Skip to content

Стекловолокно имеет прочность – конструкционная, ровинговая, армирующая и иные виды для авиации, судостроения, теплоизоляции и применения в быту, цены и технические характеристики

Содержание

Стекловолокно — Википедия

Пучок стеклянных волокон (стекловолокно)

Стекловолокно́ (стеклонить) — волокно или комплексная нить, формируемые из стекла. В такой форме стекло демонстрирует необычные для себя свойства: не бьётся и не ломается, а вместо этого легко гнётся без разрушения. Это позволяет ткать из него стеклоткань.

Стекловолокна естественного происхождения встречаются в местах, где в прошлом происходили извержения вулканов, название данного вида волокон — волосы Пеле[1]. Волосы Пеле имеют химический состав базальтовых пород, имеют включения кристаллов и по физико-механическим свойствам не являются аналогами стекловолокна[2].

Стекловолокно экструдируют из расплава стекла специального химического состава. Экструзия, как и в других случаях, производится путём продавливания расплава через прядильные фильеры. Исходный продукт, как и в других областях производства химических волокон, получается в виде бесконечных элементарных волокон (филаментов), из которых далее в процессе переработки формируются или комплексные нити (диаметр филаментов 3—100 мкм (линейная плотность до 0,1 Текс)) и длиной в упаковке 20 км и более (

непрерывное стекловолокно), линейная плотность до 100 Текс, или в стеклянные ровинги (продукты линейной плотностью более 100 Текс). В этом случае, как правило, продукт перерабатывается в кручёные нити (ровинги) на крутильно-размоточных машинах. Данные полуфабрикаты далее могут быть подвергнуты любым формам текстильной переработки в кручёные изделия (нити сложного кручения, шнуры, шпагаты, канаты), текстильные полотна (ткани, нетканые материалы), сетки (тканые, специальной структуры).

Стекловолокно

Стекловолокна также могут выпускаться в дискретном (штапельном) виде. Также исходный стеклянный ровинг может быть переработан путём резки, рубки или разрывного штапелирования в дискретные (штапельные) волокна со штапельной длиной 0,1 (микроволокно) — 50 см, титр волокна в данном случае, как правило, ниже, чем филаментных нитей и соответствует диаметру 0,1—20 мкм. Основная масса штапельных стекловолокон перерабатывается в нетканые материалы (кардные, иглопробивные, нитепрошивные, стеклохолст) по различным технологиям (кардочесание, преобразование прочёса, иглопробивание, нитепрошивание, «вэт-лэйд»), стекловату, штапельную пряжу. По внешнему виду непрерывное стекловолокно напоминает нити натурального или искусственного шёлка, а штапельное — короткие волокна хлопка или шерсти.

Основная область применения стекловолокна и стеклотекстильных материалов, — использование в качестве армирующих элементов стеклопластиков и других композитов. Также стеклоткани могут самостоятельно использоваться в качестве конструкционных и отделочных материалов. В этом случае они зачастую подвергаются той или иной форме отделки, главным образом — пропитке связующим (латекс, полиуретан, крахмалы, смолы. прочие полимеры).

Непрерывное стекловолокно формуют вытягиванием из расплавленной стекломассы через фильеры (число отверстий 200—4000) при помощи механических устройств, наматывая волокно на бобину. Диаметр волокна зависит от скорости вытягивания и диаметра фильеры. Технологический процесс может быть осуществлён в одну или в две стадии. В первом случае стекловолокно вытягивают из расплавленной стекломассы (непосредственно из стекловарочных печей), во втором используют предварительно полученные стеклянные шарики, штабики или эрклез (кусочки оплавленного стекла), которые плавят в стеклоплавильных печах или в стеклоплавильных аппаратах (сосудах).

Производство штапельного стекловолокна

Штапельное стекловолокно формуют путём раздува струи расплавленного стекла паром, воздухом или горячими газами и др. методами.

Механические свойства волокон:[3]

ВолокноПлотность, 103·кг/м3Модуль растяжения, ГПаПредел прочности при растяжении, ГПа
E-стекло2,5732,5
S-стекло2,5864,6
Кремнезём2,5745,9

Свойства высокомодульных волокон и однонаправленных эпоксидных композиционных материалов:[4]

Тип волоконМарка волокнаСвойства волокон длиной 10 ммСвойства композиционных материалов
σвEσвEσв / (pg), км
ГПаГПаГПаГПа
СтеклянныеВМ-13,82102,92,0169,198
>>ВМП4,6193,32,3564,7114
>>М-114,61107,92,1572,698
БорныеБН (сорт 2)2,75392,21,37225,575
>>БН (сорт 1)3,14382,41,72274,687
>>Борофил (США)2,75382,41,57225,580
ОрганическиеСВМ2,75117,71,4758,5111
>>Кевлар-49 (США)2,75130,4 1,3780,4100

Объёмная доля наполнителя 60 %.

Механические свойства волокон:[5]

Марка стеклаПлотность
ρ, 10−3 кг/м3
Модуль
упругости
Е, ГПа
Средняя
прочность на базе
10 мм, ГПа
Предельная
деформация
ε, %
Высокомодульное2,58954,204,8
ВМ-12,58934,204,8
ВМП2,46854,204,8
УП-682,40834,204,8
УП-732,56742,003.6
Кислотостойкое 7-А
Физико-механические свойства стекла

На предел прочности на растяжение стёкол влияют микроскопические дефекты и царапины на поверхности, для конструктивных целей в основном применяют стекло с прочностью на растяжение 50 МПа. Стёкла имеют Модуль Юнга около 70 ГПа.[3]

  1. ↑ Волосы Пеле // Большая советская энциклопедия : [в 30 т.] / гл. ред. А. М. Прохоров. — 3-е изд. — М. : Советская энциклопедия, 1969—1978.
  2. ↑ Аблесимов Н. Е., Земцов А. Н. Релаксационные эффекты в неравновесных конденсированных системах. Базальты: от извержения до волокна. — Раздел 6.1.1. Терминология. — М.: ИТиГ ДВО РАН, 2010.
  3. 1 2 Болтон У. Конструкционные материалы, металлы, сплавы, полимеры, керамика, композиты. Карманный справочник /Пер с анг. — М.: Додека-XXI, 2004. — 320 с. — (Карманный справочник). — ISBN 5-94120-046-3.
  4. Б. Н. Арзомасов. Конструкционные материалы. — Машиностроение, 1990. — 688 с. — ISBN 5-217-01112-2.
  5. Медведев В. В., Червяков А. Н. Обоснование выбора композиционного материала для корабельных виброизоляторов. Архивировано 23 декабря 2010 года.

SammaS — Стеклонить

 

Для армирования пластиков могут использоваться самые разнообразные волокна, но для высокопрочных пластиков чаще всего используются стеклянные волокна. Это объясняется удачным сочетанием их свойств и не в последнюю очередь низкой стоимостью большого разнообразия промышленных стекловолокон.

Секловолокна по прочности превосходят все другие распространенные конструкционные материалы. Так, прочность неповрежденных волокон из E-стекла равна в среднем 365 кг/мм2, они имеют довольно высокий модуль Юнга (5-11)·103 кг/мм2 и на много превосходят в этом отношении армируемые ими полимеры. Поэтому в стеклопластиках большую часть нагрузки воспринимают волокна. А поскольку плотность стекла сравнительно низкая (~2.5 г/см3), стекловолокна имеют высокую удельную прочность и удельный модуль, что особенно важно при применении этих материалов в авиации и на водном или сухопутном транспорте и т.д.

Стекловолокна довольно инертны химически, а поскольку полимеры также хорошо устойчивы во многих агрессивных средах, то стеклопластики часто используются там, где металлы сильно корродируют, например, при изготовлении трубопроводов для химически агрессивных жидкостей, подземных емкостей для хранения бензина и т.д.

Промышленностью выпускаются стекловолокна двух основных типов, в виде непрерывной нити и штапельного (резанного) волокна. Исходным технологическим процессом для получения всех видов стекловолокон является процесс вытяжки нитей из расплава. 

Стеклонить — это тонкая белая прядь собранная из некоторого количества элементарных нитей, изготовленных из стекла типа «E», произведенных с правым или левым направлением крутки и заданным числом оборотов на каждый метр длины. Нити могут быть одинарного и двойного плетения.

Однонаправленные стеклонити представляют собой срезы (отрезки нити определенной длины) с паковок стеклянных комплексных нитей или непрерывных элементарных нитей. Предназначены для фильтрации, изготовления теплозвукоизоляционных материалов, наполнения пластмасс и других целей.

Стеклонити двойного плетения применяются для производства различных тканых и нетканых материалов, для электроизоляции обмоточных и монтажных проводов, для производства композиционных материалов на основе эпоксидных, фенольных и других связующих.

В зависимости от применения стеклонити имеют различные типы замасливателя для обеспечения наилучших потребительских и технологических свойств при их дальнейшей переработке. Намотка стеклонити производится на катушки разного типа, исходя из требований оборудования для дальнейшего использования. Нанесение замасливателя в 2 — 3 раза увеличивает прочность стеклонити, придает эластичность и гибкость, что позволяет подвергать ее дальнейшей переработке. Намотка стеклонитей, пропитанных термореактивной смолой, является методом изготовления многих крупногабаритных изделий для авиационной, ракетостроительной, судостроительной и гражданской промышленности. Для стеклонити применяется парафиновый, крахмальный или водно-эмульсионный замасливатели.

Свойства стекловолокон


Свойства стекловолокон в первую очередь определяет состав стекла. Не менее значимой оказывается и термическая предыстория стекла.

Высокая прочность при растяжении — стекловолокна имеют очень высокий предел прочности при растяжении, превышающий прочность других текстильных волокон. Удельная прочность стекловолокон (отношение прочности при растяжении к плотности) превышает аналогичную характеристику стальной проволоки.

Тепло- и огнестойкость — так как природа стекловолокон неорганическая, они не горят и не поддерживают горение. Высокая температура плавления стекловолокон позволяет использовать их в области высоких температур.

Хемостойкость — стекловолокна не воздействуют на большинство химикатов и не разрушаются под их влиянием. Устойчивы стекловолокна и к воздействию грибков, бактерий и насекомых.

Влагостойкость — стекловолокна не сорбируют влагу, следовательно, не набухают, не растягиваются и не разрушаются под ее воздействием. Стекловолокна не гниют и сохраняют свои высокие  прочностные  свойства  в среде  с  повышенной  влажностью.

Термические свойства — Стекловолокна имеют низкий коэффициент линейного расширения и большой коэффициент теплопроводности. Эти свойства позволяют эксплуатировать их при повышенных температурах, особенно, если необходима быстрая диссипация температуры.

Электрические свойства — Поскольку стекловолокна не проводят ток, они могут быть использованы как очень хорошие изоляторы. Это особенно выгодно там, где необходимы высокая электрическая прочность и низкая диэлектрическая постоянная.

СвойстваМарка стекла
ACES
Физические
Плотность, кг/м22500249025402480
Твердость по Моосу6,56,56,5
Механические
Предел прочности при растяжении, МПа:3033303334484585
    при 22 °C26203768
    при 371 °C17242413
    при 533 °C    
Модуль упругости при растяжении при 22 °C, МПа69,072,485,5
Предел текучести, % 4,84,85,7
Упругое восстановление, % 100100100
Термические
Коэффициент линейного термического расширения, 10-6К-1 8,67,25,05,6
Коэффициент теплопроводности, Вт/(м·K) 10,4
Удельная теплоемкость при 22 °C0,2120,1970,176
Температура размягчения, °C727749841
Электрические
Электрическая прочность, В/мм 19920
Диэлектрическая постоянная при 22 °C:    
    при 60 Гц5,9-6,45,0-5,4
    при 1 МГц6,97,06,35,1
Потери при 22 °C:    
    при 60 Гц0,0050,003
    при 1 МГц0,0020,003
Объемное сопротивление при 22 °C и 500 В постоянного тока, Ом·м10171018
Поверхностное сопротивление при 22 °C и 500 В постоянного тока, Ом·м   10151016
Оптические
Коэффициент преломления   1,5471,423
Акустические
Скорость звука, м/с53305850

                Табл. Свойства стекловолокон произведенных из различных марок стекла.

Стекловолокно. Виды и применение. Производство и особенности

Стекловолокно – это распространенный материал на основе кварцевого песка. Он используется для изготовления стройматериалов, а также различных высокотехнологичных и прочных легких конструкций.

Из чего делают стекловолокно

Впервые стекольное волокно получились случайно. На производстве стекла произошла авария, при которой расплавленная масса была раздута подаваемым под давлением воздухом. В результате получились нити, отличающиеся некой долей гибкости. Это стало неожиданностью, поскольку толстое стекло после застывания является очень твердым. С тех пор прошло уже более 150 лет. Технология немного изменилась, но принцип остался прежним.

Для производства стекловолокна применяется кварцевый песок или битое стекло. Применяемая технология не подразумевает использования сложного оборудования, она является довольно простой. При этом получаемый материал обладает рядом свойств, зависящих от способа подготовки волокна.

Процесс изготовления стекловолокна заключается в выдувании из него тонких ниток. Для этого осуществляется разогрев битого стекла или кварцевого песка до температуры 1400°С. Расплавленная тягучая масса подается на формирующее оборудование. Если ее пропустить через центрифугу, то получится стекловата с переплетенными, замешанными между собой волокнами. Если же применять специальное сито с микроотверстиями, через которые масса выдувается под давлением пара, то получаются ровные длинные волокна. В дальнейшем они могут использоваться как сырье для изготовления сложных изделий.

Технические особенности
Стекловолокно имеет целый ряд положительных качеств, делающих его отличным сырьем для изготовления строительных материалов. К его неоспоримым достоинствам можно отнести:
  • Теплопроводность.
  • Устойчивый химический состав.
  • Высокую плотность.
  • Повышенную температуру плавления.
  • Устойчивость к горению.

Одним из самых важных достоинств стекловолокна является низкая теплопроводность. Это позволяет делать из данного сырья теплоизоляционные материалы. Из всей группы изделий, которые можно получить из данного сырья, самым лучшим теплоизолятором является стекловата.

Стекловолокно имеет высокую химическую устойчивость, поскольку практически полностью состоит из кварцевого песка. При воздействии на него щелочами отсутствует любая химическая реакция, что делает волокно практически универсальным для сочетания с любыми стройматериалами.

Нити имеют высокую плотность, которая составляет 2500 кг/м³. Однако благодаря тому, что они являются распушенными, готовые из них изделия имеют большой объем, при этом малый вес. Чтобы расплавить даже тонкие волокна, их необходимо разогреть до температуры как минимум 1200°С. Такое возможно только при целенаправленном воздействии горелки. Это негорючий материал, что позволяет его использовать для создания различных пожаробезопасных конструкций. Теоретически возможно воссоздание определенных условий, при которых отдельные сорта стекловолокна могут гореть. При этом они должны содержать связующие полимерные компоненты, что встречается редко.

Сфера применения стекловолокна
Стекловолокно очень распространенный материал, из которого изготовляют самые разнообразные изделия. Его используют практически во всех сферах:
  • Строительство.
  • Производство бытовых предметов.
  • Электроизоляция проводников.
  • Медицина.
Использование в производстве стройматериалов
Стекловолокно является сырьем для изготовления различных материалов. Из него делают:
  • Утеплительные маты.
  • Рулонную мягкую стекловату.
  • Штукатурную сетку.
  • Стекломаты.
  • Ткань.
  • Стеклопластик.
  • Стеклопластиковую арматуру.

Жесткие маты делают из стекловаты. Это достаточно плотный материал, применяемый для выполнения утепления фасадов. Кроме этого он при определенной длине нитей может выступать качественным звукоизолятором. Материал отличается стабильностью, но при его раскрое лучше пользоваться респиратором. Во время реза матов поднимается мелкая стекольная пыль. При попадании на кожу она вызывает ее раздражение, также такие частицы могут скапливаться в легких.

Рулонная стекловата является более гибким и менее плотным аналогом жестких матов. Она изготовлена аналогичным способом, однако сворачивается в рулон, что облегчает транспортировку. Ее используют в качестве теплоизоляционного материала, в частности совместно с металлическим профилем. Стекловата закладывается между направляющими, после чего закрывается отделочным материалом. Она в отличие от матов не может штукатуриться сверху, поэтому всегда должна применяться только с дальнейшим накрытием. Ее укладывают под кровлю, дощатый настил пола. В помещении на стенах ее закрывают гипсокартоном, на фасадах – металлическими панелями или вагонкой.

Особым спросом пользуется сетка из стекловолокна. Она применяется как армирующее изделие при выполнении штукатурных работ. Материал обладает высокой устойчивостью к растягиванию, что предотвращает появление трещин на стенах. Ее используют при выполнении внутренних и наружных штукатурных работ. Для отделки внутри помещения применяется сетка с небольшой плотностью от 80 г/м². Она выпускается в рулонах шириной 1 м. Сетка отличается достаточной гибкостью, но при сильном заломе ее волокна разламываются. Достоинство стеклосетки над обычной стальной штукатурной сеткой в том, что она не ржавеет. Со временем от нее на стенах не проявляются рыжие пятна.

Также из стекловолокна делают стекломаты. Их получают путем сложения между собой кусочков стеклянных волокон смешанных в произвольном направлении. Они скрепляются без использования клеящих составов. В результате смешанные иголочки поддерживаются между собой, обеспечивается надежная фиксация. Это армирующий материал, который ламинируется смолой. Из него можно создавать различные крепкие формы, к примеру, корпуса лодки. Для этого стекломаты и смола применяются как папье-маше.

Более легким и тонким аналогом стекловаты является стеклоткань. Она делается по аналогичной технологии с сеткой, но более сложным ткацким способом. В частности из нее состоят стеклообои и стеклохолст. Последний приклеивается на качественно оштукатуренную и шпаклеванную стену, после чего осуществляется ее покраска. Наличие стеклохолста препятствует образованию трещин, позволяет скрыть мелкие дефекты основания. Такая поверхность является ремонтопригодной.

Особым спросом пользуется стеклопластик, который помимо стеклянных волокон содержит в себе связующие смолы. Это очень прочный износоустойчивый материал, из которого делают самые разнообразные изделия. Примером такого использования является стеклопластиковая арматура. Она является аналогом стальной арматуры, используемой для армирования бетонных конструкций. Неоспоримым достоинством стеклопластикового изделия является низкая стоимость, небольшой вес, а также возможность транспортировки в виде скрученной бухты. Материал обладает аналогичной устойчивостью к разрыву, что и стальная арматура, при этом быстро разрезается даже ручной ножовкой по металлу.

Стекловолокно имеет очень широкое использование в строительстве, однако в последнее время уступает свои позиции базальтовой вате по направлению теплоизоляции. Это аналогичный материал, сделанный не из кварцевого песка, а базальта. Последний является более безопасным для человека, поскольку его волокна меньше осыпаются и раздражают слизистые оболочки и кожу. Однако при соблюдении определенных строительных норм возможно использование стекловолокна не только в промышленных зданиях, но и в жилых объектах.

Материал по-прежнему очень широко применяется для утепления трубопроводов. Что касается стеклообоев и штукатурной сетки, то ее применение абсолютно безопасно, поскольку в этом случае для ее производства используются длинные нити, а не короткие высыпающиеся волокна. Поэтому данные материалы являются неоспоримыми лидерами рынка.

Из стекловолокна с полимерными добавками получают стеклопластик, из которого делают корпуса судов и лодок, облегченные кузова гоночных машин. Это отличный материал для изготовления лыж, и даже емкостей для питьевой воды. Стеклопластик гораздо крепче обычной пластмассы, кроме этого он намного долговечнее. Он обладает лучшей устойчивостью к высоким температурам.

Использование в качестве изолятора

Из стекловолокна делают изоляцию для проводов. Она выступает непроницаемым диэлектриком. Изоляционная оболочка представляет собой сплетенную ткань, обмотанную вокруг проводника. Также огромным спросом пользуется оптоволокно, представляющее собой длинные цельные нитки с внешней ПВХ оболочкой.

Применение в медицине

Из стекловолокна изготавливают протезы и безопасные для здоровья импланты, которые могут контактировать с живыми тканями. В частности хорошо зарекомендовали себя зубные протезы. Стекловолокно при стабильной структуре, без осыпающихся частей, является абсолютно нейтральным для человека. Именно поэтому значительная часть медицинского оборудования и инструмента содержит стекловолоконные части. Материал применяется для изготовления хирургического лазерного скальпеля.

Применение в медицине подтверждает безопасность волокна для здоровья человека. Единственным исключением являются пыль и мелкие частицы волокон, которые втягивается в легкие человека из воздуха. Они окружают стекловату, а также образуются при распиле стеклопластика. Во всех остальных случаях материал абсолютно безопасен.

Похожие темы:

Стекловолокно и изделия из него

Стекловолокном называют волокно, изготовленное из расплавленного стекла.

Стекловолокно обладает редким сочетанием свойств: высокой прочностью при растяжении и сжатии, негорючестью, нагревостойкостью, малой гигроскопичностью, стойкостью к химическому и биологическому воздействию. Из него изготовляют материалы с высокими электро-, тепло-, звукоизоляционными свойствами и механической прочностью. На основе стекловолокнистых материалов изготавливаются различные виды изделий, которые успешно заменяют традиционные материалы,а также, имеют только им присущие области применения.

Различают два вида стекловолокна: непрерывное – длинной сотни и тысячи метров и штапельное – длинной до 0,5 м. По внешнему виду непрерывное волокно напоминает натуральный или искусственный шелк, а штапельное – хлопок или шерсть. Изделия из непрерывного волокна имеют вид однонаправленных волокон, тканых материалов, нетканых материалов и волокнистых световодов.

Однонаправленное стекловолокно представляет собой короткие пряди волокон или комплексных нитей, срезанных с бобин. Длина однонаправленного волокна изменяется в зависимости от периметра бобины или барабана, на который оно наматывается. Однонаправленное волокно с бобин имеет диаметр 5-10 мкм и длину не менее 0,5 м.

Тканые материалы получают в ходе текстильной переработки стекловолокна: размотки комплексной нити с бобин с комплексной круткой трощения нитей и вторичной их крутки, подготовки нитей к ткачеству и изготовления тканых материалов на ткацких станках. Для текстильной переработки используются волокна диаметром 5-10 мкм. Волокна большего диаметра имеют пониженную прочность при изгибе и чаще ломается в ходе текстильной переработки.

Нетканые материалы из непрерывного стекловолокна – жгут, холсты из рубленных и непрерывных нитей, ленты из склеенных нитей и стекловолокнистые анизотропные материалы. Жгут представляет собой прядь, состоящую из большого числа комплексных стеклянных нитей, холсты – рулонные нетканые материалы. В жестких холстах хаотически расположенные нити или обрезки нитей скреплены смолами, в мягких холстах – механической прошивкой. Первичные нити или жгуты могут быть склеены в длинные ленты.

При упорядоченной намотке нитей и жгутов на барабаны и одновременном нанесении связующего получают анизотропные материалы, свойства которых в разных направлениях различны. Эти материалы могут быть как рулонные при непрерывном способе производства, так и листовыми – при периодическом. Для нетканых материалов могут применяться волокна диаметром до 20 мкм.

Виды изделий из штапельного волокна.

Штапельные волокна различаются по длине элементарных волокон (длинноволокнистые и коротковолокнистые) и по их диаметру. По диаметру различают: микроволокно (0,5 мкм), ультратонкое (0,5-1,0 мкм), супертонкое (1-4 мкм), утолщенное (11-20 мкм) и грубое (20 мкм и более).

На основе коротковолокнистых штапельных волокон получают вату, рулонные материалы, маты, плиты и скорлупы. Все эти материалы состоят из хаотически перепутанных волокон. Волокно, осажденное вместе с органическими синтетическими материалами на конвейерной ленте, после обработки принимает вид непрерывного ковра толщиной 20-100 мм.

Рулонный материал представляет собой длинный кусок ковра, свернутый в рулон. Маты и плиты получают из неподпрессованного ковра. Маты в ряде случаев простегиваются нитями из непрерывного стеклянного волокна, тогда толщина из может быть уменьшена до 5 мм. Плиты покрываются с одной или обеих сторон стеклянной тканью.

Из длинноволокнистых штапельных волокон изготовляют холсты, сепараторные пластины, бумагу. Эти материалы (толщиной 0,5-1,5 мм) могут быть свернуты в рулоны или нарезаны на пластины. Для повышения механической прочности они могут армироваться нитями их непрерывного волокна. Из длинноволокнистых волокон получают по аналогии с шерстью штапельную крученую пряжу, ровницу и при последующей текстильной переработке – штапельные ткани, сетки, ленты. Свойства изделий из штапельного волокна в значительной степени зависят от диаметра волокна, состава стекла и вида связующего материала.

Способ производства стекловолокна.

Способы выработки стекловолокна классифицируется по двум основным принципам его формования:

  • утоньшения струйки стекломассы в непрерывное элементарное волокно;
  • разделения и расчленения струи расплавленного стекла, сопровождаемых вытягиванием коротких волокон.

Вытягивание волокна из струйки стекломассы может производиться как механическим путем, так и воздухом или паром. Каждый из этих способов может быть одно- или двухстадийным. При двухстадийном процессе стеклянное волокно вырабатывается из стеклоплавильных сосудов или печей, питаемых стеклянными шариками, штабиками или эрклезом. При одностадийном процессе стеклянное волокно вырабатывается из стекловаренных печей, питаемых шихтой. Механическое вытягивание волокна может осуществляться с помощью барабана, съемных бобин, вытяжных валков или прядильной головки. Способы разделения струи расплавленного стекла делятся на три группы: способы раздува, центробежные и комбинированные.

Состав и свойства стекол для изготовления стекловолокна.

В зависимости от области применения непрерывного стекловолокна требования к его химическому составу могут быть различными. Для электрической изоляции употребляется только бесщелочное (или малощелочное) алюмосиликатное или алюмоборосиликатное стекло; для конструкционных стеклопластиков применяют главным образом бесщелочные магнийалюмосиликатные или алюмоборосиликатные стекла; для стеклопластиков неответственного назначения можно использовать и щелочесодержащие стекла.

Процесс формирования непрерывного стеклянного волокна предъявляет к стеклу ряд требований: интервал вязкостей, в котором устойчиво протекает формирование непрерывного стеклянного волокна из стекол обычных составов.

Основными требованиями, предъявляемыми к стеклам для производства штапельного волокна, являются малая вязкость при температуре выработки и низкое поверхностное натяжение. В зависимости от способа выработки и назначения штапельного волокна применяют стекла различных составов, однако все они отличаются высоким содержанием оксидов щелочноземельных металлов.

Физико-химические свойства неорганических волокон и материалов на их основе.

Механические свойства. Стекловолокно значительно превосходит по механической прочности исходное (массивное) стекло и незначительно отличается от него по некоторым физическим параметрам.

Механические свойства стеклянных волокон зависят от химического состава стекла, метода производства, окружающей среды и температуры. Метод производства оказывает большое влияние на прочность стеклянных волокон: высокой прочностью обладают волокна, вытянутые с большой скоростью из расплавленного стекла (вытягивание из фильер), наименьшей прочностью – волокна, полученные штабиковым способом и раздувом. При формовании волокна из фильер образуется меньше поверхностных дефектов и трещин, чем обусловливаются их лучшие механические свойства, главным образом прочность.

Прочность при растяжении стекловолокна зависит от его состава и диаметра

Наибольшей прочностью обладают непрерывные волокна из кварцевого и бесщелочного магнийалюмосиликатного стекла. Повышенное содержание щелочей в стекле резко снижает прочность стеклянных волокон. Кристаллизация стекла и присутствие в стекломассе мелких газовых включений понижает прочность стеклянного волокна на 25-30%.

Максимальная прочность стеклянных и кварцевых волокон, испытанных в среде жидкого азота, приближается к расчетной теоретической прочности стекла и плавленого кварца.

В зависимости от диаметра и состава стекла техническая прочность стеклянных волокон при их формировании современными промышленными методами составляет 25-30 % теоретической прочности стекла.

Модуль Юнга стеклянных волокон составляет 6-11 ГПа и выше. Разрушающее напряжение при изгибе и кручении повышается с уменьшением диаметра волокон.

Изделия из стекловолокна плохо работают при многократном изгибе и истирании, однако, стойкости к изгибу и истиранию повышаются после пропитки лаками и смолами. Склеивание волокон в нити повышает прочность нити на 20-25 %, а пропитка стекловолокнистых материалов лаками – на 80-100 %.В сухом воздухе прочность стеклянных волокон резко повышается. Смачивание стеклянных волокон и изделий из них неполярной углеводородной жидкостью аналогично действию сухого воздуха и дает наибольшее значение прочности. Значительное (до 50-60 %) понижение прочности стеклянных волокон и изделий из них происходит при адсорбции ими воды и водных растворов поверхностно-активных веществ. Это объясняется тем, что молекулы веществ, адсорбируемых на стеклянных волокнах, способствуют образованию трещин в слабых местах поверхностного слоя.

При погружении химостойких стекловолокнистых материалов в воду прочность их снижается, но после высушивания полностью восстанавливается. Изделия из стеклянного волокна натрийкальцийсиликатного состава, содержащие более 15 % (мас.) оксидов щелочных металлов, после пребывания во влажном воздухе или в воде снижают прочность необратимо в связи с интенсивным выщелачиванием и разрушением. При длительном действии деформирующего усилия у стеклянных волокон развивается упругое последствие, которое зависит от химического состава стекла и относительной влажности воздуха. Влага снижает также сопротивления стеклянных волокон изгибу и трению.

При нагревании стеклянной ткани до 250-300°С прочность ее сохраняется, в то время как волокна органического состава при этой температуре полностью разрушаются.

При низких и высоких температурах устраняется адсорбционное воздействие влаги воздуха на стеклянные волокна, что приводит к повышению их прочности. Однако после термической обработки (нагрев до различных температур и последующее охлаждение) прочность стеклянных волокон и тканей снижается на 50-70 %.

Состав стекла оказывает значительное влияние на прочность стеклянных волокон, подвергнутых термообработке. Волокна из натрийкальцийсиликатного и боратного стекол теряют свою прочность при термообработке, начиная уже с 100-200°С, волокна из кварцевого, кремнеземного и каолинового стекла теряют прочность на 50 % при нагреве до 1000°С и последующем охлаждении.

Прочность волокон из бесщелочного стекла значительно снижается при 300°С; прочность кварцевых волокон при этой температуре практически не изменяется.

После нагрева и охлаждения стеклянных волокон наблюдается небольшое повышение их плотности и показателя преломления.

Нагревостойкость. Стеклянное волокно обладает высокой нагревостойкостью , которая зависит от химического состава стекла . Температурная область применения стеклянных волокон натрийкальцийсиликатного состава ограничена температурами 450-500°С, при более высоких температурах начинается их спекание. Для бесщелочных волокон нагревостойкость выше на 200-300°С и составляет 600-700°С.

Гигроскопичность отдельных стеклянных волокон около 0,2 % (мас.). Поглощение влаги стеклянной тканью значительно выше, так как влага адсорбируется зазорами между волокнами и замасливателем. Гигроскопичность ткани зависит от характера переплетения нитей и химического состава стекла, например ткани из волокна натрийкальцийсиликатного состава обладают гигроскопичностью до 3-4 %.

Химистойкость теклянных волокон не зависит от их диаметра, но абсолютная растворимость тонких волокон выше растворимости толстых вследствие большего отношения их поверхности к массе. Поэтому при воздействии агрессивных реагентов волокна разрушаются быстрее, чем массивное стекло.

Прочность стеклянных волокон в различных агрессивных средах (горячая вода, водяной пар высокого давления, кислоты, щелочи) зависит от химического состава стекла. Наибольшей прочностью и высокой стойкостью к горячей воде и пару обладают волокна из бесщелочного алюмоборосиликатного и магнийалюмосиликатного стекла. По гидролитической классификации этот вид стекла относится к «стеклам, не изменяемым водой».

Материалы из стеклянного волокна, содержащего в своем составе щелочи, значительно теряют прочность при многократной обработке горячей водой или водяным паром даже нормального давления. В этом случае имеет место интенсивное выщелачивание, приводящее к полному распаду структуры стекла.

При длительном воздействии водяного пара различного давления резко снижается прочность материалов и из волокна бесщелочного алюмоборосиликатного стекла. Наиболее стойкими в этих условиях являются стеклянные ткани из бесщелочного безборного стекла.

Стеклянные ткани и волокна из бесщелочного стекла нестойки к воздействию кислот. При обработке кислотой волокон из бесщелочного стекла все компоненты его растворяются и остается лишь малопрочный кремнекислородный скелет.

Высокой стойкостью к воде, пару высокого давления и различным кислотам (кроме плавиковой) обладают волокнистые материалы кварцевого, а также кремнеземного и каолинового состава.

Прочность стекловолокна — Энциклопедия по машиностроению XXL

Волокна и ткани. Стекло в толстом слое — хрупкий материал, но тонкие стеклянные изделия обладают повышенной гибкостью. Весьма тонкие (диаметром 4— 7 мкм) стеклянные волокна имеют уже настолько высокую гибкость, что могут обрабатываться приемами текстильной технологии. На рис. 6-36 дана зависимость прочности при растяжении такого волокна от его диаметра. Большая гибкость и прочность стекловолокна объясняется ориентацией молекул поверхностного слоя стекла, имеющей место при вытягивании стекловолокна из расплавленной стекломассы и его быстром охлаждении.  [c.165]
ВЛИЯНИЕ УСЛОВИИ ИЗГОТОВЛЕНИЯ КОМПОЗИТА НА ПРОЧНОСТЬ СТЕКЛОВОЛОКНА В АЛЮМИНИИ [4)  [c.340]

Исследования, проведенные в Англии, привели к разработке армирующих листов и проволоки, которые использовались для изготовления трубопроводов. Для улучшения абразивной и химической стойкости стеклопластиков часто совместно со стекловолокном применяют органическое волокно. При воздействии ще.лоч-ных сред могут быть использованы полиакриловые, полиэфирные и полипропиленовые волокна. Некоторые органические волокна незаменимы при циклическом воздействии на слоистый пластик давления и температуры, так как они обеспечивают высокую совместимость армирующего наполнителя со связующим. Полипропиленовое волокно можно использовать в конструкциях из армированных пластиков, в качестве армирующего материала для перегородок. Хотя оно не обладает прочностью стекловолокна, оно успешно использовалось в конструкциях емкостей из армирован-  [c.312]

Прочность смолы также оказывает определенное влияние на механические свойства стеклопластиков. Прочность стекловолокна будет полностью реализована в том случае, когда относительное удлинение при растяжении смолы меньше относительного удлинения при растяжении применяемого стекловолокна. Прочность смолы может повысить прочность стеклопластика, если относительное удлинение ее при растяжении превосходит относительное удлинение стекловолокна. Полное использование прочности смолы и стекловолокна возможно тогда, когда они имеют одинаковое относительное удлинение (оптимальный случай). Смолы с низким относительным удлинением при растяжении, т. е. хрупкие, использовать не следует.  [c.152]

Стекловолокниты — это композиция, состоящая из синтетической смолы, являющейся связующим, и стекловолокнистого наполнителя. В качестве наполнителя применяют непрерывное или короткое стекловолокно. Прочность стекловолокна резко возрастает с уменьшением его диаметра (вследствие влияния неоднородностей и трещин, возникающих в толстых сечениях). Для практических целей используют волокно диаметром 5—20 мкм с 0р = 600—3800 МПа и е = 2- 3,5 %.  [c.464]

На рис. 20.10 дана зависимость прочности при растяжении такого волокна от его диаметра. Большая гибкость и прочность стекловолокна объясняется ориентацией молекул поверхностного слоя стекла, имеющей место при вытягивании стекловолокна с очень большой скоростью из расплавленной стекломассы и быстром охлаждении.  [c.198]

Рис. 223. Зависимость прочности стекловолокна от его диаметра Рис. 223. Зависимость прочности стекловолокна от его диаметра

По прочности стекловолокна значительно (на один-два порядка пре-  [c.16]

Применение стеклянной ткани в качестве наполнителя пластических масс позволило сочетать в готовом изделии высокую механическую прочность и термостойкость с высокими диэлектрическими свойствами. Прочность стекловолокна постепенно снижается под действием кислорода воздуха особенно во влажной атмосфере и при повышенной температуре. Атмосферостойкость стекловолокна можно повысить, уменьшив содержание окислов щелочных металлов в исходной стекломассе. Однако снижение содержания этих окислов вызывает повышение температуры размягчения стекломассы, что затрудняет изготовление волокна. Стеклянная ткань, пропитанная термореактивной поликонденсационной смолой (фенольно-формальдегидной, меламино-формальдегидной), теряет 15—20% своей первоначальной прочности во время прессования изделий, так как этот процесс проходит при повышенной температуре и сопровождается выделением паров воды. Для сохранения первоначальной прочности стеклоткани целесообразно использовать в качестве связующего термореактивные полимеризационные смолы (контактные смолы), так как их превращение в термостабильное состояние во время формования изделий не сопровождается образованием водяного пара. Не менее эффективной является и предварительная пропитка стеклоткани кремнийорганическими веществами, образующими на поверхности волокна защитный гидрофобный слой.  [c.50]

Стекло приобретает невероятную прочность на разрыв, если его вытянуть в волокна тоньше человеческого волоса (эта высокая прочность волокна не является принадлежностью исключительно стекла — волокна нейлона или полипропилена обладают высочайшей прочностью, что является следствием выравнивания молекул под воздействием вытягивания материала). В лабораторных условиях прочность стекловолокна на разрыв может составлять свыше 70 ООО кг/см , а учитывая различные реальные условия эксплуатации, прочность может быть равна 17 500 кг/см . До недавнего времени стекловолокно являлось, несомненно, самым прочным конструкционным материалом.  [c.52]

Армирование углеродным волокном. Последние несколько лет ведутся значительные исследования по разработке материалов, превышающих прочность стекловолокна, в частности для авиационной и космической промышленности. Сначала подавало надежды выращивание кристаллических усов на алюминии, но в начале 60-х годов в Великобритании начались работы по использованию углеродных волокон.  [c.57]

Основа прочности стеклопластов заложена в свойствах наполнителя, т. е. стекловолокна, поскольку прочность связующих находится лишь в пределах 400—1000 кг/си. Прочность стекловолокна объясняется его формой, вернее, диаметром волокна, и чем меньше диаметр, тем выше удельная прочность стекловолокна. Данные о прочности стекловолокна на разрыв для объемных и нитевидных образцов приведены в табл. 39.  [c.183]

Химическая стойкость стекловолокон к действию различных химических веществ зависит от состава стекла и характеризуется потерей прочности. Так, минеральные кислоты (азотная, соляная, серная) снижают прочность стекловолокна на 15%, а растворы едкого натра — на 30%. Органические растворители практически не оказывают влияния на прочность стекловолокна.  [c.470]

Высокая прочность композиционных пластиков зависит от применяемых наполнителей (стеклоткани и стекловолокна, хлопчатобумажные ткани и волокна, металлическая сетка и проволока,  [c.433]

Экспериментально к теоретической прочности материалов удалось приблизиться путем образования из них нитевидных кристаллов—усов. Эти очень тонкие кристаллы (толщиной 0,5…2 мкм н длиной 2… 10 мм) содержат мало дефектов структуры, вероятность обнаружения которых уменьшается с уменьшением объема или поперечных размеров. В силу этих причин прочность волокон стекла (стекловолокно) существенно выше прочности стекла в монолите. Полученные на основе волокон структуры (стеклопластики и т. п.) обладают высокой удельной прочностью.  [c.131]

Более полно удается использовать прочность стеклянного волокна в стеклотекстолитах, получаемых из стеклянной ткани, пропитанной полимерной смолой. При разрушении стеклотекстолитов появляются трещины в полимерной смоле — в местах перегиба нитей стеклоткани. Поэтому и здесь прочность стеклянных волокон используется не полностью. Наиболее полно можно использовать ее при изготовлении некоторых типов конструкций, например труб, осесимметричных оболочек, когда удается наматывать стекловолокно в разных направлениях под натяжением. Таким путем можно добиться одинаково высокой прочности в различных направлениях. Так, для стеклопластиков, армированных в одном направлении, удается получить при растяжении прочность до 1 ГПа (модуль упругости Е = = 42 ГПа). Плотность стеклопластика вчетверо меньше плотности стали, а потому удельная прочность его (т. е. прочность, приходящаяся на единицу массы) оказывается в несколько раз более высокой, чем  [c.43]

Как меняется прочность на разрыв стекловолокна при повышении влажности воздуха  [c.141]

Система алюминий — кварцевое стекловолокно будет рассмотрена также в связи с прочностью композитов и их усталостью.  [c.340]

Стекловолокнистая изоляция отличается большой нагревостой-костью. Длительная работа стекловолокнистой изоляции (непропи-танной) возможна при температуре до 250° С, кратковременная — при нагреве до 500° С. После 24-часового прогрева при 250° С прочность на разрыв стекло-ленты снижается только вдвое. Механическая прочность стекловолокна обусловлена наличием на его поверхности дефектов в виде микротрещин. Весьма тонкое волокно с диаметром менее 10 мк отличается высокой механической прочностью. С увеличением диаметра прочность уменьшается, так как возрастает концентрация (на единицу поверхности) таких дефектов. Прочность волокна из бесщелочного стекла выше, чем из щелочного (рис. 9.3). В сухом воздухе прочность волокна значительно больше, чем во влажной атмосфере. Дело в том, что поверхность трещины на стекловолокне покрыта гелями кремниевой  [c.137]

Метод намотки предполагает применение непрерывного армирующего наполнителя с целью наиболее эффективного использования прочности стекловолокна. Стеклоровницу пропускают через ванну со связзшщим, а затем наматывают на оправку определенной формы. Можно также использовать предварительно пропитанную и высушенную ровницу. Намотку непрерывного стекловолокна осушцствляют на специальных токарных станках, где обеспечивается определенная ориентация волокна, необходимая для достижения максимальной прочности в требуемом направлении. После намотки определенного числа слоев проводят отверждение намотанной на оправку заготовки при комнатной температуре или в печи.  [c.374]

Счастье и стекло — как легко они ра эбивают-ся —говорят немцы. Справедлива ли эта поговорка по отношению к стеклу Ведь прочность стекловолокна на разрыв достигает при диаметре 2—б микрон 600—200 кг/мм2, что больше в 5 раз, чем у капрона, в б раз, чем у шерсти, и более чем в 50 раз, чем у массивного стекла.  [c.99]

Механическая прочность кварцевого стекла в процессе нагревания до 1200 «С плавно возрастает и становится на 50—60% выше прочности при комнатной температуре. Имея коэффициент термического расширения в 10—20 раз меньший, чем у обычного промышленного стекла, кварцевое стекло отличается исключительно высокой термостойкостью (выдерживает резкое охлаждение в воде после нагрева до 1000 °С). Кварцевое стекло — незаменимый материал для изготовления химически стойкой аппаратуры, трубопроводов. Стекловолокно, используемое в различных стеклотканях и в пластмассах — стекловолокнитах, отличается исключительно большой прочностью, зависящей от химической природы стекла, от диаметра нити и способа ее получения. При диаметре волокна 3—4 мкм прочность стекловолокна при растяжении доходит до 3700 кГ1мм (при 6,8 кПмм в объемных образцах). Прочность силикатных стекол при том же диаметре волокна раз в 10 меньше. Промышленностью изготавливается пленочное или чешуйчатое стекло, используемое, в частности, в стеклотекстолитах. На его основе тексто-литы (при 90% содержании по весу стекла) получаются исключительно прочными (Опч до 25 кПмм ) и светопрозрачными.  [c.356]

ПОЯВЛЯЮТСЯ повреждения, обусловленные внешними причинами, прочность стекла остается без изменения. Согласно Гриффитсу, С уменьшением диаметра уменьшаются дефекты и возрастает прочность [1.5]. Гриффитс указывал на то, что в действительности с уменьшением диаметра происходит увеличение прочности стекловолокна. На рассматриваемом рисунке пунктирными линиями показаны результаты, полученные для выпускаемого промышленностью волокна, диаметр которого составляет примерно 9 мкм. Результаты получены как для волокна, поперечное сечение которого представляет круг, так и для пустотелого волокна, имеющего поперечное сечение в виде кольца. Помимо стекловолокон в композитах используются волокна других материалов, примеры которых приведены в табл. 1.4.  [c.16]

Стекловолокниты — это композиция, состоящая из связующего— синтетической смолы и стекловолокнистого наполнителя. Стекловолокно получается путем продавливания расплавленной стекломассы через фильеры (отверстия в дне электропечи). Применяется непрерывное стекловолокно или короткое волокно, причем прочность непрерывного волокна выше в 3,5 раза, чем короткого. Прочность стекловолокна резко возрастает с уменьшением его диаметра (вследствие влияния неоднородностей и трещин, возникающих в толстых сечениях). Максимальное значение прочности наблюдается для диаметра 1—3 мкм (рис. 223). Для практических целей употребляется волокно диаметром 5—20 мкм. Прочность при разрыве такого стекловолокна составляет от 60 до 380 кПмм , удлинение 2—3,5%. Однако при дальнейшей текстильной переработке наблюдается значительная потеря прочности.  [c.424]

Стекловолокниты — это композиция, состояищя пз связующего — синтетической смолы и стекловолокнистого наполнителя. Стекловолокно получается продавливанием расплавленной стекломассы через фильеры (отверстия в дне электропечи). В качестве наполнителя применяются непрерывное стекловолокно или короткое волокно. Прочность стекловолокна резко возрастает с уменьшением его диаметра (вследствие влияния неоднородностей и трещин, возникающих в толстых сечениях) (рис. 205). Для практических целей употребляется волокно диаметром 5 — 20 мкм с сТв = 60380 кгс/мм- и s = 2- 3,5%. Высокомодульные волокна (ВМ-1, ВМП, М-11) имеют (7в = 390 ч-470 кгс/мм» и 11000 кгс/мм Однако при дальнейшей текстильной переработке наблюдается значительная потеря прочности.  [c.411]

Стекловолокно получается из расплава неорганического стекла путем вытягивания массы, вытекающей через фильеры диаметром около 1 мм. Скорость вытягивания около 2 ООО м,1мищ диаметр получаемых нитей несколько микронов. При вытягивании происходит ориентация молекул, способствующая повышению гибкости и механической прочности стекловолокна.  [c.149]

Помимо связующего в состав композ1щионных пластмасс входят следующие составляющие 1) наполнители различного происхождения для повышения механической прочности, теплостойкости, уменьшения усадки и снижения стоимости композиции органические наполнители — древесная мука, хлопковые очесы, целлюлоза, хлопчатобумажная ткань, бумага, древесный шпон и др. неорганические — графит, асбест, кварц, стекловолокно, стеклоткань и др. 2) пластификаторы (дибутилфталат, кастровое масло и др.), увели-чнийю цие эластичность, текучесть, гибкость и уменьшающие хрупкость п. тастмасс 3) смазочные вещества (стеарин, олеиновая кислота и др.), увеличивающие текучесть, уменьшающие трение между частицами композиций, устраняющие прилипание к формообразующим поверхностям пресс-форм, 4) катализаторы (известь, магнезия и др.), ускоряющие процесс отверждения материала 5) красители (сурик, нигрозин и др.), придающие нужный цвет изготовляемым деталям,  [c.428]

Для силовых конструкций преимущественно используют композитные пластики (усиленные стекловолокном и стеклотканями). Из стекловолок-нитов изготовляют обтекатели корпуса легких судов, кузова автомобилей и другие конструкции оболочкового типа. Прочность таких конструкций выдерживает сравнение с металлическими конструкциями. Недостаточную жесткость компенсируют увеличением толщин и сечений.  [c.190]

Для увеличения прочности вводят наполиителн (ткань, стекловолокно, графитное волокно).  [c.385]

Особую группу наполнителей составляют армирующие материалы на основе стекловолокна, стекложгута, стекломата, которые могут обеспечить изготовление деталей, по прочности не уступающих стали (табл. П.З) .  [c.43]

Анизотропия прочности. Выше рассмотрены случаи разной сопротивляемости разрушению материалов при растяжении и сжатии. Однако эти свойства материалов часто зависят от ориентации направлений главных напряжений по отношению к некоторым характерным для данного материала направлениям. Например, в стеклопластиках и им подобных армированных материалах, в которых в относительно мягкой матрице (пластик, металл) уложена с данной системой ориентации относительно жесткая арматура (стекловолокно, борволокно, углеродные усы и т. п.), прочность на разрыв в направлении армирования существенно выше прочности на разрыв в перпендикулярном направлении. В то же время прочность  [c.170]

Первое состояло в искусственной организации капиллярных пор в направлении потока влаги. Ленточка термоэлектродов дополнительно обвивается слоем тонкого стекловолокна, далее из нее изготовляется спиральный или слоистый базовый элемент. Основная сложность в осуществлении этого предложения состояла в подборе степени полимеризации эпоксидного компаунда, которым смазывалась ленточка, чтобы придать элементу достаточную механическую прочность и вместь с тем сохранить большинство капилляров между нитями стекловолокна свободными для прохождения влаги. В результате при смачивании одной из граней массообменной секции тепломассомера противоположная грань секции за счет капиллярных сил также полностью смачивается.  [c.60]

Композиционные материалы на основе системы двух нитей целесообразно изготовлять из различных по механическим свойствам армирующих волокон. Высокомодульнь]е углеродные или борные волокна могут быть расположены в направлении утка и частично в направлении основы. Арматуру, искривленную в направлении основы, изготовляют из стекловолокна. При таком комбинировании разных волокон можно значительно повысить жесткость и прочность в направлении основы и утка без заметного снижения прочности на отрыв в трансверсальном направлении и сопротивляемости сдвигу. Хороший эффект в повышении монолитности и надежности таких структур достигается также за счет модифицирования волокон 34].  [c.12]

К снижению прочности волокон могут привести и поверхностные дефекты, возникающие при изготовлении композита или при предшествующих манипуляциях с волокнами. В обоих случаях прочность волокон зависит от того, насколько грубы дефекты (в соот ветствии с теорией Гриффитса или каким-либо из ее вариантов), а также от плотности дефектов и характера их распределения. Тщательность манипулирования со стекловолокнами и волокнами окислов, позволяющая избежать появления дефектов такого-типа, уже стала общепринятым требованием.  [c.153]

Для изготовления композитов было успешно применено кварцевое стекловолокно, которое сохраняло высокую прочность после быстрого нанесения на поверхность волокна покрытия из жидкого алюминия. Нежелательное взаимодействие в системе А1 — Si02  [c.332]

В отличие от аппретов все замасливатели содержат компоненты, ослабляющие связь между полимерной матрицей и смолой. Кроме того, для обработки волокна необходимо меньшее количество (в вес. %) аппрета, чем замасливателя. Предел прочности моноволокна после аппретирования ниже, чем моноволокна после замасливания. Тем не менее предел прочности композитов с аппретированными волокнами часто оказывается выше предела прочности композитов, армированных замасленными волокнами. В расчете на единицу веса стекловолокна производство замасленных волокон дешевле, чем производство аппретированных. При выборе способа обработки волокна учитываются различные факторы и часто приходится выбирать между свойствами композитов и стовмостью их изпотавления.  [c.13]

Значительные успехи были достигнуты в области улучшения связи на поверхности раздела между минеральным волокном и пластиком. Первые полиэфирные пластики, армированные необработанным стекловолокном, имели в исходном состоянии хорошую механическую прочность. Однако после продолжительной выдержки в воде их прочность ухудшалась и составляла только 60% исходной. Было установлено, что присутствие на поверхности раздела стекло— полимер небольшого количества аппретирующих добавок, содержащих мета1крилатохромовые комплексы или ненасыщенные силаны, способствует улучшению механических свойств композита в исходном состоянии и сохранению их во влажной  [c.13]

Сведения о природе поверхности раздела, которыми мы располагаем в настоящее время, недостаточны для разработки новых аппретов, пред назначе1нных для современных стеклопластов, особенно 1в случае упрочненных термопластиков. По сравнению с 1942 г. в решении этой проблемы достигнут значительный прогресс, однако до сих пор остается необъясненной очень высокая в отдельных случаях прочность слоистых пластиков. Как правило, это связывается с оптимальными условиями, когда аппрет, стекловолокно, смола и способ изготовления — все было самым лучшим (best evers). В табл. 1 приводятся прочностные характеристики некоторых композитов, полученных в таких оптимальных условиях в Военно-морской артиллерийской лаборатории США (NOH).  [c.14]

Обычно необходимо присутствие небольшого количества воды на поверхности раздела, для того чтобы аппрет выполнял свою роль в композитах, упрочненных стекловолокном. Поэтому стеклоткань вначале выдерживали в среде с различной относительной влажностью при 22 °С не менее 75 суток, а затем обрабатывали. аппретом МОЬ-24 в органичеюких растворителях [33]. При изменении относительной влажности воздуха от 50 до 88% прочность слоистого материала изменялась незначительно. Оптимальные результаты были получены после выдержки стеклянных волокон в среде с относительной влажностью более 70%. Следовательно, относительная влажность воздуха менее 50% может оказаться слишком низкой, чтобы существовала достаточно прочная связь аппрета со стеклом.  [c.28]


маты, плиты, ткань, рубленый материал, рулоны, панели

Фото 1Неорганическое стекловолокно – это популярный многофункциональный материал, применяемый в различных сферах деятельности человека.

Стекловолоконная продукция отлично зарекомендовала себя как утеплитель для стен и пола,ее используют для отделки помещений самого разного назначения.

Из него производится разнообразная строительная, промышленная и другая продукция.

Интересен материал и тем, что может производиться из вторичного сырья.

Технологический процесс получения стекловолокна довольно прост.

Древние жители Египта, которые первыми выплавили стекло из смеси песка, извести и соды, могли получать стеклянные волокна, но промышленную технологию производства стекловолокна изобрел Джон Плаер в далеком 1870 году.

С тех пор производство этого материала совершенствовалось с каждым годом и его стали использовать при изготовлении огромного ассортимента изделий.

В этой статье мы рассмотрим свойства и характеристики стекловолокна из стекольного боя, области его применения и виды продукции, которые изготавливают из этого материала.

Из чего делают стеклянные нити?

Фото 2Классический технологический процесс получения стекловолокна основан на выдувании стеклянных нитей из расплавленной при высокой в 1400 °C температуре смеси кварцевого песка, соды, извести и других специальных добавок.

Полученное жидкое стекло раздувается паром при выбросе из центрифуги или продавливается через фильеры (специальные платиновые сита с микроотверстиями) и на следующем этапе охлаждается.

При использовании центрифуг конечным продуктом является стекловата, а при применении фильеров — стеклянные нити, которые в дальнейшем идут на изготовление разнообразной продукции.

Возможность получения стеклянных волокон была открыта совершенно случайно. Авария на воздухопроводе привела к попаданию в расплав стекла струи воздуха под давлением, что привело к появлению стеклянных нитей. Этот факт и способствовал изобретению технологии производства стекловолокна.

Описанный выше техпроцесс получения стекловолокна является классическим из исходного природного сырья. Но эту же продукцию можно получать и из отходов стекла.

Рециклинг стеклянных изделий позволяет значительно снизить себестоимость конечного продукта, что дает конкурентные преимущества производителю, выбравшему такой способ производства стекловолокна.

Технология производства в этом случае практически не отличается от вышеприведенной, только вместо смеси природных компонентов плавится отсортированный бой стекла с соответствующими присадками.

Количество стеклянного боя в исходном сырье для производства стекловолокна может составлять до 90% общего объема. Это открывает широкие возможности для организации бизнеса по изготовлению стекловолокна на основе отходов стекла.

Фото 3

Свойства и характеристики

Использование стекловолокна в промышленности и строительстве обусловлено его отличными техническими характеристиками и свойствами. Именно они и привели к высокой популярности этого материала.

Ниже мы рассмотрим основной перечень технических характеристик и потребительских качеств изделий из стеклянных волокон:

Теплопроводность

Стекло само по себе имеет очень низкую теплопроводность, поэтому изделия из него обладают отличными теплоизоляционными свойства.

Самым низким коэффициентом среди всех изделий из стекловолокна обладает стекловата. Для этой продукции он составляет 0,05 Вт/м*К, что и определяет сферы ее использования.

Стекловата применяется для термоизоляции различных строительных конструкций, трубопроводов, промышленных объектов и т. д.

Химический состав

Эта характеристика зависит от состава исходного сырья. В любом неорганическом стекле основным компонентом является кварцевый песок, поэтому содержание SiO2 в стеклянных нитях варьируется от 50% до 99% в зависимости от их назначения.

Кроме этого компонента в стеклянном волокне присутствуют Al2O3, CaO и некоторые другие соединения.

От химического состава зависят физические характеристики стекловолокна и свойства изделий из него. В частности — щелочестойкость, которая определяется содержанием диоксида циркония (ZrO2) в стекле. Чем больше этого компонента, тем более щелочестойким является стекловолокно.

Плотность

Этот параметр непосредственно у стеклянных нитей подобен плотности стекла, из которого они изготовлены и равен 2500 кг/м³.

Плотность изделий из стеклянных волокон может колебаться в широких пределах. У стекловаты она минимальна, а такие продукты из этого материала, как листы, ткань и т. д. имеют максимальную плотность.

Для комбинированных материалов, таких как стеклопластик, плотность рассчитывается на основании плотности исходных материалов.

Температура плавления

Плавится любое стекловолокно при температуре от 1200 до 1400 °C.

Температура плавления зависит от состава стекла, из которого изготовлены волокна.

Чем больше в составе кварцевого песка, тем выше температура плавления. Поэтому для качественной переработки стеклянных отходов в стекловолокно необходимо точно знать его химический состав.

Стойкость к возгоранию

Стекло — полностью негорючий материал, поэтому изделия из него не способны поддерживать горение.

Все это в полной мере относится и к стеклянным волокнам – стекловолоконная продукция является пожаробезопасным материалом. Правда, некоторые композитные материалы, изготовленные на основе стекловолокна, могут возгораться при определенных условиях.

Таким образом, горит стекловолокно или нет, зависит от марки и компонентов, входящих в их состав.

Фото 4

Химические и физические характеристики стекловолокна определили виды продукции, которые можно изготовить из этого материала.

Марки

Перечень марок стекловолокна с соответствующими им характеристиками вы можете увидеть в таблице:

Фото 10

Ниже мы рассмотрим основные типы изделий из стеклянных волокон, наиболее популярные на современном рынке.

Материалы из стекловолокна

Среди всего разнообразия продукции из стеклянных волокон можно выделить две основные категории изделий: продукцию на 100% состоящую из этого материала и композитную, содержащую дополнительные вещества и элементы.

Рассмотрим некоторые изделия обоих видов и их характеристики.

  1. Маты из стекловаты. Эта продукция предназначена для теплоизоляции и шумопоглощения как в строительстве, так и в промышленной сфере. Структура теплоизоляционных матов состоит из ненаправленных отрезков стеклянных нитей, скрепленных между собой естественными силами. Продукция на 100% изготавливается из стекловолокна.
  2. Рулонная стекловата. Продукт полностью идентичный матам по своему составу и способу производства, только свернутый в рулоны. Для выполнения некоторых видов работ по теплоизоляции объектов такая форма поставки является более предпочтительной, чем маты.
  3. Сетка из стекловолокна. Изделие предназначено для армирования различных поверхностей при проведении отделочных работ. Состоит из гибких стеклянных нитей, переплетенных между собой и покрытых специальным раствором. Сетка выпускается как в листах, так и в рулонах различного размера.
  4. Ткань из стекловолокна. Эта продукция аналогична сетке из стекловолокна, только у нее более плотное плетение тонких стеклянных нитей. Изготавливается это изделие по ткацкой технологии в разнообразных исполнениях. Стеклоткань имеет широкую сферу применения: изготовление обоев, в частности стеклохолстов «паутинка», электротехнические работы и т. д.
  5. Стеклопластик. Это композитный универсальный материал, состоящий из стеклянных волокон и специальных связующих смол. Области использования стеклопластика самые разнообразные. Из него можно изготовить любые детали способом формовки и другими технологическими приемами.
  6. Стеклопластиковая арматура — достойная альтернатива металлическому аналогу, способная заменить его во всех сферах применения.

Конечно, это далеко не полный перечень продукции из стеклянного волокна.

Стекловолокно нашло применение в строительстве, электротехнике, радиотехники, медицине и других областях промышленности.

Следует заметить, что для производства тех или иных изделий используется стекловолокно разных марок, изготовленное по разным технологиям, имеющее различную длину и толщину нитей.

Фото 5

Штапельные стеклянные нити (короткие отрезки) применяются для производства стекловаты, рубленые из длинных волокон — для изготовления стеклопластика, а длинные (бесконечные) нити стекловолокна — для получения тканей и сеток.

Сферы применения

Стекловолоконная продукция используется в различных областях деятельности человека. Выше были описаны некоторые из них.

Рассмотрим этот вопрос подробнее, для каждой отрасли отдельно с перечнем основных изделий из стекловолокна, предназначенных для выполнения определенных работ, а также предметов, комплектующих и конструкций, которые могут быть изготовлены на основе стеклянных нитей.

Строительная индустрия

В строительстве стекловолоконные изделия используются в первую очередь для теплоизоляции:

  • жилых помещений;
  • промышленных зданий;
  • трубопроводов и других объектов.

Для этих целей используются:

  • маты;
  • рулоны из стекловаты;
  • листовое стекловолокно.

Для изготовления различных конструкций в строительной индустрии широко используется и стеклопластик — композиционный материал, состоящий из стекловолокна и полимеров.

Из него производятся разнообразные панели, плиты, в том числе теплоизоляционные, и другие защитные архитектурные элементы.

Стеклообои нашли свое применение в отделочных работах. Они изготавливаются из стекловолоконной ткани с различной структурой переплетения нитей.

Для штукатурных работ используется сетка из стеклянных волокон. Огнеупорное керамическое стекловолокно применяется в качестве теплоизоляции котлов, футеровки дымоходов, воздуховодов, стен и сводов нагревательных, термических печей.

Производство товаров

Стеклопластик широко используется в судостроении, производстве автотехники и других отраслях промышленности, где легкость, простота обслуживания, устойчивость к коррозии и низкая цена деталей являются определяющими факторами.

Из него изготавливаются корпуса и покрытия для лодок и яхт, элементы автомобилей, корпуса приборов и т. д.

Стеклопластиковые бассейны, емкости под воду, септики, лыжи, и другие товары прочно вошли в быт современного человека.

Ассортимент продукции из стеклопластиков огромен.

Электротехника и электроника

Стеклянное волокно используется для изготовления разнообразных электроизоляционных материалов.

Стекло является отличным диэлектриком, поэтому нити из него применяются при производстве специальных тканых материалов для изоляции токопроводящих конструкций и проводников электрической энергии.

Покрытый медной фольгой стеклотекстолит (смесь стеклянных волокон с эпоксидными смолами) является основой для изготовления многослойных печатных плат электронных устройства.

Оптоволокно, широко используемое в электронике, также является стекловолокном, изготовленным из кварцевого стекла.

Медицина

Стеклопластика применяется при изготовлении протезов различных частей человеческого тела, а также некоторых видов имплантов без вреда для здоровья. В стоматологии стеклянное волокно используется для изготовления зубных протезов. Во многих медицинских инструментах и оборудовании стекловолокно в различном виде присутствует как основной или второстепенный конструкционный материал. Одним из главных элементов хирургических лазерных скальпелей является все то же стекловолокно высокой степени очистки.

Фото 7

Из выше представленной информации можно сделать однозначный вывод, что стекловолокно, как основа для производства разнообразной продукции, является очень востребованным материалом в настоящее время.

Что можно сделать своими руками?

Для самостоятельного творчества стекловолокно является отличным материалом.

В основном поделки своими руками изготавливаются из стекловолоконных тканей и различных связующих смол: эпоксидного клея, полиэфирных смол и других синтетических наполнителей.

Что же можно изготовить из стеклоткани самостоятельно? Да все что угодно, от простой подставки для чайника до корпуса самодельной лодки или автомобиля. Все зависит от вашего желания и фантазии.

Самым простым способом изготовления любых деталей или конструкции из стекловолоконной ткани является технология послойного нанесения тканевой основы на модель с проклейкой каждого слоя эпоксидной смолой.

Этот метод позволяет создать практически любую конструкцию со сложной поверхностью из стеклопластика своими руками.Фото 8Это может быть панель прибора, бампер автомобиля или катер.

Главное — правильно подготовить модель, на которую вы будете накладывать и склеивать слои стеклоткани.

Ее можно изготовить из пластилина, глины, дерева или других легкообрабатываемых материалов.

Модель следует обмазать жидким парафином для облегчения снятия готового изделия.

Каждый слой стекловолокна проклеивается эпоксидным клеем и вся конструкция снимается с модели после полного затвердевания.

Заготовка обрезается по контуру, шлифуется и если необходимо в ней прорезаются отверстия, после этого деталь готова.

В этом описании нет привязки к конкретному изделию и коротко рассказано об общем принципе изготовления любых изделий из стекловолокна своими руками.

Видео по теме

В данном видео описан процесс послойного склеивания листов ткани из стекловолокна для изготовления различных изделий.

Заключение

Минеральное стекловолокно – это универсальный материал, который используется для производства огромного количества изделий во многих областях хозяйственной деятельности человечества.

Рынок сбыта этого уникального продукта практически неограничен, при условии конкурентоспособной цены. Рециклинг отходов стекла и переработка стекольного боя в изделия из стекловолокна позволяют создать рентабельный бизнес с низкой себестоимостью продукции.

Стекловолокно: характеристики, применение | Строительный портал

Стекловолокно представляет собой волокна или нити, изготовленные из стекла или его производных, но благодаря сложному процессу производства приобретшее в конечном итоге уникальные свойства, нехарактерные для обычного стекла. Оно не разбивается при ударе, а легко гнется, при этом не деформируясь и не повреждаясь. Из материалов, производимых на его основе, изготавливаются различные изделия, успешно заменяющие традиционные привычные материалы, а сферой применения становятся области строительства, автомобилестроение, дорожные работы в другие направления. В статье речь пойдет о разновидностях стекловолокна.

Содержание:

  1. Стекловолокно характеристики
  2. Материалы на основе стекловолокна
  3. Стекловолокно применение

 

Производство искусственного волокна и применение материалов на его основе представляет большой интерес как прогрессивное направление бизнеса. Оно занимает сегодня огромную часть отрасли стекольной промышленности с приличными капиталовложениями. Это говорит о том, что стекловолокно востребованный продукт среди ассортимента производимых товаров в современном мире.

Синтетическое стекловолокно может выпускаться из различного типа сырья, среди которых стекло, шлак, различные горные породы и минералы. Стекловолокно может быть произведено методом непрерывных нитей, или другим способом — в виде штапельного волокна.

Стекловолокно фото

Стекловолокно характеристики

Стекловолокно популярно и востребовано как материал благодаря своим замечательным свойствам, которые в значительной мере отличаются от исходного материала. Особое внимание стоит остановить на следующих характеристиках:

  • высокий уровень прочности, который превосходит прочность легированной стали. Диаметр нитей стекловолокна составляет 7-9 мк. Они  произведены из магнийалюмосиликатного стекла и стекла, не содержащего щелочь, обладают самыми большими показателями прочности;
  • устойчивость к термической обработке. Структура эпоксидного стекловолокна сохраняется даже при сильном нагревании, в условиях, когда природные волокна органического происхождения уже полностью разрушаются;
  • придание дополнительной прочности в составе других материалов. В этом случае стекловолокно играет роль армирующей основы;

  • толерантность некоторых видов стекловолокон к химически и термически агрессивных средам — кислотам, горячей воде и воздействию пара высокого давления. Лучшими показателями обладают волокна кремнеземного, кварцевого и каолинового происхождения;
  • звукопоглощающие свойства. Шумоизолирующий эффект достигается благодаря оригинальному строению материала, в котором пространство, остающееся между волокнами, заполнено микроскопическими пузырьками воздуха;
  • теплоизолирующие свойства. Небольшая плотность и содержание воздуха среди волокон обеспечивают удержание тепла зимой и отсутствие нагрева летом;
  • негорючесть и экологичность. Стекловолокно не воспламеняется, не горит и не плавится, что делает его пожаробезопасным материалом и позволяет избежать токсичных веществ, которые выделяются при горении многих синтетических материалов;
  • способности сохранять первоначальную форму, прекрасно сопротивляться старению и противостоять деформации;
  • изменение свойств материала при намокании. В мокром виде теряет исходные свойства, а при высыхании восстанавливает их снова;
  • плохое отношение стекловолокна к изгибам и многочисленным истираниям. Обработка смолами и лаками меняет дело в положительную сторону;
  • экономичности транспортировки. Стекловолокнистая ткань тонкая, гибкая, но в то же время упругая. При необходимости перевозки ее можно сложить достаточно плотно и структура ткани не будет нарушена. Благодаря этому экономится место в транспорте, а значит, и расходы на транспортировку.

Свойства, которыми будет обладать готовое изделие, в конечном итоге зависят от способа изготовления продукта, химического состава сырья, воздействия факторов окружающей среды и толщины стекловолокна.


Материалы на основе стекловолокна

Само стекловолокно является лишь сырьем для производства различных продуктов — стеклонитей, ровингов и рубленого волокна, из которых впоследствии изготавливаются разные материалы строительного, электроизоляционного, производственного и конструкционного назначения.

Из непрерывных стекловолокнистых нитей получают:

  • стеклоткани, которые производятся таким же ткацким методом, что и обычное полотно — переплетением продольных и поперечных нитей между собой. В зависимости от вида переплетения — сатинового, полотняного, шашечного или саржевого, плотности и извивистости пряжи ткани отличаются между собой свойствами и назначением. Стеклоткани бывают электроизоляционные, строительные, конструкционные, кремнеземные и ровинговые. В зависимости от марки цена стекловолокна составляет 25-200руб/м2$

  • армированное стекловолокно и ленты, отличающиеся размером ячейки, видом и плотностью пропитки и предназначенные для дорожных или строительных наружных и внутренних отделочных работ;
  • пластиковое стекловолокно — композиты с разнообразными свойствами, которые задаются изначально в зависимости от условий эксплуатации. Они позволяют производить изделия любой сложности и конфигурации и поэтому именно стекловолокна в сочетании с полимерами получили самое широкое применение и распространение в самых различных сферах нашей жизни.

Из штапельных стекловолокнистых нитей и рубленых волокон можно купить стекловолокно следующего назначения: 

  • утеплитель — стекловату и стекломаты;
  • стеклохолсты различной степени толстости, стеклопластики;
  • такое сырье используется и как компонент строительных растворов.

Каждый из этих материалов имеет свои присущие только ему особенности и индивидуальные характеристики, что предоставляет неограниченные возможности для широчайшего использования их во всех областях человеческой жизни.


Стекловолокно применение

Сегодня без изделий из стекловолокна не обходятся строительные, ремонтные и отделочные работы. Этот материал применяется также и при проведении дорожных работ. Широкое использование он получил в авто- и судостроении, в сфере производства товаров бытового, спортивного и медицинского назначения. А из-за превосходных диэлектрических свойств давно применяется в энергетической отрасли в качестве изоляционных материалов.

Применение стекловолокна в строительстве

Очень много продуктов из стекловолокна используется в строительстве. Одним из них является стеклопластиковая арматура, которая разрабатывалась как замена для стальной. Дело в том, что долгое время сталь являлась практически единственным материалом, у которого имелись необходимые для армирующего элемента свойства — исключительная прочность и долговечность. Альтернативы не было, а значит, приходилось мириться и с недостатками стали. Когда развитие технологий сделало возможным получение материалов с ранее недоступными свойствами, изменились и стандарты производства стройматериалов, в том числе и армирующих. На смену стальной пришла композитная стеклопластиковая арматура.

  • Она обладает прочностью и надежностью стали, но в то же время в несколько раз легче ее, не подвержена коррозии, устойчива к неблагоприятным воздействиям влаги, имеет низкую теплопроводность, не проводит электричество и полностью химически инертна. Все эти замечательные качества обеспечивают композиту самое широкое использование в самых различных случаях — для армирования фундаментов, бетонных конструкций и дорожного или авиационного полотна, крепления теплоизоляции, в виде армирующих сеток для несущего или облицовочного слоя при строительстве или ремонте зданий, для возведения осветительных опор, ограждений, канализационных и мелиоративных конструкций.
  • Еще одним изделием из стекловолокна является стеклофибра, которую добавляют в бетонный раствор в качестве скрепляющего элемента. Как известно, обычная бетонная смесь в процессе застывания подвержена усадке, в результате которой образуются микротрещины. Что является нежелательным, так как негативно влияет на качество бетона и его долговечность. Добавление в раствор фибры меняет дело. Когда свежий бетон начинает застывать, внутри раствора химические и физические процессы могут приводить к образованию дефектов. Волокна стекловолокна способны остановить прорастание микротрещин на ранних стадиях его твердения. В некоторых случаях такой состав позволяет обойтись без дополнительного армирования. Стеклофибру применяют для создания газобетонов, пенобетонов и ячеистых бетонов, в сухих смесях и штукатурках, стяжках и стеновых панелей для зданий и т. д. Полученная продукция выходит лучшего качества и с более высокими характеристиками.

  • Стекловолокно — прекрасный утеплитель. Чем хорошо пользуются в строительстве для теплоизоляции различных ненагруженных конструкций, внутри и снаружи зданий. Для наружных работ применяется в системе вентилируемых фасадов как самостоятельный элемент утепления или в составе сэндвич-панелей. Может использоваться как в рулонах, так и в матах. Внутренние работы включают в себя утепление кровли, чердачного помещения, теплоизоляцию стен и потолков, внутренних перегородок обычных и каркасных зданий. Стекловолоконными изделиями утепляют также различные подходящие к зданиям коммуникации — трубопроводы, системы канализации и вентиляции, отопления. Для этих целей в основном используют иглопробивные материалы. Обладающими паро- и теплоотражающими качествами фольгированными матами изолируют холодильные камеры, сауны и подобные помещения.
  • Ремонт и отделка помещений также не обходится без изделий из стекловолокна. Их главное назначение — создание армирующего слоя на поверхности при штукатурных работах. Таким образом, реставрация проходит успешно. Множество мелких трещин или одну крупную можно закрыть с помощью шпаклевки стекловолокна.
  • Кроме этого ее используют как армирующий элемент перед заливкой наливного пола, укладкой гидроизоляции, для укрепления соединений листов гипсокартона. Для более тонкой отделки поверхностей под покраску, при работе с гипсокартоном, для предупреждения появления мелких изъянов и получения идеальной картины в целом используется более изящный вариант армирующего материала — нетканый стеклохолст. Финишная отделка с применением стеклохолста дает всегда отличные результаты, качественное однородное покрытие без дефектов и изъянов. К тому же это еще и гарантия того, что идеальное состояние поверхности в ближайшее время не будет нарушено.

  • Еще одним отделочным материалом из стекловолокна являются стеклообои — прекрасное декоративное покрытие, но требующее большого количества краски из-за высоких впитывающих свойств. В отличие от обычных обоев, они выносливы, выдерживают механические нагрузки и воздействия химических сред.
Применение стекловолокна в дорожном и промышленном строительстве
  • Широкое распространение применение стекловолокна получило в промышленном и дорожном строительстве. Здесь оно незаменимо как скрепляющий компонент. Дорожное полотно с уложенной стеклопластиковой арматурой, при условии соблюдения технологии строительства, не растрескивается и не продавливается при нагрузках. Наличие в слоях покрытия дорог стеклосетки гарантирует увеличение производительности и срока их эксплуатации, снижает толщину асфальтного покрытия, предупреждает образование и распространение трещин и выбоин, увеличивает проходимость и долговечность дорог, позволяет увеличить сроки между ремонтами.
  • В гидротехническом строительстве без укрепляющих стекловолоконных сеток не обходится возведение плотин, набережных, мостов, подпорных стенок, ливневых коллекторов. Значительная часть канализационных емкостей (отстойников, фильтров, септиков) выполнена все из того же стеклопластика.

  • Из него изготавливаются сидения, устанавливаемые на стадионах, в аэропортах, авто- и ж/д вокзалах; оборудование остановок, бассейнов. Везде, где предусматривается большое скопление людей.
Применение стекловолокна в авто- и судостроение
  • Стеклоткань и композитный стеклопластик, благодаря малому весу и исключительной прочности, способности хорошо поддаваться механической обработке и окрашиванию, поэтому востребованы в автопромышленности и автоспорте. Из этих материалов производят различные части кузова — двери, крыши, крышки багажников, капоты. А также бампера, спойлеры, обвесы, рейлинги и внутренние детали салона. Стекловолокно применяют для придания дополнительной жесткости шинам, и в глушителях как звукоизоляционный материал.
  • В тюнинговых ателье изделия из стекловолокна используются для создания отделочных элементов благодаря способности легко копировать форму заготовки для воспроизведения необходимой детали. Простота в обработке, небольшая толщина, гибкость и пластичность материала позволяют изготавливать из него изделия разной степени сложности и формы.

  • Те же замечательные качества стекловолокна обеспечивают его применение в промышленном масштабе и в судостроительной отрасли. Корпуса моторных и весельных лодок, гоночных и крейсерных яхт, рыболовецких судов малой тоннажности, скутеров и катеров сегодня частично или полностью выполнены из этого материала. Стеклопластиковыми могут быть и другие части суден.

Лодка из стекловолокна видео

Другие способы применения стекловолокна

В зависимости от толщины стекловолокна из него производят различные товары народного потребления и другие изделия:

  • сантехнические детали — биотуалеты, септики, душевые кабинки, чаши бассейнов;
  • товары для спорта и отдыха — весла для гребли, лыжные палки, удочки и т. д.;
  • ящики и контейнеры для бытовых отходов твердого типа;
  • медицинские изделия, используемые в стоматологии — пломбы и несъемные протезы, ленты для шинирования зубов ;
  • медицинские изделия, используемым в ортопедии — протезы, костыли, трости;
  • разнообразные виды трубок бытового назначения — антенны, держатели, флагштоки;
  • электротехнические изделия — индикаторы, предохранители, заземлители.

Это далеко не полный список перечислений всех мест, где может быть использованы изделия из стекловолокна. С каждым днем область их применения все больше расширяется, охватывая все новые и новые сферы нашей деятельности.

Широкое распространение и применение стекловолокна и изделий на его основе стало возможным благодаря достижениям современного производства, высоким технологиям в области химпромышленности, в частности полимеров и композитных материалов, и высоким требованиям к качеству конечного продукта. Стекловолокно — уникальный продукт, который как нельзя лучше отвечает реалиям времени и требуемым характеристикам и свойствам, присущим современным материалам. Поэтому такое его разностороннее применение совсем неудивительно.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *