоимость

Углеродное волокно не только обладает большей прочностью на разрыв, но и дороже. Детали pre-preg еще дороже. Процесс производства углеродного волокна намного интенсивнее, чем стекловолокна, и рынок отражает эту стоимость. Поскольку многие производители часто ищут прочный материал с некоторой гибкостью, существует больше производителей стекловолокна, чем углеродного волокна, что также является важным фактором на текущем рынке.

Хотя цена на углеродное волокно может быть выше (вы могли бы заплатить более 3000 долларов за боковые юбки на 997 Carrera), это более прочный и устойчивый вариант.

Если вы собираетесь заняться новым проектом реконструкции или восстановления Porsche и у вас есть вопросы о том, следует ли вам заказывать детали из углеродного волокна или стекловолокна, позвоните в наш офис сегодня по телефону (909) 982-9111 , чтобы получить дополнительную информацию.

Стекловолокно — типы, свойства и применение

Стекловолокно — это форма армированного стекловолокном пластика, в котором стекловолокно является армированным пластиком. Возможно, по этой причине стекловолокно также называют пластиком, армированным стекловолокном, или пластиком, армированным стекловолокном.Стекловолокно обычно сплющивают в лист, размещают в произвольном порядке или вплетают в ткань. В зависимости от использования стекловолокна, стекловолокно может быть выполнено из разных видов стекла.

Стекловолокно легкое, прочное и менее хрупкое. Лучшая часть стекловолокна — это его способность принимать различные сложные формы. Это в значительной степени объясняет, почему стекловолокно широко используется в ваннах, лодках, самолетах, кровле и других применениях.

В этой статье мы подробнее поговорим о типах стекловолокна, а также об их свойствах и применении.Давайте начнем.

Типы и формы стекловолокна:

В зависимости от используемого сырья и их пропорций для производства стекловолокна стекловолокно можно разделить на следующие основные типы:

  • A-стекло : стекло также называют щелочью. стекло и устойчиво к воздействию химикатов. По составу стекловолокно А близко к оконному стеклу. В некоторых частях мира его используют для изготовления технологического оборудования.
  • C-стекло : C-стекло обеспечивает очень хорошую стойкость к химическому воздействию и также называется химическим стеклом.
  • Стекло E : оно также называется электрическим стеклом и является очень хорошим изолятором электричества.
  • AE-glass : Стекло, устойчивое к щелочам.
  • Стекло S : оно также называется структурным стеклом и известно своими механическими свойствами.

Стекловолокно бывает разных форм для различных областей применения, основными из которых являются:

  • Лента из стекловолокна : Ленты из стекловолокна состоят из стекловолоконной пряжи и известны своими теплоизоляционными свойствами.Эта форма стекловолокна находит широкое применение при обертывании сосудов, горячих трубопроводов и т.п.
  • Ткань из стекловолокна : Ткань из стекловолокна гладкая и доступна в различных вариантах, таких как пряжа из стекловолокна и пряжа из стекловолокна. Он широко используется в качестве теплозащитных экранов, противопожарных завес и др.
  • Канат из стекловолокна : Канаты сплетены из стекловолоконной пряжи и используются для упаковки.

Свойства стекловолокна
  • Механическая прочность : Стекловолокно имеет более высокое удельное сопротивление, чем сталь.Итак, из него делают высокопроизводительные
  • Электрические характеристики : Стекловолокно — хороший электроизолятор даже при небольшой толщине.
  • Негорючесть : Стекловолокно является минеральным материалом, поэтому оно негорючее. Он не распространяет и не поддерживает пламя. При нагревании он не выделяет дыма или токсичных продуктов.
  • Стабильность размеров : Стекловолокно нечувствительно к колебаниям температуры и гигрометрии.Имеет низкий коэффициент линейного расширения.
  • Совместимость с органическими матрицами : Стекловолокно может иметь различные размеры и может сочетаться со многими синтетическими смолами и некоторыми минеральными матрицами, такими как цемент.
  • Не гниет : Стекловолокно не гниет и не подвержено действию грызунов и насекомых.
  • Теплопроводность : Стекловолокно имеет низкую теплопроводность, что делает его очень полезным в строительной промышленности.
  • Диэлектрическая проницаемость : Это свойство стекловолокна делает его пригодным для изготовления электромагнитных окон.

Применение стекловолокна в различных отраслях промышленности

Материалы с высокотемпературной изоляцией обеспечивают эффективный тепловой барьер для промышленных прокладок. Поскольку стекловолокно является прочным, безопасным и обеспечивает высокую теплоизоляцию, стекловолокно является одним из широко предпочтительных материалов для промышленных прокладок. Они не только обеспечивают лучшую изоляцию, но также помогают защитить оборудование, сберечь энергию и обеспечить безопасность профессионального персонала.Возможно, это причина, по которой стекловолокно широко используется в отраслях, указанных ниже:

  • Производство напитков : Решетка из стекловолокна используется во многих областях, таких как линии розлива и в варочных цехах.
  • Автомойки : В последнее время решетки из стекловолокна широко используются для защиты от ржавчины и для придания контрастного цвета участкам, которые ранее казались запрещенными. Он осветляет внутреннюю часть туннеля для мойки, делая автомобиль чище, чем был на самом деле.
  • Химическая промышленность : В этой отрасли решетка из стекловолокна используется для обеспечения защиты от скольжения заделанной зернистой поверхности и обеспечения химической стойкости различных смол.Используемые химические вещества сочетаются со смолами.
  • Градирни : Поскольку градирни всегда влажные, их необходимо защищать от ржавчины, коррозии и других проблем безопасности. Благодаря превосходным свойствам стекловолокна, оно используется в этих башнях в качестве экранирования, чтобы не допустить людей и животных в опасные зоны.
  • Доки и пристани для яхт : Доки корродируют, ржавеют и повреждаются соленой морской водой. Так, для защиты здесь используется стекловолокно.
  • Пищевая промышленность : На предприятиях по переработке курицы и говядины решетки из стекловолокна используются для защиты от скольжения и для удержания крови, которая является едкой. В большинстве областей пищевой промышленности также используется стекловолокно, поскольку другие материалы для решеток не подходят.
  • Фонтаны и аквариумы : В фонтанах и аквариумах всех размеров используется стекловолокно для поддержки камней, что способствует циркуляции и фильтрации из-под камней. В больших общественных фонтанах решетки из стекловолокна используются для защиты распылительных коллекторов и осветительных приборов от повреждений.Это также не дает людям утонуть в фонтанах.
  • Производство : поверхность решетки из стекловолокна с зернистостью обеспечивает сопротивление скольжению во влажных областях или в местах, где присутствуют гидравлические жидкости или масла.
  • Металлы и горнодобывающая промышленность : Решетка из стекловолокна используется в областях электронного рафинирования, подверженных химической коррозии. Другие материалы для решеток здесь использовать нельзя.
  • Производство электроэнергии : Во многих областях энергетики, таких как нефтебазы, скрубберы и т. Д., Используется стекловолокно.Причина этого — непроводящие свойства стекловолокна.
  • Гальванические установки : В данном случае используются решетки из стекловолокна из-за противоскользящих свойств поверхности.
  • Целлюлозно-бумажная промышленность : свойство стекловолокна, которое делает его устойчивым к химической коррозии, используется на целлюлозных и отбеливающих предприятиях. В последнее время стекловолокно используется во многих областях из-за его коррозионной стойкости и противоскользящих свойств.
  • Автомобильная промышленность : Стекловолокно широко используется в автомобильной промышленности.Практически в каждой машине есть стеклопластиковые детали и обвесы.
  • Aerospace & Defense : Стекловолокно используется для производства деталей как для военной, так и для гражданской авиакосмической промышленности, включая испытательное оборудование, воздуховоды, кожухи и т. Д.

Узнайте больше о ассортименте стекловолокна Phelps

Стекловолокно является важным компонентом целого ряда отраслей промышленности, включая очистные сооружения сточных вод, системы отопления, вентиляции и кондиционирования воздуха, противопожарную защиту и нефтяные месторождения. Чтобы узнать больше о стекловолокне и его применении, позвоните в Phelps @ 1-800-876-SEAL сегодня, чтобы получить более подробную информацию, и ознакомьтесь с ассортиментом стекловолокна Phelps.

Стекловолокно против углеродного волокна

Стекловолокно и углеродное волокно являются хорошо зарекомендовавшими себя армирующими материалами. Оба являются синонимами чрезвычайно высокой прочности на разрыв в мире композитов, но исторически использовались для самых разных приложений и имеют разную репутацию.

Стекловолокно издавна считалось «дешевым» материалом. Строительство судов, недорогие конструктивные элементы и дренажные изделия составляют основные области применения этого материала.Углеродное волокно, с другой стороны, стало синонимом скорости и высоких характеристик. Его часто можно увидеть на гоночных автомобилях, новых пассажирских самолетах и ​​других высокотехнологичных технических решениях. В контексте 3D-печати углеродное волокно и стекловолокно являются высококачественными волокнами, которые могут укреплять детали инженерного класса.

Итак, давайте рассмотрим углеродное волокно и стекловолокно и посмотрим, какое непрерывное армирующее волокно лучше всего подходит для вашего применения!

Получите бесплатный образец детали

Стекловолокно

Стекловолокно изготовлено из неорганического кварцевого песка, нагретого до чрезвычайно высоких температур и вытянутого в аморфные ультратонкие волокнистые нити.Эти длинные и очень тонкие пряди стекла обладают чрезвычайно высокой прочностью на разрыв. Markforged может печатать на 3D-принтере два разных вида стекловолокна:

  • Стекловолокно
  • Высокопрочное высокотемпературное (HSHT) стекловолокно

Армирование непрерывными прядями из стекловолокна вполне может быть нашим волокном «начального уровня», но стекловолокно может генерировать невероятные улучшения свойств печатных деталей. По сравнению, например, с АБС, печатные детали со сплошным армирующим волокном из стекловолокна в 20 раз прочнее и в 10 раз жестче при растяжении, чем обычные печатные детали из АБС.Непрерывное волокно из стекловолокна часто является идеальным выбором для изготовления оснастки / крепежа на заводе или для создания высокопрочных прототипов, построенных по цене.

Стекловолокно HSHT, с другой стороны, лучше всего использовать для замены критически важных обработанных алюминиевых деталей. Обладая превосходной термостойкостью и прочностью на изгиб, уступая только углеродному волокну, стекловолокно HSHT представляет собой экономичное решение для непрерывного армирования во многих промышленных областях, где требуется термостойкость и ударопрочность.

Кроме того, как стекловолокно, так и стекловолокно HSHT обладают некоторыми потенциально уникальными и полезными вторичными свойствами.Хотя армирующее волокно обычно находится под поверхностью, когда печатная деталь изнашивается, армирующее стекловолокно или стекловолокно HSHT может обнажиться. Белые волокна армирующего стекловолокна или стекловолокна HSHT часто изнашиваются / растекаются по поверхности износа, обеспечивая четкое указание на близкий «конец срока службы». Кроме того, прочность обнаженного волокна может действительно продлить срок службы детали. . Наличие четкого «визуального маркера износа», а также характеристики «предотвращения износа» на поздней стадии могут быть полезны в реальных промышленных / технологических приложениях.

Там, где «критические к отказу» детали используются в условиях циклической нагрузки, арматура из стекловолокна HSHT (в частности) может не только обеспечить прочность, близкую к прочности армирования углеродным волокном, без обратной стороны катастрофического разрушения. Вместо этого он пластично поддается с минимальным отскоком энергии.

Поскольку оба варианта из стекловолокна являются аморфными, они предлагают улучшенное радиопрозрачное решение для многих приложений, основанных на ВЧ / антеннах.

Запросить демонстрацию

Углеродное волокно

Углеродное волокно производится из органических полимеров и обрабатывается при относительно низких температурах по сравнению со стекловолокном.Углеродные волокна являются кристаллическими по своей природе, поэтому низкотемпературная обработка происходит с помощью ряда сложных химических, термических и механических обработок. Полученный в результате материал имеет одно из самых высоких соотношений прочности к весу — выше, чем у стали и титана.

В 3D-печати углеродное волокно является предпочтительным непрерывным волокном для обеспечения жесткости. Он в 25 раз жестче, чем ABS, и в 2 раза жестче, чем любое другое непрерывное армирующее волокно Markforged.

По сравнению с алюминием 6061, углеродное волокно, напечатанное на 3D-принтере, имеет на 50% более высокое отношение прочности к весу при изгибе и на 300% при растягивающем моменте, что делает это волокно идеальным материалом для достижения максимальных свойств.

Сплошное армирование углеродным волокном использовалось для создания конформных приспособлений / приспособлений и специальной оснастки для некоторых из крупнейших и наиболее престижных мировых предприятий, вплоть до одноразовых деталей для высокотехнологичных приложений в автоспорте.

Разработка более сложных генеративных компонентов в промышленности часто приводила к сложным требованиям к инструментам для «финишной обработки» на дорогих 5-осевых фрезерных станках. Markforged активно участвует во многих проектах по тестированию по всему миру сверхлегких специальных «конформных» инструментов с высокой степенью демпфирования, что позволяет лидерам в отрасли 4.0, реализовать свой потенциал в полной мере.

В чем разница между 3D-принтером и станком с ЧПУ?

Углеродное волокно против стекловолокна: окончательный вердикт

Углеродное волокно и стекловолокно обеспечивают уникальные преимущества и возможности применения в зависимости от потребностей в материалах. Не стесняйтесь обращаться к нам за дополнительной помощью или советом о том, какое армирующее волокно лучше всего подходит для вашей области применения.

Получите доступ к нашему бесплатному руководству по дизайну для 3D-печати с использованием композитов , чтобы узнать больше.

Glass Fiber — обзор

7.1 История

Возможность получения тонких стекловолокон была известна в древности, еще до технологии выдувания стекла. Многие египетские сосуды изготавливались путем наматывания стекловолокна на глиняный ободок подходящей формы.

После появления стекла в I веке до нашей эры эта техника использовалась венецианскими мастерами по стеклу в XVI и XVII веках для украшения посуды. При этом пучки непрозрачных белых волокон наматывались на поверхность прозрачного сосуда, например кубка, а затем сильно нагревались.Подобные декоративные эффекты были достигнуты при производстве очков в Англии [1].

Интерес к использованию стекловолокна в текстильной промышленности появился намного позже. Французский физик Рене-Антуан Ферхо де Реумюр (1683–1757) изготовил в 1713 году ткани, украшенные тонкими стеклянными нитями [2]. Он предвидел, что, если бы можно было вытягивать только стеклянные волокна тонкости, подобной паутине, тогда они были бы достаточно гибкими, чтобы их можно было переплетать. Похоже, он сам вытягивал волокна не из стеклянной палочки, а из ванны расплавленного стекла.

Британские изобретатели провели такой эксперимент в 1822 году. Британский ткач по шелку изготовил стеклоткань в 1842 году, а другой изобретатель Эдвард Либей на выставке в 1893 году в Колумбии в Чикаго представил платье, сотканное из стекла, на Колумбийской выставке 1893 года в Чикаго. [3].

В начале 19 века во Франции шили роскошную парчу, переплетая стекловолокно с шелком глубокого цвета. Стекловолокно выглядело как яркий серебряный узор на темном фоне.В 1890-х годах Эдвард Драммонд Либби из Толедо, штат Огайо, шил платья из ткани, сочетающей шелк и стекловолокно, а также ткани для абажуров и галстуков. В то же время небольшая мастерская в Париже заключалась в том, что в текстиле сочетались шелк или хлопок со стекловолокном и продавались их по 100 франков за метр! Хотя маловероятно, что он вырастет в большой рынок, тем не менее, он продемонстрировал, что стекловолокно можно производить и, возможно, использовать. Впервые метод изготовления стекловолокна с помощью втулки был продемонстрирован в 1908 году У.фон Пачинский в Гамбурге. Производство текстильных стекловолокон с использованием техники протягивания волокон через очень мелкие отверстия было разработано в 1930-х годах в Соединенных Штатах и ​​началось в Германии в 1939 году [4].

В начале 1930-х годов компания Owens-Illinois Glass Co. из Ньюарка, штат Огайо, США, значительно улучшила процесс производства стекловолокна [5], что сделало его экономически выгодным. Позже эта компания присоединилась к Corning Glass Works of Corning, Нью-Йорк, которая также работала в этой области, чтобы сформировать специализированную компанию, а именно Owens-Corning Fiberglas Corporation [6,7].Эта корпорация была и остается лидером в области разработки, маркетинга и технологий в этой отрасли. Его влияние распространилось по всему миру на лицензии, предоставленные им за рубежом, или путем создания собственных производственных компаний, иногда совместно с другими. Компании, которые создавали производственные мощности, не будучи аффилированными с Owens-Corning, тем не менее в большинстве случаев по-прежнему использовали свои технологии.

До этого момента волокно, производимое в промышленных масштабах, было прерывистым, то есть стекловолокно.Первым требованием для значительного количества непрерывного волокна было электрическое соединение тонких проводов, используемых при повышенных температурах. Для этого необходимо было изготовить новое стекло, которое соответствовало требуемым электрическим свойствам и в то же время могло быть вытянутым в волокна. Такое стекло и стало называться «Е-стекло», «Е» означает пригодность для электроизоляции [1].

Это стекло стало стандартом для производства непрерывных волокон во всем мире, так как оно хорошо практикуется и может использоваться даже более широко, чем для первоначально предусмотренных электрических применений.Некоторые изменения в составе произошли в течение многих лет, вызванные конкретными проблемами, такими как расстекловывание или кристаллизация компонентов или материалов, растворенных из имеющихся в настоящее время огнеупоров, или, недавно, законодательства против загрязнения воздуха. Кроме того, даже предположительно идентичные составы будут незначительно отличаться между странами и заводами, поскольку они также зависят от доступности, стоимости и состава сырья. E -стекло теперь следует рассматривать как тип стекла, определяемый его электрическими свойствами, которые, если они выражены в спецификациях, регулируются содержанием в нем щелочи.

В 1935 году появились первые патенты, содержащие термореактивные смолы, которые устанавливались при комнатной температуре, например, полиэфиры. Их, когда они армированы стекловолокном, можно использовать для изготовления профилей и привести к усилению производства пластмасс. Первым важным применением было производство обтекателей для самолетов во время Второй мировой войны.

С тех пор отрасль росла со скоростью 10–15% в год. В 1949 году Pittsburgh Platinum Glass и Libbey-Owens-Ford приобрели лицензии у Owens-Corning.В 1951 и 1952 годах первые иностранные лицензии получили компании St. Gobain во Франции (ныне Saint-Gobain Vetrotex International) и Pilkington в Великобритании [1].

Рост и развитие технологий и производительности происходили очень быстро, производственные технологии совершенствовались и расширялись. Новыми областями применения стекловолокна были упрочнение термопластов и их использование в автомобилях, строительство больших сосудов (подметальных машин) для использования немагнитных свойств армированных пластиков и сочетание стекла с другими волокнами в точных инженерных приложениях [2 , 7–9].В настоящее время понятие волокнистых армирующих матриц охватывает широкий спектр армирующих материалов (углерод, стекло, арамид, проволока и т. Д.), А также органических и неорганических матриц (цемент, штукатурка). В сложных приложениях типы, количества и структура волокнистого армирования помещаются в матрицы в определенных местах для достижения оптимальных эффектов при минимальном весе и / или стоимости. Разработка и использование армированных полимеров стали новой главой в технологии.

Были и неудачи.Попытки укрепить каучуки и другие эластомеры не увенчались успехом, потому что композиты, армированные стекловолокном, в большинстве случаев были слишком жесткими для успешного применения или, в других случаях, не могли вытеснить другие армирующие материалы в устоявшейся отрасли и на рынке (автомобильные шины) .

В последующие годы стекловолокно стали использовать в качестве армирующего материала для композитных материалов. Особую роль сыграли синтетические смолы, то есть фенолы, занимающие важную роль в армированных пластмассах из-за их невысокой стоимости и хорошей огнестойкости.

Помимо промышленности стекловолокна, существуют промышленные и экономические проблемы, общие для всей отрасли, и в результате произошло множество изменений. Увеличение затрат на энергию привело к значительному увеличению материальных и трудовых затрат. В то же время воздействие на окружающую среду непрерывного расширения промышленной деятельности потребовало сокращения выбросов в окружающую среду и уменьшения количества загрязненных сточных вод. Необходимость сокращения этих источников загрязнения связана со значительными инвестициями и, в некоторых случаях, с изменениями в технологии [10].

В 1990-е годы в производстве наблюдался спад, и промышленности пришлось искать пути дальнейшей рационализации. Устаревшие установки и оборудование были утилизированы, а более мелкие производители в индустриальных странах практически исчезли.

Ответом отрасли было повышение эффективности за счет экономии топлива за счет повышения механизации и сокращения занятости, а в последнее время — существенная реструктуризация отрасли во всем мире. В последние несколько лет практически все более мелкие производители в Западной Европе исчезли как независимые единицы и были захвачены производителями-гигантами.

Испытания на прочность стекловолокна | Свойства материалов из стеклопластика и стеклопластика

Стекловолокно — это композитный материал с пластиковой матрицей, состоящий из смолы и тонких стеклянных волокон. Производство стекловолокна относительно недорогое, а конечный продукт легкий, прочный и может применяться в различных областях. В некоторых отраслях промышленности стекловолокно называют пластиком, армированным стекловолокном (GRP), или пластиком, армированным стекловолокном (GFRP). ASTM и ISO имеют стандартные методы испытаний, которые относятся к стекловолоконным материалам и изделиям из стекловолокна.Стандартные методы испытаний ASTM и ISO представляют собой общую процедуру испытания пластичности для определения прочности на растяжение, изгиб, адгезии, сжатия, ползучести, усталости и динамических свойств стекловолокна. ASTM также имеет стандарты для испытаний стеклопластиковых панелей и труб. Эти стандарты испытаний стекловолокна ссылаются на стандарты механических испытаний для процедур испытаний. TestResources предоставляет рекомендации по стандартным методам испытаний ASTM и ISO на растяжение, изгиб, сжатие, адгезию, динамические испытания, испытания на усталость и ползучесть стекловолокна.Модульное испытательное оборудование TestResources конфигурируется нашими прикладными инженерами в соответствии с вашим конкретным материалом, типом образца и методом испытаний. Наша линейка продуктов включает в себя широкий спектр испытательных машин, программного обеспечения для испытаний, захватов, испытательных приспособлений, экстензометров, приспособлений для пробоподготовки и климатических камер. Позвоните нам, чтобы обсудить ваше тестовое приложение. Стандарты ASTM и ISO для прочности и механических свойств стекловолокна Ниже приводится список стандартов механических испытаний из ASTM и ISO, которые используются для определения прочности на растяжение, изгиб, адгезии, сжатия, ползучести, усталости и динамических свойств стекловолокна.Машины для испытания на прочность стекловолокна и оборудование TestResources предоставляет испытательные машины, способные выполнять механические испытания стекловолоконных материалов. Испытательные машины из стекловолокна от TestResources можно использовать для проведения испытаний на растяжение, изгиб, сжатие, адгезию, динамические испытания, испытания на усталость и ползучесть. Эти машины для испытания материалов имеют модульную конструкцию и могут быть эффективно и эффективно изготовлены по индивидуальному заказу для каждого приложения. TestResources создает каждую машину для испытания стекловолокна, чтобы удовлетворить потребности клиента и обеспечить высочайший уровень качества.

Применимые стандарты испытаний

Рекомендуемая испытательная машина

Усилия до 10 кН (2250 фунтов силы)
Настольные системы низкого усилия
Модульная серия из пяти вариантов рамы с регулируемым испытательным пространством
Доступная опция испытаний на растяжение, сжатие, изгиб, отслаивание и намного больше

Диапазон усилия от 5 кН до 600 кН (от 1125 фунтов до 135000 фунтов силы)
Регулируемое пространство для испытаний
Самый популярный выбор для испытаний на статическое растяжение и сжатие
Эти двухстоечные тестеры доступны как в настольных, так и в напольных моделях

Рекомендуемые принадлежности для испытаний

Допустимая нагрузка до 250 кН (56,250 фунт-силы)
Базовая длина до 1200 мм (48 дюймов)
Доступны ролики различных размеров
Доступны трехточечные и четырехточечные конфигурации

25 кН (5625 фунтов силы)
Доступны в 3-точечной и 4-точечной конфигурациях

Грузоподъемность от 10 до 100 кН (2 , От 250 фунтов до 22500 фунтов)
Максимальная толщина образца от 16 мм до 22 мм (0.От 63 до 0,87 дюйма)
Пневматический привод упрощает установку образца
Самозатягивающаяся конструкция

Номинальная нагрузка до 10 кН (2250 фунтов силы)
Сменные диаметры роликов от 1 мм до 12,7 мм (от 0,04 дюйма до 0,5 дюйма)
Легко регулируемый диапазон
Базовая длина 150 мм (6 дюймов) и 300 мм (12 дюймов)

Номинальная сила до 5 кН (1125 фунтов силы)
Хорошо работает с плоскими или круглыми образцами
Максимальная толщина / диаметр образца 10 мм (0,4 дюйма)

Номинальная нагрузка до 500 кН (112 500 фунтов силы)
Регулируемый диапазон со встроенной линейкой для точного зазора
Доступны в трех- и четырехточечной конфигурации

Допустимая нагрузка 2.5 кН и 10 кН (550 фунтов и 2250 фунтов силы)
Размеры пролета и ролика изготавливаются по заказу
Удовлетворяет ASTM D790 и D7264
Нагрузочная головка направляется линейным подшипником для высокой точности

Удовлетворяет требованиям ASTM D638
Номинальная нагрузка от 20 кН и 50 кН (4500 фунтов и 11250 фунтов)
Максимальная толщина образца 16 мм (0,63 дюйма)
Самозатягивающаяся конструкция препятствует проскальзыванию образца

Удовлетворяет требованиям ASTM D2105
Предназначен для испытаний труб и трубка в натянутом состоянии
Размеры под заказ в соответствии с размерами образца
Самозатягивающаяся конструкция предотвращает скольжение образца

Стандартный температурный диапазон от -155 ° C до 620 ° C (от -247 ° F до 1150 ° F)
Сопровождается широким набором аксессуары, способные противостоять жаре или холоду
Внутренняя температура, управляемая ПИД-регулятором
Устанавливается непосредственно на испытательную раму

.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *