Skip to content

Расчет диаметра арматуры: Страница не найдена — ГидФундамент

Содержание

Страница не найдена — ГидФундамент

Содержание статьи1 Определение и назначение2  3 Нормативы4 Параметры4.1 Ширина4.2 Глубина4.3 Угол наклона5 Типы и структура6 Самые распространённые виды отмосток6.1 Бетонная6.2 […]

Содержание статьи1 Функции армопояса из кирпича2 Виды поясов3 Пояс из кирпича под перекрытие4 Кирпичный пояс под мауэрлат5 Гидроизоляция и утепление6 […]

Содержание статьи1 Для кровли1.1 Основные функции1.2 Способы возведения1.3 Геометрические параметры1.4 Правила  армирования2 Для перекрытий3 Общие принципы устройства армопояса3.1 Утепление3.2 Бетонирование3.3 […]

Содержание статьи1 Как избежать работ по выравниванию поверхности2 Инструменты для контроля горизонта3 Основной способ4 Практические советы и рекомендации5 Другие способы […]

Содержание статьи1 Виды  армопояса2 Материалы опалубки для армопояса3 Виды опалубки для армопояса4 Крепление опалубки В технологический процесс устройства монолитного армированного […]

Содержание статьи1 Кирпичные фронтоны2 Требования к материалу3 Завершение кладки3.1 Ровный обрез3.2 Кладка кирпича уступом4 Гидроизоляция под мауэрлат5 Способы крепления мауэрлата5.1 […]

Содержание статьи1 Последствия неправильного выбора арматуры2 Понимание процесса работы арматуры в ленточном фундаменте3 Критерии надёжности4 Виды5 Классификация5.1 Классы5.2 Дополняющие литеры5.3 […]

Содержание статьи1 Виды монолитных лестниц2 Типы и назначение арматуры3 Практические рекомендации4 Особенности расчёта армирования лестницы4.1 Задачи армирования4.2 Угол подъёма4.3 Место […]

Содержание статьи1 Задачи армирования2 Основная функция защитного слоя3 Факторы формирования толщины4 Нормативы и допуски защитного слоя бетона5 Ошибки6 Восстановление защитного […]

Содержание статьи1 Особенности устройства кирпичной фундаментной ленты2 Свойства грунтов3 Выбор конструкции4 Достоинства5 Выбор кирпича для фундамента5.1 Размеры5.2 Маркировка6 Ленточный фундамент7 […]

Страница не найдена — ГидФундамент

Содержание статьи1 Определение и назначение2  3 Нормативы4 Параметры4.1 Ширина4.2 Глубина4.3 Угол наклона5 Типы и структура6 Самые распространённые виды отмосток6.1 Бетонная6.2 […]

Содержание статьи1 Функции армопояса из кирпича2 Виды поясов3 Пояс из кирпича под перекрытие4 Кирпичный пояс под мауэрлат5 Гидроизоляция и утепление6 […]

Содержание статьи1 Для кровли1.1 Основные функции1.2 Способы возведения1.3 Геометрические параметры1.4 Правила  армирования2 Для перекрытий3 Общие принципы устройства армопояса3.1 Утепление3.2 Бетонирование3.3 […]

Содержание статьи1 Как избежать работ по выравниванию поверхности2 Инструменты для контроля горизонта3 Основной способ4 Практические советы и рекомендации5 Другие способы […]

Содержание статьи1 Виды  армопояса2 Материалы опалубки для армопояса3 Виды опалубки для армопояса4 Крепление опалубки В технологический процесс устройства монолитного армированного […]

Содержание статьи1 Кирпичные фронтоны2 Требования к материалу3 Завершение кладки3.1 Ровный обрез3.2 Кладка кирпича уступом4 Гидроизоляция под мауэрлат5 Способы крепления мауэрлата5.1 […]

Содержание статьи1 Последствия неправильного выбора арматуры2 Понимание процесса работы арматуры в ленточном фундаменте3 Критерии надёжности4 Виды5 Классификация5.1 Классы5.2 Дополняющие литеры5.3 […]

Содержание статьи1 Виды монолитных лестниц2 Типы и назначение арматуры3 Практические рекомендации4 Особенности расчёта армирования лестницы4.1 Задачи армирования4.2 Угол подъёма4.3 Место […]

Содержание статьи1 Задачи армирования2 Основная функция защитного слоя3 Факторы формирования толщины4 Нормативы и допуски защитного слоя бетона5 Ошибки6 Восстановление защитного […]

Содержание статьи1 Особенности устройства кирпичной фундаментной ленты2 Свойства грунтов3 Выбор конструкции4 Достоинства5 Выбор кирпича для фундамента5.1 Размеры5.2 Маркировка6 Ленточный фундамент7 […]

Расчёт арматуры, рассчитать арматуру, таблица расчёта арматуры -Статьи

Армирование фундамента

Посредством несущей способности почвы и расчетных нагрузок определяется размер и тип фундамента.

Расчет арматуры для выполнения армирования плитного фундамента

Для данных целей оптимально использовать арматуру, имеющую ребристую поверхность. Поэтому идеально подойдет арматура класса А3, диаметр которой составляет свыше 10 мм. Как показывает практика, чем больше будет диаметр арматуры, тем крепче фундаментальная основа. Толщина прутка в первую очередь зависит от типа почвы и веса жилого строения. Когда грунт достаточно плотный, то фундамент будет деформироваться значительно меньше.

Чем тяжелее возведенный дом, тем соответственно будет больше нагрузка на фундамент, поэтому при возведении основы важно учитывать каждую специфичную деталь, чтобы в итоге фундаментная основа была прочной и устойчивой к небольшим земным подвижкам.

Если Вы возводите каркасный, деревянный либо щитовой дом на почве, которая отличается хорошей несущей способностью, то специалисты рекомендуют применять арматуру диаметром также 10 мм. Когда строится тяжелый дом на плитном фундаменте, то задействуются арматурные прутья, диаметр которых составляет от 14 до 16 мм.

На практике арматурный каркас выполняется с шагом сетки в 20см. Жилой дом, размером 8м х 10м необходимо уложить:

(8/0,2+1) + (10/0,2+1) = 41 (прутки по 6 м) + 51 (прутки по 10 м) = 92 прутка.

Плитный фундамент состоит из 2-х поясов армирования:

1.​ Верхний.

2.​ Нижний.

Именно по этой причине общее количество прутков удваивается. Соответственно получается:

92*2 = 184 прутка, в том числе 82 прутка по 6м и 102 прутка по 10м.

Итого: 82*6+102*10 = 1 512м арматуры.

Верхняя сетка соединяется с нижней. Такое соединение должно быть выполнено в каждом пересечении продольных прутков арматуры с поперечными. Количество соединений составит:

41*51 = 2 091 шт.

При толщине плиты в 20см. расстояние каркаса до поверхности плиты составит 5см. Для соединения необходимы арматурные прутки, длина которых равна 20-5-5 = 10см. либо 0,1м. Итоговая длина прутков для соединения:

2 091*0,1 = 209,10 м.

Общее количество арматуры на плитный фундамент составляет:

1 512+209,10 = 1 721,10 м.

Расчет необходимого количества вязальной проволоки

При каждом пересечении прутков будет 2 вязки арматуры:

  • ​ соединение продольного прутка с поперечным;
  •  вторая вязка с вертикальным прутком.

Количество соединений в верхнем поясе:

41*51 = 2 091шт.

В нижнем поясе будет аналогичное количество соединений.

Итоговый показатель соединений составит:

2 091*2 = 4 182шт.

Для каждой вязки арматуры понадобится вязальная проволока, которая будет сложена вдвое и иметь длину 15см. либо 30см. чистой длины.

Итоговое количество вязальной проволоки равняется числу соединений, которое умножается на число вязок, в каждом соединении умноженное на длину проволоки на одну вязку:

4 182*2*0,3 = 2 509,20

Расчет требуемого количества арматуры с целью проведения армирования ленточного фундамента

На практике плитный фундамент подвержен большему изгибу нежели ленточный. По этой причине при возведении ленточного фундамента применяется арматура меньшего диаметра. Если строится малоэтажный дом, то оптимально применять арматурные прутья, диаметр которых составляет от 10 до 12мм, иногда этот показатель равен 14мм.

При армировании ленточного фундамента применяются 2 пояса: продольные прутья арматуры укладываются на расстоянии 5см. от поверхности фундамента в его нижней и верхней части. Данное действие выполняется независимо от высоты ленточного основания. Так как продольные прутки несут всю нагрузку, оказываемую на фундамент, рационально использовать ребристую арматуру класса А3.

Вертикальные и поперечные прутки армирующего класса ленточного фундамента несут значительно меньшую нагрузку, поэтому лучше применять гладкую арматуру класса А1. Если ширина ленточного фундамента составляет 40см., то достаточно воспользоваться 4-мя продольными прутками, соответственно 2 снизу и 2 сверху. Когда ситуация предполагает строительство дома на подвижном грунте, либо при условии большей ширины фундамента, правильно применить 3-4 продольных прутка в каждом поясе.

Длина ленточного фундамента жилого дома 8м*10м с 2-мя внутренними стенами будет равняться:

8+10+8+10+8+10 = 54м.

При ширине фундаментного основания в 60см и армировании в 6 продольных ребристых прутьев, их длина составит:

54*6 = 324м.

При ситуации если вертикальные и поперечные прутья устанавливаются с шагом в 0,5м, ширина фундамента – 60см, высота 190см и отступы прутков каркаса по 5см от поверхности основания, то длина гладкой арматуры, диаметром 6мм на каждое соединение составит:

(60-5-5)*2+(190-5-5)*3 = 640см (6,4м)

Итого соединений будет:

48/0,5+1 = 97шт.

Соответственно на них потребуется арматуры:

97*6,4 = 620,80 м.

Каждое из соединений имеет 6 пересечений для вязки арматуры и требует использования 12 кусков вязальной проволоки. Длина проволоки, исходя из расчета на одну связку — составляет 30см. Общий расход такой проволоки на каркас ленточного фундаментного основания:

0,3м*12*97 = 349,20м.

Расчет количества арматуры для столбчатого фундамента

В процессе армирования столбиков фундаментного основания желательно применять арматуру, диаметр которой составляет 10-12мм. Горизонтальные прутья (из гладкой арматуры, диаметр которой равен 6мм) предназначены для связки вертикальных, с целью получения единого каркаса. Вертикальные прутки делаются из ребристой арматуры класса А3.

Чаще всего армирующий каркас столбика выполняется с использованием 2-6 прутков, длиной, которая равна высоте столба. Прутки распределяются равномерно внутри столба. Вертикальные прутья связываются по высоте столба на расстоянии 40-50см. Когда планируется армирование столбика, длиной 2м и диаметром 40см, то можно остановиться на использовании 4-х арматурных прутков, диаметром 12мм, которые будут располагаться друг от друга на расстоянии 20см. Прутья перевязываются гладкой арматурой, диаметр которой составляет 6мм в 4-х местах.

Расход ребристой арматуры на вертикальные прутья 2м*4 = 8м. Расход гладкой арматуры составит 0,2*4*4 = 3,2м. Соответственно, для 48 столбиков необходимо гладкой арматуры в количестве 3,2м*48 = 153,60м, ребристой — 8м*48 = 384м. К 4-м вертикальным пруткам в столбике крепится 4 горизонтальных. Для связки таких прутков понадобится:

0,3м*4*4 = 4,8м вязальной проволоки.

Для всего фундаментного основания, состоящего из 48 столбов необходимо:

4,8м*48 = 230,40 м проволоки.

Как рассчитать количество арматуры для заливки фундамента?

Казалось бы, всем понятно, что прочность и долговечность фундамента — это основа будущего дома. Ошибки, допущенные на этапе проектирования, армирования и заливки фундамента, в дальнейшем исправить практически невозможно. Поэтому во избежание трещин в фундаменте под действием нагрузок и движения грунта необходимо правильно рассчитать количество бетона, который будет работать на сжатие, а также количество и диаметр арматуры, которая будет работать на растяжение. В комплексе правильный расчет арматуры и четкое выполнение работ согласно проекту обеспечит вашему дому надежный фундамент на долгие годы.

Фундаменты бывают разные, и расчет арматуры для каждого из них проводится по отдельной схеме:

  1. Ленточный фундамент — наиболее популярный вид фундамента для частных домов.
  2. Свайный буронабивной — используется на слабом грунте при глубине промерзания до 1,5 метров.
  3. Свайно-ростверковый — это сочетание свай и железобетонной ленты, которое обходится дешевле ленточного фундамента, но при этом отлично себя показывает на склонах и при подвижной почве.
  4. Столбчатый фундамент — применим для легких домов и построек.
  5. Плитный фундамент – самый прожорливый в плане использования бетона и арматуры фундамент, который очень дорого обходится в частном домостроении.

Чтобы материал был более полезен для тех, кто пытается произвести расчет количества и диаметра арматуры самостоятельно, мы проведем расчет на примере ленточного фундамента под дачный дом 6 на 8 метров, а потом сравним расход арматуры на этот же проект с плитным и столбчатым фундаментом.


Металлобаза «Аксвил» продает оптом и в розницу:

• АРМАТУРУ РИФЛЕНУЮ А3 • ВЯЗАЛЬНУЮ ПРОВОЛОКУ • СВАРНУЮ СЕТКУ

Первый поставщик проката. Низкие оптовые и розничные цены. Консультация по выбору. Оформление заказа на сайте и в офисе. Нарезка в размер. Доставка по Беларуси, в том числе, и в выходные дни.

 

Схемы армирования ленточного фундамента

Для расчета количества и диаметра арматуры в первую очередь нужно определиться со схемой армирования фундамента. В зависимости от нагрузки на фундамент и пучинистости грунта для строительства частных домов чаще всего применяют армирование:

  1. Четырьмя стержнями арматуры;
  2. Шестью стержнями арматуры;
  3. Восемью стержнями арматуры.

Как же определиться со схемой армирования, чтобы она была достаточно надежной, но в то же время не излишне затратной?

Согласно правилам по проектированию и строительству (СП 52-101-2003), максимальное расстояние между продольными стержнями арматуры должно быть не более 40 см. А также арматурные стержни должны отстоять от края опалубки, верха и низа мелкозаглубленного ленточного фундамента на 5-7 см. 

Исходя из этих данных, если проектом предусмотрен ленточный фундамент шириной 50 см, то лучше всего подойдет армирование в четыре стержня:

5+40+5=50 см.

При более широком фундаменте будет целесообразно использовать схему армирования 6-8 стержнями.

Расчет диаметра продольной арматуры

От диаметра арматуры зависит прочность всей конструкции: чем толще арматура, тем прочнее. При выборе ее толщины стоит ориентироваться на вес дома и тип грунта. Если грунт плотный, то под нагрузкой от дома он будет меньше деформироваться, а значит, от плиты требуется меньшая устойчивость.

Второй фактор — это вес здания. Если вы собираетесь построить легкий деревянный дом или гараж, то устойчивость такому дому может обеспечить и арматура диаметром 10 мм. Но если это капитальное строение в несколько этажей, то может потребоваться арматура 14-16 мм. Это все учитывается на этапе разработки проекта и отражается на глубине и ширине фундамента. Далее стоит полагаться на строительные нормы, которые зависят от ширины и высоты фундамента.

Согласно правилам по проектированию и строительству (СНиП 52-01-2003), минимальная площадь сечения продольной арматуры в ленточном фундаменте должна составлять 0,1% от общего поперечного сечения железобетонной ленты.

Для того, чтобы посчитать площадь поперечного сечения фундамента, нужно его ширину умножить на высоту. Допустим, высота нашего фундамента 80 см. Тогда при ширине 50 см поперечное сечение даст:

80*50=4000 см2

Тогда суммарная площадь поперечного сечения арматуры получится:

4000*0,1%=4 см2

При схеме армирования в 4 стержня и известной площади суммарного поперечного сечения арматуры в ленточном фундаменте мы можем определить диаметр продольной арматуры по таблице:

Казалось бы, при площади поперечного сечения арматуры в 4 см2 и 4 стержнях можно сделать вывод, что вам хватит и десятки. Но в таблице видно, что 4 стержня диаметром 10 мм имеют площадь поперечного сечения 3,14 см2. Не попадитесь на эту удочку и не допустите глупых математических ошибок при расчете фундамента вашего дома.

Выбрав столбец с 4 стержнями арматуры, нам нужно найти значение, наиболее приближенное к 4 см2, но не менее того. Поэтому нам подойдет значение 4,52 см2 и, соответственно, арматура 12 мм в диаметре.

Согласно таблице, при 4 стержнях площадь их поперечного сечения будет 4,52 см2 при диаметре арматуры 12 мм. Это наиболее ходовой тип арматуры, применяемый для армирования ленточных фундаментов малоэтажных строений.

Рассчитать диаметр арматуры при схеме армирования шестью или восемью стержнями можно аналогичным образом, найдя необходимой значение в соответствующей колонке.

Также правилами регламентируется минимальный диаметр арматуры в зависимости от ее длины: При длине фундамента до 3 м этот минимум составляет 10 мм, а при длине от 3 м — 12 мм.

Также отметим, что продольная арматура железобетонной ленты должна быть одинакового диаметра. Если же вы строите сарай или баню из остатков арматуры, то стержни большего диаметра должны оказаться в нижней части армокаркаса.

Расчет диаметра поперечной и вертикальной арматуры

Продольная арматура для ленточного фундамента должна быть рифленой, тогда как поперечная и вертикальная арматура может быть гладкой.

Рассчитать диаметр поперечной и вертикальной арматуры можно без сложных вычислений. Стоит ориентироваться на данные таблицы:

В нашем случае при высоте фундамента 80 см для поперечной и вертикальной арматуры можно брать гладкие стержни 6 мм в диаметре. Если же вы строите, скажем, двухэтажный коттедж, то для поперечной и вертикальной арматуры будет достаточно прутьев диаметром 8 мм.

Расчет количества продольной арматуры

Очень часто при возведении фундамента в разгар стройки становится понятно, что арматуры не хватает. Или же наоборот: после приемки работ оказывается, что несколько десятков погонных метров арматуры осталось, а ведь она не копейки стоит. А потом еще придется думать, куда ее пристроить. Поэтому так важно на этапе проектирования и планирования точно рассчитать количество необходимой арматуры для заливки фундамента.

К примеру, наш дачный дом имеет вот такую схему фундамента:

При фундаменте 6*8 нам потребуется посчитать периметр основания и добавить к нему длину несущих стен, под которыми также будет возводится фундамент. В нашем случае периметр равен:

 6+8+6+8=28 м

К периметру прибавим еще длину несущей стены:

28+6=34 м

Полученную цифру нам необходимо умножить на количество стержней в схеме армирования, в нашем случае на 4:

34*4=136 м

При расчете арматуры необходимо помнить, что обычно она поставляется в стержнях длиной 3-6 метров. Далеко не каждый поставщик металлопроката имеет возможность поставлять арматуру длиной 0,5 до 11,7 метров. Чаще всего на месте арматуру приходится резать в размер и стыковать внахлест, как показано на схеме.

При стыковке арматуры нужно помнить, что соседние прутья должны соединяться не строго друг над другом. Расстояние между соседними соединениями стержней арматуры должно составлять 1,5 длины нахлеста, но не менее 61 см.

Нахлест рассчитывается исходя из диаметра арматуры, умноженного на 30. В нашем случае это:

12*30=360 мм (36 см)

Чтобы добавить припуски с учетом нахлеста, можно:

  1. Посчитать количество стыков;
  2. Прибавить 10-15% к общей сумме длины арматуры.

Мы воспользуемся вторым способом и прибавим к нашей цифре 10%:

136+136*0,1=149,6 м

Учитываем то, что в угловой части фундамента арматуру придется изгибать  с загибом длиной 0,5 м. Итого на каждый угол придется 4 м таких выпусков или 20 м всего на весь фундамент. Прибавляем это количество к метражу ребристой арматуры:

149,6+20=169,6 м

Итого, для ленточного фундамента дачного дома 6*8 нам потребуется около 170 метров рифленой арматуры диаметром 12 мм.

Расчет количества вертикальной и поперечной арматуры

После того, как мы определились, сколько нам нужно купить рифленой арматуры 12 мм, нам нужно рассчитать, сколько потребуется гладкой арматуры диаметром 6 мм.

Взглянем на схему поперечного сечения фундамента:

Периметр каждого прямоугольника, который опоясывает продольную арматуру, в нашем случае составит:

40+70+40+70=220 см (2,2 метра)

Если взглянуть на припуски в местах соединения и учесть, что некоторые строители вертикальную арматуру вбивают в землю для устойчивости армокаркаса, то к этой сумме смело можно прибавлять сантиметров 20.

220+20=240 см (2,4 м)

Теперь нам нужно подсчитать, сколько таких прямоугольников разместится в нашем фундаменте. Это можно сделать двумя способами:

  1. Просто поделив длину нашего периметра и несущих оснований на расстояние между перемычками;
  2. Начертив схему фундамента и подсчитав места связок на чертеже.

Мы попробуем подсчитать количество связывающих колец на плане фундамента. Связки продольной арматуры вертикальными и поперечными прутьями необходимо производить каждые полметра (допустимо расстояние 0,3-0,8 метра). К тому же, на углах у нас разместится по две таких связки.

Сперва посчитаем, сколько таких опоясывающих прямоугольников поместится на стене 8 метров. Как видно из схемы, на восьмиметровой стене уже есть 6 угловых элементов. А если принять во внимание, что такие перемычки необходимо делать через каждые полметра, то на ней необходимо будет разместить еще 12 таких соединений. То же самое на второй восьмиметровой стене.

(6+12)*2=36 штук

Оставшиеся три стены по 5 метров предполагают еще по 9 перемычек:

9*3+36=63 перемычки

Получается, нам нужно длину гладкой арматуры, необходимой для фиксации в неподвижном состоянии продольной арматуры, умножить на количество таких соединений:

2,4*63=151,2 м

Получается, что для фундамента нашего дачного домика нам потребуется примерно 170 метров рифленой арматуры диаметром 12 мм и 150 гладкой арматуры диаметром 6 мм.

Учитывайте также, что в процессе работы часто остается много коротких стержней, непригодных для дальнейшего использования, поэтому к полученной цифре лучше прибавить еще процентов 10.

170+170*0,1=187 метров диаметром 12 мм

151,2+151,2*0,1=166,22 метров диаметром 6 мм

Зачастую поставщики считают количество арматуры не метрами погонными, а тоннами, поэтому на заключительном этапе подсчета вам может потребоваться перевести эти данные из расчета, что вес 1 мп рифленой арматуры 12 мм в диаметре равен 0,89 кг, а гладкой арматуры 6 мм в диаметре — 0,222 кг.

Итого:

187*0,89=166,43 кг

166,22*0,222=39,9 кг

Расчет количества вязальной проволоки

В места пересечения продольных, поперечных и вертикальных прутьев стыки связываются проволокой. Сварка при армировании фундамента крайне нежелательна, так как ухудшает свойства металла в местах соединения и может вызвать трещины при вибрации.

Рассчитать количество вязальной проволоки можно, зная количество стыков и длину проволоки, которая потребуется на каждый стык. Как правило, на каждый стык необходимо 15 см проволоки, сложенной вдвое, итого 30 см (0,3 м).

Ранее мы подсчитали, что в нашем фундаменте будет 63 перемычки, в каждой из которых 4 соединения для связки проволокой.

63*4=252 соединения

Далее нам необходимо количество соединений умножить на длину проволоки, необходимой для  каждого соединения:

252*0,3=75,6 метров

Если вы не имеете навыков вязки арматуры, то лучше вязальной проволоки взять с запасом, так как в неумелых руках даже обожженная проволока часто ломается.

Таким образом, для ленточного фундамента 6*8 с несущей стеной нам потребуется 166,43 кг рифленой арматуры диаметром 6 мм и 40 кг гладкой арматуры, а также 75,6 метров вязальной проволоки.

Расход арматуры в сравнении с плитным и столбчатым фундаментом

А теперь попробуем подсчитать, сколько бы нам понадобилось арматуры, если бы мы выбрали плитный или столбчатый фундамент.

Примерный расчет арматуры для плитного фундамента

Плитный фундамент состоит из двух арматурных сеток, связанных между собой. Для него, как правило, используется рифленая арматура диаметром 12 мм.

Ячейка между продольными и поперечными стержнями арматуры в сетке представляет собой квадрат 20*20 см. При фундаменте 6*8 нам потребуется узнать, сколько прутьев арматуры ляжет вдоль каждой стены с шагом в 20 см.

6/0,2=30 штук по 8 метров

8/0,2=40 штук по 6 метров

Если мы суммируем полученные цифры, мы получим количество прутков на одну сетку.

30*2+40*2=140 штук

В нашем варианте идеально было бы заказать 80 прутков длиной 6 метров и 60 прутков длиной 8 метров. Но чаще всего арматура продается длиной 3-6 метров, поэтому ее придется стыковать внахлест. Допустим, если заказать всю арматуру длиной 6 метров, то к 140 нужно будет прибавить еще 30 на наращивание по длинной стороне, которые потом разрежутся на трехметровые стержни с запасом на связку внахлест.

140+30=170 штук

170*6=1020 м рифленой арматуры

После этого необходимо соединить верхнюю и нижнюю сетку вертикальными стержнями, которых будет ровно столько, сколько пересечений продольной и поперечной арматуры.

30*40=1200 соединений

Допустим, высота плитного фундамента 20 см, то, соблюдая отступ от верха и низа бетонной плиты по 5 см, мы получим расстояние между верхней и нижней сеткой арматуры в 10 см.

1200*0,1=120 метров вертикальной арматуры

Общее количество арматуры для плитного фундамента составит:

1020+120=1122 метра погонных,
что в 6 раз больше, чем для ленточного фундамента.

Вязальной проволоки также нужно в несколько раз больше, так как в каждом месте, где пересекаются два горизонтальных и один вертикальный стержень, получится по два узла проволоки. Таких пересечений у нас 1200 в верхней сетке и столько же в нижней. На каждый узел необходимо в среднем 30 см вязальной обожженной проволоки.

1200*2*0,3=720 метров вязальной проволоки,
что в 10 раз больше, чем для ленточного фундамента на тот же дачный дом.

Примерный расчет арматуры для столбчатого фундамента

В принципе, для легкого дачного дома подойдет и столбчатый фундамент.

Для армирования свай достаточно арматуры диаметром 10 мм. Для вертикальных прутков используется ребристая арматура, горизонтальные прутки применяются только для того, чтобы связать их в единый каркас. Обычно арматурный каркас для столбика состоит из 2-4 прутков, длина которых равна высоте столба. Если диаметр столба превышает 20 см, то надо использовать больше стержней, равномерно распределяя их внутри столба. Для армирования 2-метрового столба диаметром 20 см можно ограничиться четырьмя прутками из арматуры диаметра 10 мм, которые расположены на расстоянии 10 см друг от друга и перевязаны в четырех местах гладкой арматурой диаметром 6 мм.

Предположим, что сваи для фундамента нашего дачного дома будут диаметром 200 мм с интервалом в 1,5 метра.

Делим периметр основания на шаг между сваями и получаем их количество:

34/1,5=22,6

Округляем до 23 столбов.

Свая будет армироваться тремя прутами рифленой арматуры и четырьмя хомутами — из гладкой. Посчитаем, сколько нужно рифленой арматуры на один столбик высотой 1,5 метра с выпуском под ростверк 0,3 м:

(1,5+0,3)*3=5,4 м

На все сваи уйдет:

5,4*23=124,2м рифленой арматуры

Для армокаркаса будет использоваться гладкая арматура, согнутая в окружность. Длина этой окружности с запасом составит:

3,14*0,2=0,628 м

Таких хомутов на одну сваю потребуется, как минимум, 4:

0,628*4=2,512 м

На все 23 столба гладкой арматуры потребуется:

2,512*23=57,776 м ≈58 м

Для расчета вязальной проволоки нам нужно посчитать количество соединений в наших столбах. Три прутка рифленой арматуры соединяются с четырьмя опоясывающими кольцами гладкой арматуры в шести местах:

3*4*0,3=3,6 метра проволоки на каждый столб

3,6*23=82,8 метра проволоки

Итого на свайный фундамент нашего дачного домика 6*8 потребуется около 125 метров погонных рифленой арматуры и 58 м гладкой арматуры, а также 83 м вязальной проволоки, что, конечно, получится экономичнее, чем ленточный фундамент и вполне подойдет для каркасного дачного дома.

Выводы:

 

В общем, совсем не сложно самостоятельно рассчитать количество и диаметр арматуры, необходимой для заливки фундамента. Особенно, при наличии проектно-сметной документации. Используя данный материал, вы без проблем сможете довольно точно рассчитать количество арматуры для заказа, чтобы потом не переплачивать за повторную доставку или излишний металлопрокат, оставшийся после стройки.

Сравнение расчетов количества арматуры для разных видов фундамента показало, что для дачного дома лучше всего подходят столбчатый и ленточный фундамент. А уж какой из них выбрать, будет зависеть от материала стен, кровли, перекрытий и количества этажей дома, пучинистости грунта и личных предпочтений.

 

Металлобаза «Аксвил» предлагает купить рифленую арматуру А3 и гладкую арматуру А1, вязальную проволоку, по безналичному и наличному расчету, оптом и в розницу с доставкой по Беларуси.

Расчет диаметра арматуры для фундамента калькулятор

Справка

Калькулятор арматуры 1

Рассчитает общий вес арматуры, ее общий объем, вес одного метра и одного стержня арматуры.
По известным диаметру и длине арматуры.

Калькулятор арматуры 2

Рассчитает общую длину арматуры, ее объем и количество стержней арматуры, вес одного метра и одного стержня.
По известным диаметру и общему весу арматуры.

Расчет основан на весе одного кубического метра стали в 7850 килограмм.

Расчет арматуры для строительства дома

При строительстве дома очень важно правильно рассчитать количество арматуры для фундамента. Сделать это вам поможет наша программа. С помощью калькулятора арматуры можно, зная вес и длину одного стержня узнать общий вес необходимой вам арматуры, либо необходимое количество стержней и их общую длину. Эти данные помогут быстро и легко рассчитать объем арматуры для выполнения необходимых вам работ.

Расчет арматуры для разного типа фундаментов

Для расчета арматуры нужно также знать и тип фундамента дома. Здесь существует два распространенных варианта. Это плитный и ленточный фундаменты.

Арматура для плитного фундамента

Плитный фундамент применяется там, где на пучинистый грунт требуется установить тяжелый дом из бетона или кирпича с большими по массе железобетонными перекрытиями. В таком случае фундамент требует армирования. Производится оно в два пояса, каждый из которых состоит из двух слоев стержней, расположенных перпендикулярно друг к другу.
Рассмотрим вариант расчета арматуры для плиты, длина стороны которой составляет 5 метров. Арматурные стержни размещаются на расстоянии порядка 20 см друг от друга. Следовательно, для одной стороны потребуется 25 стержней. На краях плиты стержни не размещаются, значит, остается 23.
Теперь, зная количество стержней, можно рассчитать их длину. Здесь следует обратить внимание, что пруты арматуры не должны доходить до края 20 см, а, значит, исходя из длины плиты, длина каждого стержня составит 460 см. Поперечный слой, при условии, что плита имеет квадратную форму, будет таким же. Также мы должны рассчитать количество арматуры, необходимое для соединения обоих поясов.
Предположим, что расстояние между поясами 23 см. В таком случае одна перемычка между ними будет иметь длину в 25 см, так как еще два сантиметра уйдут на крепление арматуры. Таких перемычек в нашем случае будет 23 в ряду, поскольку они делаются в каждой ячейке на пересечении поясов арматуры. Располагая этими данными, мы можем приступать к расчету с помощью программы.

Арматура для ленточного фундамента

Ленточный фундамент используется там, где на не слишком устойчивом грунте предполагается возводить тяжелый дом. Представляет собой такой фундамент ленту из бетона или железобетона, которая тянется по всему периметру здания и под основными несущими стенами. Армирования такого фундамента также производится в 2 пояса, но благодаря специфике ленточного фундамента арматуры на него потребляется гораздо меньше, а, значит, и стоить он будет дешевле.
Правила раскладки арматуры примерно те же, что и для плиточного фундамента. Только стержни должны оканчиваться уже в 30-40 см от угла. А каждая перемычка должна на 2-4 см выступать за прут, на котором она лежит. Расчет вертикальных перемычек осуществляется по тому же принципу, что и при подсчете необходимой длины арматуры для плитного фундаменты.
Обратите внимание, что и в первом, и во втором случаях арматуру необходимо брать с запасом минимум в 2-5 процентов.

Главная #9658; Общестроительные вопросы #9658; Калькулятор расчета минимального количества прутов арматуры для ленточного фундамента

Калькулятор расчета минимального количества прутов арматуры для ленточного фундамента

Ленточный фундамент славится своей универсальностью, поэтому его очень часто выбирают для возведения домов и придомовых построек. Конечно, если проектируется крупное здание, то не обойтись без тщательных расчетов, которые должны выполнять специалисты-архитекторы. Но при строительстве на своем участке небольших сооружений бытового или хозяйственного предназначения (бани, гаража, птичника, сарая и т.п.) – вполне можно обойтись и собственными силами.

Калькулятор расчета минимального количества прутов арматуры для ленточного фундамента

Это вовсе не означает, что расчеты не потребуются – любой ленточный фундамент должен отвечать определенным требованиям и нормативам, нарушать которые не рекомендуется. Одно из них – необходимое и достаточное армирование ленты. В решении этого вопроса помощь окажет калькулятор расчета минимального количества прутов арматуры для ленточного фундамента.

Ниже будут приведены краткие пояснения по проведению расчетов.

Калькулятор расчета минимального количества прутов арматуры для ленточного фундамента
Пояснения по проведению расчетов

Расчёт несложен: он базируется на специальной формуле, учитывающей площадь сечения фундаментной ленты – от нее зависит и необходимая общая площадь сечения продольных прутов основного армирования.

  • В качестве исходных величин принимается высота ленты (с учетом подземной, заглубленной ее части и цоколя) и ее ширина.
  • При ширине ленты более 150 мм настоятельно рекомендуется выполнять армирование минимум с двумя прутьями в каждом ярусе.
  • Если получено нечетное значение прутьев (от 5 и более), один «лишний» прут желательно поместить в нижнем ярусе, там, где лента испытывает максимальные нагрузки.
  • Количество прутов напрямую зависит от диаметра используемой арматуры – можно оценить, какой вариант станет более предпочтительным с точки зрения стоимости материала и сложности выполнения обвязки арматурного каркаса.

После того как определились с числом прутьев для основного продольного армирования, можно перейти к расчетам количества арматуры . с учетом длины фундаментной ленты, перехлестов, угловых соединений и т.п.

Качественно выполненный фундамент – основа безопасности и длительности эксплуатации всего здания. Много полезной информации по этому поводу можно почерпнуть из статьи нашего портала, посвященной заливке фундамента собственными силами .

Рекомендуемые статьи по теме

Калькулятор расчета сухой строительной смеси для самовыравнивающегося пола

Калькулятор расчета необходимых материалов для сухой стяжки

Калькулятор расчета керамзитовой засыпки для сухой стяжки

Калькулятор расчета балконного парапета из газосиликатных блоков

Калькулятор расчета дополнительной нагрузки на бетонную плиту от стяжки и керамической плитки

Калькулятор расчета количества раствора для ленточного фундамента

Калькулятор расчета количества песчано-гравийной смеси для подушки фундамента

Калькулятор расчета количества досок для опалубки ленточного фундамента

Калькулятор перевода метража арматуры в тонны

Калькулятор расчета количества прута для хомутов армирования ленточного фундамента

Калькулятор расчета необходимого количества арматуры для ленточного фундамента

Калькулятор расчета количества ингредиентов раствора для стяжки пола

Справка

Калькулятор арматуры 1

Рассчитает общий вес арматуры, ее общий объем, вес одного метра и одного стержня арматуры.
По известным диаметру и длине арматуры.

Калькулятор арматуры 2

Рассчитает общую длину арматуры, ее объем и количество стержней арматуры, вес одного метра и одного стержня.
По известным диаметру и общему весу арматуры.

Расчет основан на весе одного кубического метра стали в 7850 килограмм.

Расчет арматуры для строительства дома

При строительстве дома очень важно правильно рассчитать количество арматуры для фундамента. Сделать это вам поможет наша программа. С помощью калькулятора арматуры можно, зная вес и длину одного стержня узнать общий вес необходимой вам арматуры, либо необходимое количество стержней и их общую длину. Эти данные помогут быстро и легко рассчитать объем арматуры для выполнения необходимых вам работ.

Расчет арматуры для разного типа фундаментов

Для расчета арматуры нужно также знать и тип фундамента дома. Здесь существует два распространенных варианта. Это плитный и ленточный фундаменты.

Арматура для плитного фундамента

Плитный фундамент применяется там, где на пучинистый грунт требуется установить тяжелый дом из бетона или кирпича с большими по массе железобетонными перекрытиями. В таком случае фундамент требует армирования. Производится оно в два пояса, каждый из которых состоит из двух слоев стержней, расположенных перпендикулярно друг к другу.
Рассмотрим вариант расчета арматуры для плиты, длина стороны которой составляет 5 метров. Арматурные стержни размещаются на расстоянии порядка 20 см друг от друга. Следовательно, для одной стороны потребуется 25 стержней. На краях плиты стержни не размещаются, значит, остается 23.
Теперь, зная количество стержней, можно рассчитать их длину. Здесь следует обратить внимание, что пруты арматуры не должны доходить до края 20 см, а, значит, исходя из длины плиты, длина каждого стержня составит 460 см. Поперечный слой, при условии, что плита имеет квадратную форму, будет таким же. Также мы должны рассчитать количество арматуры, необходимое для соединения обоих поясов.
Предположим, что расстояние между поясами 23 см. В таком случае одна перемычка между ними будет иметь длину в 25 см, так как еще два сантиметра уйдут на крепление арматуры. Таких перемычек в нашем случае будет 23 в ряду, поскольку они делаются в каждой ячейке на пересечении поясов арматуры. Располагая этими данными, мы можем приступать к расчету с помощью программы.

Арматура для ленточного фундамента

Ленточный фундамент используется там, где на не слишком устойчивом грунте предполагается возводить тяжелый дом. Представляет собой такой фундамент ленту из бетона или железобетона, которая тянется по всему периметру здания и под основными несущими стенами. Армирования такого фундамента также производится в 2 пояса, но благодаря специфике ленточного фундамента арматуры на него потребляется гораздо меньше, а, значит, и стоить он будет дешевле.
Правила раскладки арматуры примерно те же, что и для плиточного фундамента. Только стержни должны оканчиваться уже в 30-40 см от угла. А каждая перемычка должна на 2-4 см выступать за прут, на котором она лежит. Расчет вертикальных перемычек осуществляется по тому же принципу, что и при подсчете необходимой длины арматуры для плитного фундаменты.
Обратите внимание, что и в первом, и во втором случаях арматуру необходимо брать с запасом минимум в 2-5 процентов.

Источники: http://potolokspec.ru/calc/kalkulyator-armatury, http://stroyday.ru/kalkulyatory/obshhestroitelnye-voprosy/kalkulyator-rascheta-minimalnogo-kolichestva-prutov-armatury-dlya-lentochnogo-fundamenta.html, http://sdelai-lestnicu.ru/calc/armatura/


Комментариев пока нет!

Расчет арматуры для фундамента: сколько нужно

Расчет арматуры для фундамента позволяет рационально использовать материал и создать качественную и долговечную конструкцию. Объясняется это следующим: избыток металла в каркасе основания строения станет последствием того, что стоимость конструкции может существенно вырасти.

Противоположная ситуация, когда количество арматуры на 1 м3 бетона меньше нужного, сделает фундамент дома слабым и не способным вынести нагрузки, связанные с давлением строения и грунта. Это может привести к серьёзным последствиям.

Методы армирования

Прежде всего необходимо разобраться с вопросом, каким образом будет выполняться армирование конструкции. На сегодняшний момент используется 2 схемы, различающихся между собой количеством металлических стержней:

  • 4 горизонтальных рядов.
  • 6 горизонтальных рядов.

Выбор одной из схем определяется в СНиП 52-101-2003, в котором говорится следующее: «Интервал между прутками арматуры в ленточном фундаменте, расположенными параллельно не должен превышать величину 400 мм.

Расстояние между каждымм прутком и краем бетонного каркаса основания устанавливается 60 – 70 мм».

Согаласно приведённому выше документу, рассчитать количество арматуры для строения достаточно просто. Например, для оснований ширина которых превышает 0,5 м целесообразно использовать металлизированный каркас, состоящий из 6 продольных рядов.

Таким образом, нужно учитывать, расчет арматуры для ленточного фундамента определяется только согласно регламентированной схеме.

Вычисление диаметра

Толщина металлического прута должна составлять не менее 0,1 % от сечения фундамента

Если с количеством всё ясно, возникает следующий вопрос: какой диаметр арматуры необходимо использовать для создания качественного и надежного основания дома? Для этого существует требование СНиП 52-101-2003, в котором раскрываются требования к данной ситуации. Согласно документу, диаметр арматуры для фундамента берётся из 2 коэффициентов: минимальное сечение (толщина) продольных прутьев ленточной конструкции должно равняться 0,1% от всего сечения железобетона. Такого требования придерживаются когда высчитывают диаметр прутьев.

Диаметр арматуры для ленточного фундамента подбирается исходя из того, куда именно она будет установлена. В зависимости от места её предназначения могут измениться и требования к её сечению. Более точная информация приведена в следующей таблице.

Условия использованияСечение, мм
1Вертикальная с высотой продольного сечения ленты менее 0,8м6
2Вертикальная с высотой ленты более 0,8 м8
3Поперечная6

Выполняя расчет количества арматуры для фундамента одно-или двухэтажного дома, преимущественно берутся прутки толщиной 8 мм. Аналогичная ситуация для гаражей, бань и других малоэтажных построек.

Продольная арматура

Для вычисления площади сечения фундаментной ленты понадобится умножить его ширину на высоту. К примеру, если ширина 450 мм, а высота 1000 мм, искомая величина составит 45000 мм2. Согласно вышеупомянутому СНиП, коэффициент берётся равный 0,1 %, потому полученная ранее цифра умножается на это соотношение. Получается 45000 мм2 * 0.1 = 45 мм. Таким образом диаметр продольной арматуры на ленточный фундамент указанного размера должен быть не менее 4,5 см.

Преимущественно все фундаменты имеют стандартные размеры, потому со временем была разработана таблица, позволяющая определить сечение арматурного прутка для любых размеров оснований. В ней указано соотношение диаметра с площадью поперечного сечения стержня, в зависимости от количества прутьев.

Величины приведены в средних коэффициентах, поскольку полученные результаты были округлены в большую сторону. Измерения приведены в сантиметрах.

Получив расчетную площадь поперечного сечения арматурного ряда, равным 4,5 см при ширине основания в 45 см, допускается использование метода армирования 4 прутьями. В таблице находится графа, в которой приведена величина значения для данного случая. Она составляет 4,52 см2.

Для вычисления того, какая арматура нужна для ленточного фундамента, усиленного 6 стержнями, понадобится произвести аналогичные действия. Разница заключается лишь в том, что величина берётся из столбца с цифрой 6. Более сложные конструкции определяются аналогично.

Диаметр арматуры для плитного фундамента, как и для ленточного, берётся единый. Если имеются стержни меньшего сечения, они закладываются в нижний ряд.

Общее количество стержней

Количество металлических стержней зависит от периметра фундамента

Перед началом строительства возникает вопрос, сколько нужно арматуры на весь объём фундамента?

Тема достаточно актуальна, так как при возникновении ситуации, когда металл закончился, а работа не выполнена, возникнет простой, а за доставку дополнительной недостающей партии придётся заплатить отдельно.

Определяется это число таким образом:

  1. Находится длина периметра основания при площади строения 10 * 10 (10*4 = 40), величина составит 40 м.
  2. Так как требуется выполнить расчет для 4-стержневой конструкции, полученное ранее число умножается на 4 (40 * 4 = 160), итого 160 м.
Прутья арматуры соединяются внахлест

Для возведения фундамента дома размером 10 * 10 м требуется 160 м арматурного стержня. Однако эта величина без учёта стыковки прутьев, потому и случаются такие ситуации, когда все действия по определению количества были выполнены верно, а рассчитанного металла не хватило.

Вопрос того, как соединять прутья металла в каркасе фундамента, является одним из важных. Осуществляется это внахлёст с напуском друг на друга. При сечении, равном 10 мм, длина соединения делается такой: 10 мм * 30 = 300 мм. Последующий расчет количества арматуры выполняется исходя из числа соединительных швов. Подробнее о расчетах смотрите в этом видео:

Сделать это можно двумя способами. Первый подразумевает грамотно составленную схему, в которой указывается расположение прутков и количество соединений. Второй метод несколько проще: если арматура уже рассчитана ранее описанными способами, к полученному числу добавляется 10 – 15%.

Поперечная и вертикальная

Как рассчитать арматуру для ленточного фундамента, расположенную поперечно или вертикально? Для этого используется уже проверенная схема. Из неё можно определить, что для заполнения одного прямоугольника потребуется 2,5 м (0.35 * 2 + 0.90 * 2 = 2,5). Нужно учитывать, что величина 0,3 и 0,85 берутся с запасом. Это нужно для того, чтобы концы стержней немного выходили за основной периметр границ.

В случае плиточного фундамента все несколько проще, арматура вяжется сеткой

Среди частых ошибок малоопытных людей, занимающихся вязкой армированного каркаса для ленточного фундамента, происходит установка арматуры на дно траншеи. Некоторые для устойчивости конструкции вбивают её в грунт. В этих случаях расход арматуры на куб бетона увеличится, потому при средней величине вертикальных прутьев 0,9 м нужен небольшой запас, равный 10% от общей длины.

Чтобы облегчить себе задачу в большом количестве цифр, можно просто начертить схему основания, отметить на ней места расположения прямоугольников, а потом просто подсчитать их количество. Таким образом, определяется величина поперечных и вертикальных стоек для бетонного фундамента ленточного типа.

После того как все нюансы разобраны, рассчитать арматуру в фундаменте можно за несколько минут.

При этом нужно учитывать, чем больше площадь будущего строения, тем большее количество металла понадобится для армирования каждого кубического метра.

Только после этого можно отправляться в магазин и заказывать армированные стержни. Это позволит снизить вероятность ошибок, указанных в начале статьи, и даст гарантию того, что через несколько лет не придётся делать капитальный или частичный ремонт фундамента.

Диаметр арматуры для ленточного фундамента под одно- и двухэтажный дом

Армирование является обязательным этапом возведения ленточного фундамента, металлический каркас обеспечивает нужную прочность. Пояса закладываются как минимум в два слоя, нижний компенсирует нагрузки на изгиб и снижает риск подвижек при морозном пучении грунта, верхний принимает на себя вес постройки. Несмотря на всю экономичность ленточных типов оснований, расход арматуры при их обустройстве все равно высокий, для снижения затрат ее советуют покупать оптом. Расчет необходимого количества проводится на стадии проектирования, его главная цель – подбор правильного сечения продольных, поперечных и вертикальных прутьев и определение их суммарного метража и веса.

Оглавление:

  1. Как подобрать диаметр прутьев?
  2. Технология усиления фундамента
  3. Расчет для ленточного основания
  4. Способы вязки

Рекомендации по выбору диаметра арматуры

Для вязки каркаса используются стержни с гладким и периодическим профилем, вторая разновидность является единственно приемлемой для продольных элементов, первая подходит только в качестве монтажной. При выборе диаметра учитывается назначение и вес постройки, минимум составляет, в мм:

  • 10 – для легких построек типа летней кухни или бани.
  • 12 – для продольной арматуры ленточных оснований стандартных жилых построек.
  • 14 и выше – при закладке фундамента под кирпичный дом (или здание из камня) свыше 1 этажа.
  • 16 – при возведении домов на сложных грунтах или этажности выше 2. Требуемый тип профиля во всех вышеперечисленных случаях – рифленый или ребристый.
  • 6-10 – рекомендуемый интервал для монтажной арматуры (вертикальных и поперечных). Допускается использование гладкого профиля.

Применение прутьев с большим диаметром экономически нецелесообразно, с меньшим – не допускается нормами СНиП. Минимальное соотношение арматуры (продольной) для ленточного фундамента составляет 0,1 % от площади сечения бетонного монолита. Для основ высотой в 1 метр и шириной в 40 см это значение равняется 4 см2, чему вполне соответствует схема из 4 стержней диаметром в 12 мм. Превышать эту норму можно, уменьшать – нельзя ни в каких случаях. Сечение одного стержня находится по стандартной формуле S=π·R2. Требования к проволоке для вязки, поперечным и вертикальным элементам мягче, нагрузка на них меньше в разы, их основная цель – поддержка каркаса.

Схема армирования

Число располагаемых продольных прутьев зависит от ширины ленточного фундамента, в индивидуальном строительстве распространены два варианта: с четырьмя и шестью стержнями. Вторая система актуальна при превышении размеров монолита свыше 50 см. Это обусловлено основными требованиями к размещению арматуры, согласно СНиП 52-101-2003: расстояние между продольными линиями не должно превышать 40 см; рекомендуемый промежуток между элементом металлического каркаса и краем бетона – 5-7 см.

Утапливать стержни в центр нельзя, равно как и допускать их расположения вблизи грунта из-за возрастания риска коррозии. Добавочный прут крепят ровно посередине, расстояние между нижним и верхним поясом варьируется в пределах 60-80 см, такая схема идеально подходит для фундамента одноэтажного дома высотой не более 1 м. Поперечные и вертикальные стержни перекрещивают между собой в одном узле, интервал размещения составляет от 30 до 80 см, для удобства расчета его часто принимают равным 50.

Особого внимания требуют углы, на участках перераспределения напряжения каркас усиливается загнутыми прутьями. Рекомендуемые схемы включают анкеровку Г-образными или П-образными элементами, или загиб продольного ряда. Поддерживающая арматура укладывается в верхнем поясе, минимальная длина одной стороны – 50 см. Также на этих участках сокращается интервал размещения продольных прутов, шаг для фундаментов стандартного сечения – 25 см. Выполнение этих условий актуально даже при строительстве легких построек типа бани, обычной связки проволокой в углах недостаточно.

Расчет арматуры для ленточного фундамента

Исходными данными являются геометрические размеры будущей основы. Расчет проводится на стадии проектирования дома, одновременно с составлением схемы расположения прутьев. Процесс начинается с выбора диаметра, для ленточного типа фундамента допускается использование разного типа метизов для продольных (основных) рядов и вертикальных с поперечными. Закладываемый минимум для горизонтальных несущих стержней – 12 мм, исключение делается для легких построек типа бани (но не менее 10 мм). Применяется арматура одинакового сечения с одной маркой стали, при избытке допускается укладка изделий с большим диаметром для формирования нижнего ряда.

Зная величину периметра ленты и число прутьев, на первый взгляд, найти общий метраж легко. Но расчет усложняется из-за необходимости использования цельной арматуры. В идеале продольные пруты неразрывны, при связке двух отрезков короче, чем длина стены, допустимый минимум запаса составляет 30 см. Загнутые элементы для усиления углов не уступают в диаметре, их общий метраж зависит от числа поворотов, в расчет включают участки соприкосновения с внутренними несущими стенами.

Требуемая длина для поперечных и вертикальных стержней также рассчитывается согласно выбранной схеме. Самый простой путь – подсчитать метраж на один стык и умножить его на число узлов. Даже при условии соединения каркаса сваркой арматура для фундамента не режется в обрез, учет нахлестов и запусков обязателен. Точно учесть величину выступающих отрезков невозможно, для упрощения расчета их принимают равными 10 % от общего метража монтажных прутьев.

Найти суммарную длину металлопроката для ленточного фундамента недостаточно, цены на эти изделия чаще указываются для одной тонны. Вес у стержней разного диаметра отличается, величина относится к регламентированной, перерасчет провести легко. Продукция приобретается с запасом, излишки допустимы, недостача – нет.

Нюансы вязки арматуры

Сварочное соединение для каркасов ленточных фундаментов не подходит: помимо увеличения затрат оно не обеспечивает достаточную надежность, стыки со временем подвергаются коррозии. Единственно возможным способом фиксации считается обвязка пластиковыми хомутами или стальной проволокой. Ее расчет несложный: число узлов умножают на длину отрезка, требуемого для обхвата прутьев и закрутки концов (обычно это 30-50 см), полученный метраж переводится в кг.

Рекомендуемое сечение проволоки при диаметре арматуры от 12 мм варьируется в пределах 1,2-1,4 мм. Для вязки используются крючок и плоскогубцы или специальный пистолет (дорогой инструмент, но оправданный при больших объемах работ).

Калькулятор веса арматуры

— простой расчет веса арматурных стержней

Теперь вы можете легко рассчитать вес арматуры, используемой на строительной площадке, с помощью этого простого и продвинутого калькулятора веса арматуры.

Калькулятор арматуры Использование:

Процедура использования этого калькулятора для расчета веса арматурного стержня очень проста. Для этого выполните следующие действия:

Арматурные стержни
  • Нет необходимости измерять размеры арматурного стержня, поскольку на рынке доступны арматурные стержни стандартных размеров.
  • Просто введите диаметр и длину арматурного стержня в соответствии с инструкциями инженера-строителя. Обязательно укажите диаметр стержня в миллиметрах.
  • Пропустите поле количества, если вы хотите рассчитать вес только одного арматурного стержня.
  • Введите количество стержней в поле количества, если вы хотите оценить вес арматурного стержня в комбинациях.
  • Результаты будут отображаться в кг и кг / м.

Стандартные размеры и вес арматуры (арматурных стержней)

Стандартные размеры арматурных стержней, имеющихся на рынке, следующие:

Размер стержня (диаметр) Вес / масса на метр (кг / м) ц / с Площадь (кв.мм)
6 мм 0,222 28,3
8 мм 0,395 50,3
10 мм 0,617 78,6
12 мм 0,888 113,1
16 мм 1,58 201,2
18 мм 2 254,6
20 мм 2,47 314,3
22 мм 2.98 380,3
25 мм 3,85 491,1
28 мм 4,83 616
32 мм 6,31 804,6
36 мм 7,99 1018,3
40 мм 9,86 1257,2
45 мм 12,50 1591,1
50 мм 15,42 1964.3
Таблица веса арматуры

Формула расчета веса арматуры

Вы также можете рассчитать вес арматуры вручную на сайте, но мы рекомендуем вам воспользоваться этим калькулятором. Вес арматуры можно легко рассчитать по стандартной формуле, приведенной ниже:

W = (D 2 / 162,28)* L

Где «D» и «L» — диаметр и длина арматурного стержня соответственно.Возьмите значение диаметра в миллиметрах и длины в метрах. Вы получите результат в килограммах (кг). Разделив результаты на фактическую длину арматурного стержня, вы можете получить вес на метр прогона.

Также попробуйте: преобразование из футов в метры (лучший преобразователь из футов в метры)
Также попробуйте: преобразование из см в метры (лучший преобразователь из сантиметров в метры)

Давайте разберемся с этой формулой на простом примере.

Пример: Рассчитайте вес стержня TMT диаметром 8 мм и длиной 12 метров.

Решение: Используя формулу расчета веса арматурного стержня, вы можете определить массу стержня TMT, подставив указанные значения в данную формулу.

W = (D 2 / 162,28) * L
W = (8 2 / 162,28) * 12 = 4,732 кг

Теперь посчитайте вес на метр,

W = 4,732 / L
W = 4,732 / 12 = 0,395 кг / м

Мы надеемся, что этот пример развеял все ваши сомнения.

Как это:

Нравится Загрузка …

Диаметр прутка — обзор

13.2.4 Ограничение растрескивания

В соответствии с отчетом CIRIA 91 максимальное расстояние между трещинами, S max , и трещина ширину, w , можно оценить с помощью следующих уравнений:

(13.1) Smax = fctfbΦ2ρ

(13.2) w = SmaxReth + esh − εtsc2

где:

tens f ct = прочность бетона

f b = прочность сцепления бетона с арматурой

Ф = диаметр стержня

ρ = процентное содержание стали

e th деформация = α c T 1

α c = коэффициент теплового расширения

R = коэффициент ограничения

ε tsc = предел прочности при растяжении

T 1 = разница между пиком осевой линии и средней температурой окружающей среды

e усадка = деформация усадки при высыхании

Расчетная ширина трещины уравнение — максимальная «средняя» ширина трещины.Однако, учитывая вариабельность в бетоне на месте , существует вероятность того, что отдельные трещины будут больше расчетного значения. Таким образом, соответствие должно основываться на среднем значении, взятом по всей длине конкретной заливки.

Подрядчик не будет иметь большого влияния на многие из вышеперечисленных факторов, но в технических характеристиках выберет бетонную смесь в соответствии с требованиями по прочности, долговечности и тепловым характеристикам в раннем возрасте.Чтобы контролировать степень растрескивания, обычно устанавливают допустимые пределы для максимальной температуры осевой линии, T p , и разницы температур Δ T max в течение периода после строительства. Типичные пределы могут быть указаны следующим образом:

Макс. температура в любой точке заливки не должна превышать… [обычно 70 ° C]

Макс. перепад температур в пределах одной заливки не должен превышать… [обычно 20 ° C]

Макс.значение средних температур между соседними одновременно отливаемыми элементами не должно превышать… [обычно 20 ° C]

Макс. значение средних температур между соседними элементами, отлитыми в разное время, не должно превышать… [обычно 15 ° C].

Это упрощенный подход, так как цель состоит в том, чтобы ограничить сдерживаемую (заблокированную) тепловую деформацию, e r , и связанные напряжения, которые могут привести к растрескиванию. Измерения температуры легко получить и интерпретировать, в то время как измерения деформации намного сложнее в обоих отношениях.Поскольку допустимые пределы температуры используются для обозначения пределов деформации, они должны, следовательно, изменяться в соответствии с предполагаемым коэффициентом теплового расширения бетона α c и ограничением теплового движения R . Связь между факторами демонстрируется в простом уравнении для оценки риска возникновения трещин, предложенном Бэмфортом (1982):

(13,3) er = KαcΔTR

и для отсутствия трещин

er <εtsc

где:

ε tsc = деформационная способность при кратковременной нагрузке

α c = коэффициент теплового расширения бетона

Δ T = изменение температуры

R = коэффициент ограничения (0 = не удерживается; 1 = полностью удерживается)

K = коэффициент модификации, 0.8, для длительной нагрузки и ползучести

Очевидно, что допустимое значение Δ T обратно пропорционально как α c , так и R .

Этот подход, основанный на ограничении удерживаемой деформации, также был принят в отчете CIRIA 91, который предполагает значение ограничения 1,0 на стыках между новым и старым бетоном и коэффициент модификации 0,5. Это соответствует стандарту BS 8007 (1987) для водоудерживающих конструкций, который предполагает фактор сдерживания «0».5 для незрелого бетона с жесткими концевыми ограничителями с учетом внутренней ползучести бетона ».

Значения α c могут варьироваться от всего лишь 7 × 10 –6 мм / мм ° C для некоторых легких бетонных смесей до более чем 12 × 10 –6 мм / мм ° C для бетонов, использующих заполнитель кремнистого гравия. Кроме того, заполнитель также влияет на деформационную способность, ε tsc (или сопротивление растрескиванию) бетона, при этом высокие значения ε tsc связаны с более низкими значениями α c .В Таблице 13.2 из сборника Concrete Society Digest № 2 (Bamforth, 1984a) приведены расчетные значения α c и ε tsc для бетонов с использованием различных типов заполнителей, а также предельные значения перепада температуры и перепада температур.

Таблица 13.2. Ограничение температурных изменений и перепадов во избежание растрескивания на основе предполагаемых типичных значений α c и ε tsc в зависимости от типа заполнителя

Тип заполнителя Гравий Гранит Известняк Легкий
Коэффициент теплового расширения × 10 –6 / ° C 12.0 10,0 8,0 7,0
Допустимая деформация при растяжении × 10 –6 70 80 90 110
Предельное изменение температуры в ° C для различных факторов ограничения:
1.0 7 10 16 20
0,75 10 13 19 26
0.50 15 20 32 39
0,25 29 40 64 78
Предельный перепад температур (° C) 20 28 39 55

Обычно используемое значение 20 ° C в качестве максимального перепада температур Δ T max применяется к щебеночным смесям с высоким α c и низким ε tsc по сравнению с бетоном с использованием других типов агрегатов.Например, при использовании известнякового заполнителя, который может давать бетон с α c всего 8 × 10 –6 мм / мм ° C, могут быть приемлемы более высокие значения максимального перепада температур. Следовательно, при указании Δ T max следует указать предполагаемое значение α c , тем самым определяя предел дифференциальной деформации, используемый при расчете ширины трещины, и обеспечивая основу для использования альтернативного варианта. агрегаты. Значения в Таблица 13.2 предназначены только для ознакомления . Если доступны данные для конкретной смеси, предельное изменение температуры может быть рассчитано с использованием уравнения:

(13.4) ΔT = εtscKαcR

Предельный перепад температур может быть получен с использованием приведенного выше уравнения с предполагаемым фактором ограничения 0,36 (Bamforth , 1982).

Ограничения также могут значительно отличаться, и проектировщик должен сделать некоторые допущения в своих расчетах, которые отражают вероятные ограничения во время строительства.На них будут влиять выбранные размеры заливки (длина и глубина), время между соседними заливками и последовательность строительства. Руководство по факторам сдерживания дано в отчете CIRIA 91 вместе с методом проектирования стали, предотвращающей образование трещин. Тем не менее, это, как правило, предполагает коэффициент ограничения на стыке между новым и старым бетоном, равным 1,0. Не учитывается жесткость, присущая новой заливке по отношению к ее непосредственному окружению, за исключением коэффициента модификации K , который также учитывает эффекты ползучести и длительной нагрузки.В отчете ACI 207.2R-73 (Американский институт бетона, 1984b) представлен более подробный подход к оценке факторов сдерживания в зависимости от отношения длины к высоте заливки, как показано на рисунке 13.1. Ограничение в любой точке определяется путем умножения ограничения в соединениях, рассчитанного с использованием уравнения (13.5), на относительное ограничение на соответствующем пропорциональном расстоянии от соединения, полученное из рисунка 13.1.

Рисунок 13.1. Факторы удержания для элементов с непрерывным удерживанием основания (Американский институт бетона, 1984b).

(5) Ограничение на стыке = 11 + AnEnAoEo

, где A n = c.s.a. новой заливки

A o = c.s.a. старого бетона

E n = модуль упругости нового бетонного бетона

E o = модуль упругости старого бетона

Сравнение измеренных ограничений через высоту опоры моста, залитой на ленточный фундамент, и значения, спрогнозированные с помощью метода ACI, показаны на рисунке 13.2 (Bamforth and Grace, 1988), указывая на то, что при условии, что допущения об относительной жесткости старого и нового бетона уместны, метод является достаточно точным. Основываясь на ограниченных измеренных значениях модуля упругости термоциклированного бетона в раннем возрасте и расчетном времени остывания нового элемента, соотношение E n : E o , вероятно, будет в диапазоне 0,7–0,8 (Bamforth, 1982) по мере восстановления. Результаты на рис. 13.2 были получены на средней линии 6.Опора моста высотой 2 м и длиной 12 м, залитая на опору глубиной 1 м и шириной 2,85 м:

Рис. 13.2. Измеренное и прогнозируемое ограничение в толстой стене, залитой на жесткий фундамент.

11 + AnAoEnEo = 11 + 4,962,85 = 0,81 = 0,42

Уменьшение ограничения по направлению к верхней свободной поверхности указывает на то, что процентное содержание стали может быть уменьшено с высотой для контроля тепловых трещин в раннем возрасте.

В некоторых случаях, например, когда высокая стена залита на существующую плиту, проектировщик должен будет вынести суждение в отношении эффективных площадей поперечного сечения (c.s.a.) нового и старого бетона, использованного в расчете. Таким образом, могут применяться следующие практические правила:

Когда стена заливается на краю плиты, относительные полезные площади могут быть приняты пропорциональными относительной толщине стены и плиты. .

Когда стена залита на удалении от края плиты, относительные площади можно считать пропорциональными отношению толщины стены к удвоенной толщине плиты.

Более сложные геометрические формы могут потребовать более детального анализа. Следовательно, проектировщик должен определить в рамках спецификации следующие допущения:

Допустимые температуры с точки зрения максимального значения и перепадов.

Коэффициент теплового расширения бетона.

Факторы ограничения в критических местах. (Если они основаны на ограничениях по размеру заливки, это также необходимо указать.)

Способность бетона к деформации при растяжении.

Допустимая ширина трещин, измеренная на поверхности.

Проектировщик также должен учитывать, какие действия следует предпринять в следующих случаях:

1

Неприемлемое растрескивание, которое происходит в допустимых пределах температуры

2

Несоответствие температуре пределов, но растрескивание в установленных пределах

3

Несоответствие температурным пределам и чрезмерное растрескивание

Поскольку проектные нормы имеют тенденцию быть консервативными, сценарий 1 маловероятен, а сценарий 3 явно является ответственностью подрядчик.Когда возникает сценарий 2, это просто демонстрирует консерватизм в предположении проектирования, и по мере накопления опыта по контракту пределы могут быть скорректированы, чтобы отразить это.

В крупных строительных конструкциях становится все более распространенным проведение натурных испытаний для получения данных о характеристиках бетона, которые могут быть использованы для определения пределов температурных перепадов для использования в строительстве. При проведении таких испытаний необходимо следить за тем, чтобы ограничения были реалистичными, особенно в отношении стен, залитых на жесткий фундамент, или плит, которые связывают более жесткие элементы.

Также доступны сложные компьютерные модели, которые позволяют проводить предварительные исследования для изучения влияния типа смеси, геометрии заливки и условий окружающей среды (Эмборг, 1989; Датский научно-исследовательский институт бетона и конструкций, 1987), и они иногда используются для критические конструкции или элементы. Однако ценность продукции часто ограничивается в абсолютном выражении предположениями, которые необходимо сделать в отношении свойств бетона в раннем возрасте и их взаимосвязи с температурной историей или зрелостью бетона.Валидация также затруднена без измерений на месте температуры, деформации и напряжения, но испытания часто могут иметь серьезные последствия для программы. Это область, в которой могут быть полезны дальнейшие исследования.

Как рассчитать длину арматурного стержня

Последнее обновление 10 марта 2020 г. от Tekla User Assistance tekla.documentation@trimble.ком

У вас есть три варианта расчета арматуры арматуры, которая представляет собой стальной стержень, используемый для армирования бетонной конструкции.

Стальные стержни обычно являются ребристыми и используются для увеличения прочности бетона на растяжение.

длина в Tekla Structures:

  • По центральной линии, метод по умолчанию
  • Как сумма длин ног
  • Использование формулы, сформулированной на математическом языке.

    Формула является частью уравнения.

По средней линии

Расчет длины осевой линии используется по умолчанию, если для XS_ USE_ USER_ DEFINED_ REBAR_ LENGTH_ AND_ WEIGHT установлено значение FALSE in.

При вычислении длины осевой линии по умолчанию используется фактический диаметр арматурного стержня.

В приведенном ниже примере длина центральной линии рассчитывается следующим образом: 450 — (30 + 14) + 2 * 3,14 * (30 + 14/2) * 1/4 + 250 — (30 + 14) = 670,1

где

  • 30 = радиус изгиба
  • 14 = фактический диаметр (12 является номинальным)

Сумма длин ветвей (SLL)

Сумма расчета длины опор основана на размерах прямых опор и не учитывает радиус изгиба.

Этот расчет используется, когда XS_ USE_ USER_ DEFINED_ REBAR_ LENGTH_ AND_ WEIGHT и XS_ USE_ USER_ DEFINED_ REBARSHAPERULES установлены на TRUE in.

В приведенном ниже примере длина арматурного стержня составляет 450 + 250 = 700

Если значение длины отображается как ноль в отчетах и ​​запросах, вам необходимо определить длину в Диспетчере форм арматурных стержней для каждой формы.

Для определения длины в Диспетчере форм арматурных стержней:

  1. В полях графика гибки щелкните правой кнопкой мыши ячейку L и выберите SLL (Сумма длин участков) во всплывающем меню.
  2. Щелкните Обновить.
  3. Щелкните Сохранить.

По формуле

Вы также можете использовать формулу в Диспетчере форм арматурных стержней для расчета общей длины арматурного стержня.

Необходимо установить для XS_ USE_ USER_ DEFINED_ REBAR_ LENGTH_ AND_ WEIGHT и XS_ USE_ USER_ DEFINED_ REBARSHAPERULES значение TRUE .

Например, чтобы учесть радиус изгиба и рассчитать длину по внешней поверхности арматурного стержня, выполните следующие действия:

  1. В полях графика гибки щелкните правой кнопкой мыши ячейку L и выберите (формула) во всплывающем меню.
  2. Введите следующую формулу для расчета длины: S1 + S2 + 2 * 3,14 * (RS + DIA) * 1/4

где

  • S1 = длина прямой ноги 1 ( 406 )
  • S2 = длина прямой ноги 2 ( 206 )
  • RS = радиус скругления ( 30 )
  • DIA = фактический диаметр ( 14 )

Точность

Точность длины арматурного стержня определяется в rebar_config.inp файл. Значения могут отличаться в зависимости от среды.

Например, значения, показанные ниже, взяты из файла rebar_config.inp. В среде по умолчанию среда Tekla Structures, содержащая основные параметры примера, не относящиеся к каким-либо стандартам, относящимся к стране или региону.

файл находится в .. \ ProgramData \ Trimble \ Tekla Structures \ \ Environments \ default \ система \ папка.

Следующие настройки определяют точность и округление для длин ног:

  • График Размер Округление Точность = 1.0
  • ScheduleDimensionRoundingDirection = «ВНИЗ»

Следующие настройки определяют точность и округление для общей длины арматурного стержня:

  • График Общая длина Точность округления = 10,0
  • ScheduleTotalLengthRoundingDirection = «ВНИЗ»

Обратите внимание, что XS_ USE_ ONLY_ NOMINAL_ REBAR_ DIAMETER также влияет на расчет длины арматурного стержня.

Количество стали в колоннах (BBS)? всего за 2 шага

Количество стали в графе

Расчет количества стали в колонне очень простой и легкий, требуется лишь небольшая концентрация. Для лучшего понимания просто взгляните на этот пример.

Пример:

предположим, что у нас есть столбец. Высота колонны 4 м, площадь поперечного сечения 300 x 400 мм и прозрачная крышка 40 мм.Будут использованы шесть стержней диаметром 16 мм. Диаметр хомута составляет 8 мм, а расстояние между ними составляет 150 мм и 200 мм на L / 3 соответственно.

Данные:

Высота = 4 метра

Поперечное сечение = 300 x 400 мм

Прозрачная крышка = 40 мм.

Количество вертикальных полос = 6 шт.

Диаметр вертикальной планки = 16 мм.

Диаметр хомута = 8 мм.

расстояние между центрами хомутов = @ 150 или @ 200 мм.

BBS столбца =?

Решение:

Расчет должен был состоять из двух этапов.

  1. Расчет вертикальных стержней
  2. Длина реза хомутов

Шаг 1: Расчет вертикальной полосы

Длина 1 стержня = H + L d

# Где

L d = длина развертки

h = высота колонны

Длина 1 стержня

= 4000 мм + 40d <где d - диаметр стержня>

= 4000 + 40 х 16

= 4000 + 640

= 4640 мм или 4.640 м Отв.

Длина одной вертикальной планки 4,640 м. у нас всего бара шесть баров,

Общая длина

= 6 х 4,640

= Вертикальная полоса длиной 27,84 м — требуется .

Шаг 2: Отрезание хомутов в колоннах

Площадь поперечного сечения колонны 300 мм x 400 мм

A — площадь поперечного сечения хомута по вертикали

B — горизонтальное сечение хомута

Расчет длины A

A = горизонтальное расстояние — 2-х сторонняя прозрачная крышка

A = 300 — 2 x прозрачная крышка

А = 300 — 2 х 40

А = 300 — 80

A = 220 мм

Длина Б

B = вертикальное расстояние — 2 x верх, нижняя крышка

B = 400-2 x прозрачная крышка

B = 400 — 2 x 40

B = 400–80

B = 320 мм

Кол-во хомутов

Кол-во хомутов

= 4000/3

= 1333.3 мм или 1,33 м

Формула = L / 3 / интервал + 1

(количество хомутов в концевой зоне)

= 1333,3 / 150

= 8,8, например 9 номеров

Всего имеется две зоны с шагом 150 мм и одна зона с шагом 200 мм.

= 2 х 9

= 18 номеров (в конечных зонах)

В средней зоне

= 1333,3 / 200

= 6,6 номеров, например 7 номеров

Всего хомутов

= 18 + 7

= 25 номеров

Длина реза одного хомута

Формула:

= (2 х А) + (2 х В) + крючок — загиб

Длина реза

= (2 x A) + (2 x B) + 2 x 10d — 5 x 2d

# где

крючок = 10d

изгиб = 5 x 2d (у нас 5 изгибов в одной скобе)

d = диаметр прутка

= (2 x 220) + (2 x 320) + 2 x 10 x 8 — 2 x 5 x 8

= 440 + 640 + 160 — 80

= 1160 мм или 1.16 кв.м.

Всего у нас 25 шт. Стремян, которые собираемся использовать,

Общая длина

= 25 х 1,16

= 29 м, длина стержня 8 мм .

Приложение Civil Notes: —

Измерение количества, Бетон, Сталь, Примечания, доступные в этом приложении для Android.

Нажмите на картинку ниже, чтобы бесплатно загрузить из игрового магазина.

Civil Notes: — https://play.google.com/store/apps/details?id=com.engineering.civil.notes.clicks

Как рассчитать количество стали в односторонней плите?

Перед тем, как рассчитать количество стали в одностороннем слябе, очень важно прояснить основные понятия. Расчет количества стали для односторонних слябов выполняется в соответствии с условиями их поддержки. Односторонняя плита опирается на две балки и затем на колонны здания.

Стержни, которые мы используем в зоне растяжения плиты, называются Изогнутые стержни .Технически в перекрытии мы даем этим стержням два разных названия (основной стержень и стержень распределения).

Основные арматуры стержней мы предоставляем для более короткого пролета плит, а стержни — для более длинного пролета плиты. В длинном пролете плиты мы предлагаем сталь, известную как Распределительная сталь , которая не помогает выдерживать какие-либо типы нагрузки и единственная функция — распределять нагрузку или противодействовать усадочным напряжениям.

Для лучшего понимания возьмем этот пример.

ПРИМЕР:

Предположим, у нас есть односторонняя плита длиной 5 м или шириной 2 м (пролет в свету). Основные стержни будут иметь диаметр 12 мм и расстояние между ними 100 мм. Распределительные стержни будут иметь диаметр 8 мм и расстояние между ними 125 мм. Прозрачная крышка будет 25 мм (верхняя или нижняя), а толщина плиты — 150 мм.

1. Рассчитать количество стали?

2. Рассчитать вес стали?

КОЛИЧЕСТВО СТАЛИ В ОДНОСТОРОННИХ ПЛИТКАХ РЕШЕНИЕ ДЛЯ ФОРМУЛЫ

ПРЕДОСТАВЛЕННЫЕ ДАННЫЕ.

Длина = 5 м (5000 мм).

Ширина = 2 м (2000 мм).

Главный стержень = 12 мм @ 100 мм с / с .

Распределительная планка = 8 мм @ 125 мм с / с .

Прозрачная крышка = 25 мм из (сверху и снизу).

Толщина = 150 мм

РЕШЕНИЕ:

Количество выполняется в два этапа.

Шаг 1. (Расчет номеров стержней)

Сначала рассчитайте количество необходимых баров (как основного, так и распределительного).

FORMULA = ( Общая длина Прозрачная крышка ) / Расстояние между центрами + 1

Основная полоса = (5000 — (25 + 25)) / 100 + 1

= 4950 Делится на 100 + 1

= 51 бар.

Шкала распределения = (2000 — (25 + 25)) / 125 + 1

= 1950 Делится на 125 + 1

= 17 бар.

Шаг 2. (Длина реза)

ГЛАВНАЯ ПАНЕЛЬ:

FORMULA = ( L ) + (2 x L d ) + (1 x 0,42D ) — (2 x 1 d )

# Где

L = Пролет перекрытия

Ld = Длина развертки, равная 40 d (где d — диаметр стержня)

0,42D = наклонная длина (длина изгиба)

1d = колено 45 ° (d — диаметр стержня)

Сначала рассчитайте длину « D ».

D = (толщина) — 2 (прозрачная крышка сверху, снизу) — диаметр стержня.

= 150 — 2 (25) -12

D = 88 мм Ans…

По поставив значения .

Длина реза = 2000 + (2 x 40 x 12) + (1 x 0,42 x 88) — (2 x 1 x 12)

Длина реза = 2000 + 960 + 36,96 — 24 = 2972,96 мм ~ 2973 мм или 2,973 м

РАСПРЕДЕЛИТЕЛЬНЫЙ БАР:

= Чистый диапазон + (2 x Длина проявления (Ld))

= 5000 + (2 x 40 x 8) = 5640 мм или 5.2/162) x длина = 37,87 кг.

Примечание: Вес стержня может варьироваться в зависимости от свойств стали.

Загрузить приложение Civil Notes:

  • 1: Измерение количества,
  • 2: Бетон,
  • 3: Сталь, Примечания, доступные в этом приложении для Android.

Нажмите на картинку ниже, чтобы загрузить ее бесплатно из игрового магазина.

Civil Notes: — https: // play.google.com/store/apps/details?id=com.engineering.civil.notes.clicks

пожаловаться на это объявление

Детали армирования — Concrete Design

Правила, регулирующие минимальное и максимальное количество арматуры в несущей колонне, следующие.

Сталь продольная

1. Требуется минимум четыре столбца в прямоугольном столбце (по одному столбцу в каждом углу) и шесть столбцов в круглом столбце. Диаметр прутка не должен быть меньше 12 мм.

2.Минимальная площадь стали равна

3. Максимальная площадь стали при нахлестах равна As

.

, где As — общая площадь продольной стали, а Ac — площадь поперечного сечения колонны.

В противном случае в регионах вне кругов: s ‘»» «<0,04.

Ссылки

1. Минимальный размер = j x размер компрессионного стержня, но не менее 6 мм.

2. Максимальное расстояние не должно превышать меньшее из 20-кратного размера наименьшего компрессионного стержня или наименьшего поперечного размера колонны или 400 мм.Этот интервал следует уменьшить в 0,60 раза.

(a) для расстояния, равного большему поперечному размеру колонны выше и ниже балки или плиты, и

(б) на стыках внахлест продольных стержней диаметром> 14 мм.

3. Если направление продольной арматуры изменяется, расстояние между звеньями следует рассчитывать с учетом действующих поперечных сил. Если изменение направления меньше или равно I в 12, расчет не требуется.

4. Каждый продольный стержень, помещенный в угол, должен удерживаться поперечной арматурой.

5. Сжимающий стержень не должен находиться на расстоянии более 150 мм от удерживаемого стержня.

Хотя звенья популярны в Соединенном Королевстве, спиральное армирование популярно в некоторых частях мира и обеспечивает дополнительную прочность в дополнение к дополнительной защите от сейсмической нагрузки. Размеры и шаг винтовой арматуры должны быть аналогичны звеньям.

На рис. 9.6 показано возможное расположение арматурных стержней на стыке двух колонн и перекрытия.На рисунке 9.6a арматура в нижней колонне изогнута так, что она загорится в меньшей колонке выше. Кривошип в арматуре должен, по возможности, начинаться над потолком балки, чтобы момент сопротивления колонны не уменьшался. По той же причине столбцы в верхнем столбце должны быть

.

«Перекрытие

Балочный диван

Дюбели

Рисунок 9.6

Детали стыков в арматуре колонн

изогнутых, когда обе колонны имеют такие же размеры, как на рисунке 9.6б. В местах изгиба стержней должны быть предусмотрены связи, чтобы противостоять короблению из-за горизонтальных составляющих силы на наклонных участках стержня. Отдельные дюбели, показанные на рисунке 9.6c, также могут использоваться для обеспечения непрерывности между двумя длинами колонны. Соединение колонны с балкой должно быть детализировано так, чтобы было достаточно места как для стальной колонны, так и для стальной балки. Тщательное внимание к деталям в этом вопросе значительно облегчит фиксацию стали во время строительства.

Читать здесь: Моменты сопротивления и осевые силы коротких колонн

Была ли эта статья полезной?

(PDF) Обнаружение и количественная оценка уменьшения диаметра из-за коррозии в арматурных стальных стержнях

Лондон: Elsevier Applied Science (опубликовано для Общества химической промышленности

), 1990, стр. 358–371.

4. Ву КАТ и Стюарт М.Г. Прогнозирование вероятности и

степени коррозионного растрескивания железобетона.

J Struct Eng: ASCE 2005; 131: 1681–1689.

5. Павлакович Б.Н., Лоу М.Дж.С. и Коули П. Высокочастотные

Ультразвуковые режимы с низкими потерями в встроенных стержнях. J

Appl Mech 2001; 68: 67–75.

6. Эрвин Б.Л., Кучма Д.А., Бернхард Дж. Т. и др. Мониторинг

коррозии арматуры, залитой строительным раствором, с помощью ультразвуковых волн с высокой частотой

. J Eng Mech: ASCE

2009; 135: 9–19.

7. Na W, Kundu T. and Ehsani MR. Ультразвуковые волны

для испытания границы раздела стальных стержней и бетона.Mater Eval

2002; 60: 437–444.

8. Na W, Kundu T. and Ehsani MR. Сравнение испытаний поверхности раздела сталь / бетон

и полимеры / бетон, армированные стекловолокном

с помощью направленных волн. Mater Eval 2003; 61:

155–161.

9. Гу Г. П., Бодуан Дж. Дж. И Рамачандран В. С. Глава

12. Методика исследования коррозии армированного бетона

. В: Ramachandran VS and Beaudoin JJ (eds)

Справочник по аналитическим методам в конкретной науке и

технологии — принципы, методы и приложения.

Оттава, Онтарио, Канада: Национальный исследовательский совет

Канада, 2001. стр. 738-764

10. Song G, Gu H and Mo YL. Умные агрегаты: многофункциональные датчики

для бетонных конструкций. Учебник и

обзор. Smart Mater Struct 2008; 17: 1–17.

11. Сонг Х.В. и Сарасвати В. Мониторинг коррозии железобетонных конструкций

. Int J Electrochem Sc 2007;

2: 1–28.

12. У Ф. и Чанг Ф. Обнаружение отслоения с помощью встроенных пьезоэлементов

в железобетонные конструкции.

Часть I: эксперимент. Struct Health Monit 2006; 5: 5–15.

13. У Ф. и Чанг Ф. К.. Обнаружение отслоения с помощью встроенных пьезоэлементов

для железобетонных конструкций.

Часть II: анализ и алгоритм. Struct Health Monit

2006; 5: 17–28.

14. Гандехари М. и Халил Г. Управление здоровьем материалов —

с помощью химического анализа in situ. Mater Eval 2005; 63:

724–730.

15. Вимер К., Ю С. и Гандехари М.Определение уровня pH в материалах гражданского строительства

. J Mater Civil Eng 2009; 21:

51–57.

16. Ядав С.К., Банерджи С. и Кунду Т. О секвенировании методов извлечения признаков

для онлайн-характеристики повреждений. J Intel Mat Syst Str 2013; 24: 473–483.

17. Арсе Г. и Хасан С. Устранение интерференционных членов

дискретного распределения Вигнера с использованием нелинейной фильтрации.

IEEE T Signal Proces 2000; 48: 2321–2331.

18. Стоквелл Р.Г., Мансинья Л. и Лоу Р.П. Локализация

комплексного спектра: S-образное преобразование. IEEE T Signal

Proces 1996; 44: 998–1001.

19. Пиннегар CR, Мансинья Л. Бикауссовская форма S-trans-

. SIAM J Sci Comput 2003; 24: 1678–1692.

20. Амджад У, Джа Д., Тарар К.С. и др. Определение зависимости скорости волн Лэмба от напряжения

в алюминиевых пластинах

мин. P SPIE 2011; 7984: 798410.

21.Тарар К.С., Мейер Р., Твердовски Э. и др. Дифференциальный метод

для определения времени пролета для ультразвука

при импульсном широкополосном возбуждении, включая

чирпированных сигналов. P SPIE 2008; 6935: 693519.

22. http://www.ocean.washington.edu/courses/ess522/lectures/

08_xcorr.pdf

23. Tarar KS, Meier R, Amjad U, et al. Обнаружение напряжений с помощью управляемых акустических ультразвуковых волн

с помощью нелинейных упругих и

геометрических эффектов.P SPIE 2009; 7295: 729518.

24. Газис ДЗ. Трехмерное исследование распространения волн в полых круглых цилиндрах. I: аналитический

фундамент. J Acoust Soc Am 1959; 31 (5): 568–573.

25. Павлакович Б., Лоу М., Аллейн Д. и др. Disperse: универсальная программа для построения кривых дисперсии. В:

Thompson D and Chimenti D (eds) Обзор прогресса в количественной неразрушающей оценке

. Нью-Йорк, Нью-Йорк:

Springer, 1997, том 16, стр.185–192.

26. Газис ДЗ. Трехмерное исследование распространения волн в полых круглых цилиндрах. II: числовые результаты

. J Acoust Soc Am 1959; 31 (5): 573–578.

27. Кунду Т. Глава 5. Направленные волны для пластин и труб

Контроль. В: Кунду Т. (ред.) Ультразвуковой и электромагнитный

NDE для определения структуры и материала —

инженерные и биомедицинские приложения. Бока-Ратон, Флорида:

CRC Press, 2012, стр.295–394.

28. Sejdı

´c E, Djurovı

´c I и Jiang J. Оптимизированная ширина окна

уменьшенное S-преобразование. EURASIP J Adv Sig Pr 2008; 2008:

672941.

29. Ассус С. и Боашаш Б. Оценка модифицированного преобразования S-

для анализа частотно-временной синхронизации и локализации источника

. EURASIP J Adv Sig Pr 2012; 49:

1–18.

30. Бенаммар А., Дрей Р. и Гессум А. Ультразвуковое обнаружение дефекта

с использованием S-преобразования с модифицированным порогом.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *