Skip to content

Несущая способность грунта таблица снип: Определение значения несущей способности грунта

Содержание

Таблица несущей способности грунтов

Несущая способность грунта определяется на основе ряда характеристик почвы. Для того чтобы получить все необходимые показатели, потребуется выполнить ряд тестов. Они дадут возможность узнать точную несущую способность грунта на конкретном участке. Соответствующие эксперименты проводятся с почвой, полученной непосредственно на запланированном месте строительства.

Что такое несущая способность грунта?

Несущая способность грунта — это показатель давления, которое может выдерживать грунт. Его указывают либо в Ньютонах на квадратный сантиметр (Н/см²), либо в киолграмм-силе на 1 сантиметр квадратный (кгс/см²), либо в мегапаскалях (МПа).

Данная величина используется при проектировании фундаментов для сравнения нагрузки, которую оказывает на почву конструкция здания с учётом возможного слоя снега на крыше и давления ветра на поверхность стен. Даже при точном подсчете влияния каждого из указанных факторов на соотношение несущей способности поверхности земли на участке к совокупной нагрузке от конструкции здания, эту цифру берут с запасом.

К содержанию ↑

Таблица средней несущей способности различных грунтов

Далее следует таблица с указанием средних цифр несущей способности или, как её ещё называют, расчетного сопротивления разных типов грунта в кгс/см².

Более точные расчеты с учётом всех коэффициентов, которые отображают влияние каждого существующего в реальных условиях фактора, можно выполнить следуя рекомендациям в нормативном своде правил за 2011 год СП 22.13330.2011 с названием Основания зданий и сооружений. Это официальное издание более старого стандарта СНиП 2.02.01-83*, выполненное научно-исследовательским институтом имени Н.М. Герсеванова.

В приведенной таблице отображены усреднённые результаты расчётов, проведенных с использованием формул и данных, основанных на описанном выше своде правил 2011 года.

Здесь можно видеть, что существует достаточно большой разброс в показателях сопротивления грунта. Это обусловлено в первую очередь влажностью почвы, которая непосредственно зависит от уровня залегания грунтовых вод.

Если нужно получить цифры в МПа или в Н/см², то можно перевести указанные в таблице значение согласно установленным соотношениям величин.

  • 1 кгс/см² = 0,098 МПа или 1 МПа = 10,2 кгс/см²
  • 1 кгс/см² = 9.8 Н/см² или 1 Н/см² = 0.102 кгс/см²

Для удобства существует также таблица, где указаны средние цифры расчетного сопротивления грунта в Н/см²

Аналогичная проблема с таблицами подобного рода — очень существенное различие между минимальными и максимальными значениями. В общем случае рекомендуется брать минимальные показатели, которые указаны в табличных данных. Для примера разместим ещё одну таблицу, наглядно иллюстрирующую подход зарубежных специалистов к обнародованию данных своих исследований.

Очевидно, что табличные цифры используются, как правило, теми, кто принял решение не заказывать профессиональное геологическое исследование почвы на своём участке. Поэтому имеет смысл давать показатели с запасом, чтобы при самостоятельных расчетах, даже если в них закрадется небольшая погрешность, это не привело к непоправимым последствиям.

В то же время даже при значительном запасе по прочности не факт, что конструкция здания будет достаточно стабильно стоять на основании в течение десятков лет. За такой срок качество грунта может измениться, если не были соблюдены соответствующие меры по защите фундамента от скопления осадочных вод. Для этих целей обязательно следует изготавливать отмостку с хорошей гидроизоляцией и дренажную систему по периметру постройки для централизованного сбора стоков.

К содержанию ↑

Уточнённая таблица с поправками на текучесть и пористость грунта

Существет ещё одна таблица несущей способности, позволяющая более точно определить цифры на участке, где известны коэффициенты пористости и показатели текучести почвы.

Влияние коэффициента текучести грунта на его несущую способность указаны в таблице. Средняя текучесть грунта зависит от его типа и коэффициента водонасыщения. Эти расчёты выполнить достаточно трудно, поэтому размещаем таблицы, которые описывают поведение образца грунта, характеризующее его текучесть.

Также расчетное сопротивление зависит от коэффициента пористости Е, который нужно устанавливать с помощью экспериментального взятия проб непосредственно на будущей строительной площадке.

Для теста потребуется взять кубик грунта 10х10Х10 см с объёмом О1 = 1000 см³ так, чтобы он не рассыпался. Далее этот кубик взвешивается и определяется его масса (М), после чего грунт измельчают. Затем, с помощью мерного стакана устанавливается объём измельченного грунта также в кубических сантиметрах (О2).

Далее нужно узнать объёмный вес исходного кубика (ОВ1) и измельченного грунта без пор (ОВ2). Для этого следует определенную вначале массу (М) разделить на (О1), чтобы получить (ОВ1) и затем разделить эту же величину (М) на (О2), чтобы получить (ОВ2). Исходный объём О1 изначально известен и равен 1000 см³, а объём измельченного грунта О2 берется из опыта с мерным стаканом.

  • ОВ1 = М/О1
  • ОВ2 = М/О2

Осталось только рассчитать пористость Е, которая равна 1 — (ОВ1/ОВ2)

Теперь, зная коэффициент текучести и пористость грунта, можно исходя из табличных цифр с определенной точностью сказать, какая именно несущая способность является расчетной именно для вашего участка. Если вы использовали экспериментальное выявление пористости, то убедитесь, что было проведено хотя бы 3 опыта, чтобы получить нужную величину с достаточно высокой точностью. При желании получить максимально близкие к реальности данные, используйте специальный калькулятор, где есть возможность указывать все влияющие на конечную цифру коэффициенты вот здесь.

способы расчета под закладку фундамента, СНиП

На чтение 5 мин Просмотров 311 Опубликовано Обновлено

Степень восприимчивости почвы к нагрузкам называют несущей способностью грунта. Показатель характеризует максимальное усредненное давление между подошвой фундамента и земли, при котором не происходят сдвиги, оползни и провалы в окружающем слое. На величину значения влияет вид почвы, ее физические и механические характеристики.

Что такое несущая способность грунта и на что она влияет

От несущей способности грунта зависит выбор типа фундамента

Понятие рассматривают как давление, воспринимаемое единицей площади основания, при котором оно не деформируется и не приводит к разрушению строения. Геологи исследуют грунт, чтобы определить его свойства и рассчитать несущие характеристики.

Восприимчивость почвы к давлению зависит от условий:

  • тип грунта;
  • массивность слоя;
  • отметка залегания;
  • показатели нижележащего пласта;
  • уровень почвенных вод;
  • глубина промерзания земли;
  • плотность породы.

Показатели несущей способности влажного и сухого грунта отличаются, т.к. при насыщении влагой повышается текучесть и снижается сопротивление нагрузкам. Если слой контактирует с жидкостью, он относится к категории насыщенных. Исключение составляют песчаные крупно и среднезернистые почвы, которых не касается деформация так как они пропускают влагу, а не скапливают ее.

Изыскания проводят для определения, подходит слой для установки фундамента или нужно усилить его для повышения несущей способности. Не проектируют опорные элементы на глубине, где граничат разные пласты. Подошву фундамента закладывают ниже отметки стояния почвенной влаги, т. к. насыщенные породы вспучиваются при замерзании.

Чувствительность грунта к нагрузкам снижают путем искусственного уплотнения или введения химических модификаторов. В первом случае вбивают сваи, чтобы уменьшить объем пустот в почве. Химические реагенты способствуют адгезии (сцеплению) отдельных частиц почвы.

Определение плотности почвы и уровня грунтовых вод

Плотность определяют в зависимости от пористости основания. В почве есть твердые части, между ними находятся полости, наполненные водой или воздухом в зависимости от условий. Если превысить максимально допустимую нагрузку, сдвиги приведут к разрушению дома. Плотные грунты с малым числом или одиночными кавернами относят к наиболее прочным основаниям.

Плотность находят отношением веса почвенного образца при стандартной влажности к объему, который он занимает. Расчет делают по формуле p = B / V, где:

  • B — вес грунта в естественном состоянии, г;
  • V — объем, см3.

Породы, которые залегают неглубоко от поверхности, считаются неплотными, с понижением отметки грунты становятся толще, надежнее и прочнее, т. к. на их давят вышележащие пласты. В России наблюдают пески и глины, есть торфяники, болотистые местности и регионы со скальными породами.

Грунтовые жидкости находят в слабых и рыхлых породах или трещинах плотных пластов. Почвенная влага обычно поднимается постепенно и не имеет напора.

Уровень стояния зависит от факторов:

  • осадки, испарения;
  • температура воздуха, атмосферное давление;
  • изменение состояния водоемов;
  • хозяйственные процессы деятельности людей.

Влага внутри слоев может быть агрессивной, содержать кислоты, щелочи, сульфаты, углекислоту — такие добавки разрушают бетон и металл фундаментов. Определяют уровень жидкости путем бурения в полевых условиях шурфов, которые отрывают на несколько метров, чтобы они были ниже предполагаемой отметки опоры. Скважину накрывают и оставляют на 5 – 7 суток. Если в ней не обнаружена вода, почва не содержит влаги. В другом случае для выполнения строительных работ по правилам нужен дренаж (система отвода воды).

Как определить несущую способность грунта под фундамент самостоятельно

Несущая способность является основой при проведении подсчета в процессе проектирования. Классифицируют грунты в рамках сведений документа ГОСТ 25.100-2011 «Грунты. Классификация». Нормы сопротивления давлению находятся в таблицах нагрузки на грунт материалов СП 22.133.30-2016 «Основание зданий и сооружений». Здесь же приводятся стандартные модули расчёта, формулы, коэффициенты.

Несущую способность находят математическим выражением R = R0 · (1 + K · (B -100) / 100) · (N + 200) / 2 · 200 — для заглубления до двух метров, и формулой R = R0 · (1 + K · (B -100) / 100) + K2 · Q · (N – 200) — если конструкция погружается более двух метров, где:

  • R0 — противодействие нагрузке по вертикальной оси, содержится в таблицах и определяется видом грунта;
  • K2 — используется при расчётах в стабильных слоях;
  • K — поправочный коэффициент из таблиц СП на разновидность породы;
  • B — поперечный размер низа фундамента;
  • N — глубина погружения опоры;
  • Q — коэффициент, чтобы найти расчетный средний показатель удельного веса почвы от верха земли до подошвы фундамента.

Тип грунта можно определить своими руками. Берут грунт из скважины на глубине погружения опоры, смачивают водой и скатывают жгут, затем его соединяют в кольцо. Элемент без трещин, легко соединяется — почва связная, чаще это глины. При сгибании появляются трещины, значит, в руках смесь глины и песка, последнего содержится 10 – 30%. Жгут трудно скатать, а соединить кольцом невозможно — песчаная почва.

Далее используют таблицы СНиП несущей способности грунта, где по типу почвы можно найти требуемое значение.

Риски ошибок в исследовании несущей способности грунта

Появляется опасность сдвига почвы в результате неточного расчёта глубины заложения и габаритов фундамента. Здание весит тонны, на грунт оказывается сильное давление, поэтому к расчетам привлекают строительных инженеров и техников, чтобы в будущем исключить проблемы с деформацией.

Неправильное нахождение несущей способности почвы влечет неприятности в виде:

  • ошибочного подсчета диаметра сваи, площади подошвы ленточного монолита, бетонной плиты;
  • установки опоры в неплотные грунты, просадки строения;
  • неправильного выбора отметки заглубления, выталкивания фундамента вспучивающимися грунтами.

В расчете применяют много коэффициентов, которые нужно точно определить в таблице, иначе фундамент будет запроектирован с ошибками, которые легко править на бумаге, но трудно устранить после возведения стен и кровли. Шатается коробка дома, прогибаются полы в результате чрезмерных усадок после неправильно установленных свай. В здании идут трещины по углам, перекашиваются оконные и дверные коробки в проемах, если сдвинется ленточный фундамент.

Определение несущей способности одиночных свай по формулам и таблицам СНиП П-Б. 5-67

Несущую способность свай   определяют   по   следующим фор­мулам:
для свай-стоек

(2.2)

для висячих свай

(2.3

Таблица   2.1
Нормативное сопротивление   грунта основания в плоскости   нижних концов забивных  свай Rн по СНиП II-Б.5-67



Примечание: В тех случаях, когда значения Rн указаны дробью, числитель относится к пескам, а знаменатель к глинам.

где: k = 0,7 — коэффициент однородности грунта; т = 1,0 — коэффи­циент условий работы; F — площадь поперечного сечения сваи у нижнего конца, м2; Rн — нормативное сопротивление грунта основа­ния в плоскости нижнего конца сваи, Т/м2, принимаемое для забив­ных свай по табл. 2.1; u — периметр поперечного сечения сваи, м; — нормативное сопротивление 1-го слоя грунта по боковой по­верхности сваи,

Т/м2, принимаемое по табл. 2.2; /, — длина участка сваи в пределах i — го слоя грунта, соприкасающегося с боковой поверхностью сваи, м.
При определении значений пласты грунта по высоте делят на участки не более 2,0 м.
Указанные в табл. 2.1 и 2.2 значения Rн и даны для песчаных грунтов средней плотности, супесей с коэффициентом пористости не более 0,7, суглинков с тем же коэффициентом не более 1,0 и глин — не более 1,1.
Для плотных песчаных грунтов табличные значения Rн и уве­личивают на 30%.
Таблица   2.2
Нормативные сопротивления грунта, основания по боковой поверхности забивных свай    (по СНиП П-Б.5-67)

При определении величин Rн и нужно учитывать указанные ниже правила.

1.  При планировке территорий срезкой, подсыпкой, намывом до 3,0 м глубину расположения острия сваи и среднюю глубину расположения слоя грунта по боковой поверхности сваи следует прини­мать от уровня природного рельефа.

2.  При планировке срезкой, подсыпкой, намывом более 3,0 м — глубину расположения острия сваи и среднюю глубину расположе­ния слоя грунта по боковой поверхности сваи нужно принимать от условной отметки, расположенной на 3,0 м выше уровня срезки или на 3,0 м выше природного рельефа при планировке подсыпкой.

3.  Если в пределах длины сваи имеется прослойка торфа мощностью>30 см и предполагается планировка территории подсыпкой или иная ее загрузка, эквивалентная подсыпке, то сопротивление грунта, расположенного выше подошвы наинизшего (в пределах глубины забивки сваи) слоя торфа, принимают:
— при подсыпке до 2,0 м — для подсыпки и торфа равными нулю, а для минеральных пластов естественного сложения по табл. 2.2;

— при подсыпках от 2,0 до 5,0 м для грунтов, включая подсыпку, равным 0,4 от значений, указанных в табл. 2,2, взятых со знаком ми­нус, а для торфа — равным минус 0,5 Т/м2;
—    то же, при подсыпках более 5,0 м — указанным в табл. 2.2 зна­чениям, но со знаком минус ,(для торфа минус 0,5 Т/м2).

Значения нормативных сопротивлений грунта под острием и по боковой поверхности сваи, со всеми поправками, можно использовать только при условии, что заглубление сваи в неразмываемый и несрезаемый грунт составляет не менее 4,0 м для мостов и гидро­технических сооружений и не менее 3,0 м для зданий и прочих соо­ружений.

Пример 2.1. Строительная площадка имеет значительный уклон. Верх­ний слой грунта составляют супеси консистенции В = 0,4 мощностью 1,5-2,0 м. Ниже залегает слой торфа мощностью 0,5

м; далее идет мощный слой мелких песков средней плотности. По условиям строительства намечена вертикальная планировка подсыпкой из мелкого песка средней плотности. При забивке свай длиной L= 12,0 м, сечением 30х30 см их несущая способность резко меняется в зависимости от мощности слоя подсыпки, что показано ниже.


Рис. 2.3. Расположение сваи в различных условиях напластования грунтов
(к примеру 2.1)
Свая № 1. Расчетная длина сваи L = 12,0 м; мощность подсыпки из мелко­го песка средней плотности l1 = 1,5 м. Слой пластичной супеси природного сложе­ния при В=0,4 имеет мощность l2=2,0 м, слой торфа — мощность l3=0,5 м. Да­лее на неопределенную глубину залегают мелкие пески средней плотности (рис. 2.3).


Расчетную глубину погружения сваи Н принимаем от природного рельефа, т. е. Н = 12,0-1,5= 10,5 м.
Нормативное сопротивление грунта под нижним концом сваи определяем по данным табл. 2.1.

Нормативное сопротивление грунта в Т/м2по боковой поверхности сваи определяем послойно (толщина слоев указана в м):

Несущая способность сваи

Свая № 2. Расчетная длина сваи L = 12,0 м. Мощность подсыпки из мелко­го песка средней крупности l1+l2 = 3,0 м. Слой пластичной супеси природного сложения при В = 0,4 мощностью l3 = 2,0 м, слой торфа мощностью l4 = 0,5 м. Ниже расположены на неопределенной глубине мелкие пески средней плотности.
Расчетную глубину погружения сваи Н принимаем от условий отметки на 3,0 м выше уровня природного рельефа, т. е. в данном случае от уровня подсып­ки. Отсюда Н=12,0 м.
Нормативное сопротивление грунта под нижним концом сваи с использо­ванием данных табл. 2.1 составит

Нормативное сопротивление грунта f по боковой поверхности сваи определя­ем в Т/м2послойно при высоте слоя h и длине расчетного участка l в м:

Несущая способность сваи


Свая № 3. Расчетная длина сваи L =12,0 м. Мощность подсыпки из мел­кого песка средней плотности l1 + l2 +l3 = 6,0 м. Слой пластичной супеси природно­го сложения при В=0,4 мощностью l4=1,5 м; слой торфа мощностью l5 = 0,5 м. Ниже на неопределенную глубину залегают мелкие пески средней плотности.
Расчетную глубину погружения сваи Н принимаем от условий отметки на 3,0 м выше уровня природного рельефа:

Нормативное сопротивление грунта под нижним концом сваи принимаем по данным табл. 2.1. Интерполируя, получим

Нормативное сопротивление грунта по боковой поверхности сваи определяем в Т/м2послойно:

Отсюда несущая способность сваи:

Для сравнения подсчитаем несущую способность такой же сваи при усло­вии, что мелкие пески средней плотности залегают мощным слоем начиная от поверхности природного рельефа.

Свая № 4. Расчетная длина сваи L = 12,0 м. Свая на всю длину погружена в мощные мелкие пески средней плотности.
Нормативное сопротивление грунта под нижним концом сваи по табл. 2.1:

Далее определяем послойно нормативное сопротивление грунта в Т/м2 по бо­ковой поверхности сваи

Отсюда несущая способность сваи составит

Сравнив несущие способности свай в заданных грунтовых условиях с несу­щей способностью такой же сваи,  погруженной  на всю  длину   в мелкий песок средней плотности природного сложения, получим потери несущей способности из-за наличия прослойки торфа и подсыпки: для сваи № 1

для сваи № 2

для сваи № 3

Значения нормативных сопротивлений грунтов Rн и , приве­денные в табл. 2.1 и 2.2, используют при расчете несущей способно­сти сплошных и полых с закрытым нижним концом свай, погружае­мых механическими (подвесными), паровоздушными и дизельными молотами, а также при расчете несущей способности набивных частотрамбованных свай.

Таблица   2.3  Поправочные коэффициенты mп для определения нормативных сопротивлений грунтов оснований висячих свай

Если предусматривают другие способы погружения свай, то зна­чения Rн и умножают на поправочные коэффициенты mп, приве­денные в табл. 2.3 и вычисляемые независимо один от другого.

При попирании забивных свай-стоек на скальные грунты и на крупнообломочные (щебенистые, галечниковые, дресвяные и гра­вийные грунты с песчаным заполнением)    значение нормативного сопротивления грунта под нижним концом сваи принимают равным Rн = 2000 Т/м2.
Для свай-оболочек и набивных свай, заделанных в скальный грунт не менее чем на 0,5 м и заполненных бетоном, величину Rнопределяют из выражения

(2.4)

где: Rсж — среднее арифметическое значение временного сопротив­ления скального грунта одноосному сжатию в водонасыщенном состоянии, Т/м2; h3расчетная глубина заделки сваи-оболочки или набивной сваи в скальный грунт, м; d3— наружный диаметр заде­ланной в скальный грунт части сваи-оболочки или набивной сваи, м.
Высокие значения нормативного сопротивления грунта под ниж­ними концами забивных и частотрамбованных набивных свай явля­ются результатом значительного уплотнения грунта в процессе за­бивки сваи. Устройство свай-оболочек, погружаемых с выемкой грунта, как и устройство набивных свай, не вызывает такого уплот­нения грунта, вследствие чего изменяется и расчетная формула и значения Rн.

Расчет несущей способности свай-оболочек, погружаемых с вы­емкой грунта, ведут так же, как и расчет несущей способности на­бивных свай.

В тех случаях, когда готовые сваи для воздушных линий элект­ропередачи вдавливают в пробуренные скважины (лидеры), рас­четная формула и значения несколько изменяются. Несущую спо­собность сваи, погружаемой вдавливанием в лидеры, определяют из выражения


(2.5)


где: k = 0,85 — коэффициент однородности грунта; m — коэффици­ент условий работы, принимаемый при фундаментах: под прямые промежуточные опоры — 1,0, под прямые анкерные опоры без раз­ности тяжений проводов в смежных пролетах — 0,85, под анкерно-угловые, угловые, концевые и анкерные опоры с разностью тяжений проводов — 0,75, под специальные опоры через большие реки, ущелья и т. п. — 0,6; mк — коэффициент условий работы сваи в кус­те, принимаемый равным 0,9 при двух сваях и 0,8 — при трех сваях; при условии, что расстояние между осями свай не менее 4 и не более 6 диаметров, а глубина погружения свай не менее 4 м; Rн — норма­тивное сопротивление грунта под нижним концом свай, принимае­мое по табл. 2.1; ипериметр сваи; — нормативное сопротивле­ние i — го слоя грунта по боковой поверхности сваи, принимаемое по табл. 2.4; G — вес сваи и части ростверка, приходящейся на одну сваю.

Остальные обозначения объяснены в выражении (2.3). Несущая способность   винтовых   свай   зависит от размеров диаметра лопасти D и длины сваи L. При размерах диаметра лопасти сваи
Таблица 2.4   Нормативное сопротивление грунта по боковой поверхности сваи при вдавливании ее в скважины  (лидеры) , Т/м2


и длине несущую способность винтовой сваи, работающей на осевую нагрузку, определяют по формуле

(2.6)


где: k — коэффициент однородности грунта, принимаемый равным 0,6; m — коэффициент условий работы, определяемый по табл. 2.5; А и В — безразмерные коэффициенты, принимаемые по табл. 2.6; сн — нормативное удельное сцепление или параметр линейности грунта в рабочей зоне, т. е. в слое грунта толщиной, равной D при­легающем к лопасти сваи, Т/м2; h — глубина залегания лопасти сваи oт природного рельефа, а при планировке срезкой — от пла­нировочной отметки; — приведенная объемная масса грунта, за­легающего выше отметки лопасти сваи (с учетом взвешивающего действия грунтовых вод), т/м3; F — проекция площади лопасти, считая по наружному диаметру в м2при работе сваи на сжимающую нагрузку или проекция рабочей площади лопасти, т. е. за вычетом площади сечения ствола свай при работе на выдергивающую на­грузку.

В тех случаях, когда размер лопасти D>1,2 м или длина сваи L>10 м, несущую способность винтовых свай определяют проб­ной статической нагрузкой.

При работе винтовых свай на вдавливание принимают характе­ристики грунтов, залегающих под лопастью сваи, а при расчете на выдергивание — характеристи­ки грунтов, залегающих над ло­пастью сваи. Глубина заложения лопасти от планировочной отметки должна быть не менее 5D в гли­нистых грунтах и не менее 6D — в песчаных.
Таблица   2.5 Коэффициенты условий   работы винтовых свай т

Таблица 2.6   Коэффициенты А и В % выражению (2.6)

Несущая способность грунта СНИП

Несущая способность грунта представляет собой величину предельной нагрузки, которую он способен выдержать без разрушения. Этот показатель должен оцениваться комплексно, с учетом действия фундамента и наземных конструкций. Несущая способность грунта  по СНИПу позволяет сооружать фундаменты на участках при выполнении следующего условия: суммарная расчетная нагрузка на основание не должна превышать отношения произведения коэффициента условий работы и силы предельного сопротивления основания к коэффициенту надежности сооружения. Коэффициент надежности сооружений I, II и III классов составляет, соответственно, 1,2; 1,15; 1,1. Коэффициент условий работы зависит от типа грунта и может принимать значение от 0,8 до 1. Таким образом несущая способность грунта в значительной степени зависит от его типа.

Типы грунтов и виды фундамента

Песок хорошее основание для  мелкозаглубленного ленточного фундамента, потому что он мало подвержен размыванию грунтовыми водами. При этом песчаный грунт наиболее оптимален в условиях расположения грунтовых вод ниже уровня промерзания почвы.

Для супеси идеально подходит фундамент шведская плита ,так как это тип грунта являющийся смесью песка и глины (последняя занимает 5 – 10% объема). Супеси с высоким содержанием воды обладают высокой текучестью и называются плывунами.

Для суглинистых почв подойдет фундамент ТИСЭ с ростверком, поскольку их свойства являются промежуточными между свойствами глинистых и песчаных грунтов. По сути, суглинки являются песчаным грунтом с содержанием глины от 10% до 30% (по объему).

Плывуны и торфяники представляют собой водонасыщенные типы грунтов, характеризующиеся высокой текучестью. Для такого типа почв очень важно подобрать фундамент, наш совет сделать фундамент свайно-ленточный на буронабивных сваях.

Глинистые грунты обладают высоким коэффициентом сжатия, однако скорость этого процесса довольно низкая, поэтому осадка постройки на таком грунте является продолжительной. В этом случае оптимальным выбором будет заглубленный ленточный фундамент, обладающий высокой стойкостью к деформациям от сезонных колебаний грунта.

 

ЗАПРОС / Инженерные расчеты / Строительство /  НИП-Информатика

Продукт входит в состав: SCAD OfficeПрограмма для расчета элементов оснований и фундаментов в соответствии с требованиями СНиП 2.01.07-85 «Нагрузки и воздействия», СНиП 2.02.01-83* и СП 50-101-2004.

Программа работает в нескольких режимах:

  • Информация – предоставление наиболее употребительных справочных данных по основаниям.
  • Фундаменты – определение несущей способности элементов конструкции при заданном армировании.
  • Сваи – определение несущей способности свай.

 

Меню программы

Справочные режимы представлены следующим набором:

  • Предельные деформации оснований — значения относительной разности осадок, крена и максимальной осадки для различного вида зданий и сооружений, приведенные в таблице 4 СНиП 2.02.01-83* и в приложении Е СП 50-101-2004.
  • Расчетные сопротивления грунтов оснований — значения расчетного сопротивления грунтов различного вида, приведенные в приложении 3 СНиП 2.02.01-83* и в приложении Д СП 50-101-2004.
  • Характеристики грунтов — значения модуля деформации, удельного сцепления и угла внутреннего трения для грунтов различного вида, приведенные в приложении 1 СНиП 2.02.01-83* и в приложении Г СП 50-101-2004.
  • Коэффициенты условий работы — значения коэффициентов условий работы для грунтов различного вида, приведенные в таблице 3 СНиП 2.02.01-83* и в таблице 5.2 СП 50-101-2004.

Раздел «Фундаменты» включает следующие режимы:

  • Крен фундамента – режим предназначен для определения крена прямоугольного в плане фундамента от действующих на него нагрузок от стен и колонн, нагрузок на прилегающие площади и давления соседних фундаментов — в соответствии с требованиями СНиП 2.02.01-83*, СП 50-101-2004 и рекомендациями «Пособия по проектированию оснований зданий и сооружений (к СНиП 2.02.01-83)» НИИОСП им. Н.М. Герсеванова (1986 г., п. 2.233-2.245, 2.212-2.218Определение крена фундамента
  • Осадка фундамента – режим предназначен для расчета основания по деформациям прямоугольных в плане столбчатых и ленточных фундаментов, а также жестких плит. Определяются величины средней осадки, просадки, проверяется соответствие давления в уровне подошвы фундамента и кровли всех слоев грунтов расчетному сопротивлению грунтов в соответствии со СНиП 2.02.01-83*, СП 50-101-2004 и «Пособием по проектированию оснований зданий и сооружений (к СНиП 2.02.01-83)» — 1986 г.Осадка фундамента
  • Коэффициенты постели – режим для вычисления коэффициентов постели двумя методами (модель Пастернака и модель слоистого полупространства). В обоих случаях определяются коэффициенты постели C1 (коэффициент сжатия) и C2 (коэффициент сдвига).
  • Предельное давление при расчете деформаций – режим предназначен для вычисления предельного давления под подошвой фундамента (расчетного сопротивления грунта) при расчете деформаций с использованием расчетной схемы основания в виде линейно деформируемого полупространства или линейно деформируемого слоя (п. 2.41 СНиП 2.02.01-83*, п. 5.5.8 СП 50-101-2004).

Раздел «Сваи» включает следующие режимы:

  • Коэффициенты условий работы свай – значения коэффициентов условий работы сваи в зависимости от способа погружения свай и способа их устройства, а также вида фундамента, характеристик грунта и нагрузки, приведенных в таблицах 3, 5 и 19 СНиП 2.02.03-85.
  • Номенклатура свай – справочно приведены марки стандартных забивных свай сплошного квадратного сечения (ГОСТ 19804. 2-79*, ГОСТ 19804. 4-78*), забивных квадратных свай с круглой полостью (ГОСТ 19804. 3-86*), полых свай круглого сечения (ГОСТ 19804. 5-83, ГОСТ 19804. 6-83), двухконсольных свай-колонн квадратного сечения (ГОСТ 19804. 7-83) и их номинальные размеры.Определение несущей способности сваи
  • Несущая способность сваи – режим предназначен для расчета несущей способности свай-стоек и висячих свай, включая сваи-оболочки, в соответствии с требованиями СНиП 2.02.03-85. При определении несущей способности данных свай учтены особенности их проектирования в сейсмических районах.
  • Расчет сваи – режим предназначен для расчета свай на совместное действие вертикальной и горизонтальной сил и момента в соответствии с требованиями СНиП 2.02.03-85. Расчет производится с учетом возможности развития первой и второй стадии напряженно-деформированного состояния грунта.

Пример расчета бурозабивной сваи | ИНФОПГС

    Определение бурозабивной сваи

=============================================================
  
      СЛОЙ  1
  
   Cлой 1  Насыпной, H=2.000 м
   =============================================================
  
      СЛОЙ  2
  
   Cлой 2  Торф, H=1.000 м
   =============================================================
  
      СЛОЙ  3
  
   Тип грунта: Глины, качество (или показатель текучести ): JL= 0.8, H грунта=1.500м, H сваи=1.500 м
   Грунт талый — таблицы  1,2  ( СНиП 2.02.03-85 )
  
   РАСЧЕТ СОПРОТИВЛЕНИЯ ПО БОКОВОЙ ПОВЕРХНОСТИ:
  
  
   Таблица 2 для талых грунтов ( СНиП 2.02.03-85 ) :
   F_i = 0.048 кгс/см2    ( Глины/JL= 0.8/средняя глубина=1.750)      (12)
   F_up = ( Y_c * Y_cf *  F_i * C_t * H_i) * 0.001 / 1.4
   (1.00 * 0.60 * 0.048 * 102.10 * 150.000) * 0.001 / 1.4 = 0.312
   Несущая способность по боковой поверхности сваи = 0.312 т
   =============================================================
  

=============================================================

      СЛОЙ  4
  
   Категория:Супеси, Ii=0.1, Dsal=0.05, Iom=0.1, t=-0.7, H грунта=2.000, H сваи=2.000 м
   Грунт мерзлый засоленный биогенный — таблицы 6,5 или 8 ( СНиП 2.02.04-88 )
  
   РАСЧЕТ СОПРОТИВЛЕНИЯ ПО БОКОВОЙ ПОВЕРХНОСТИ:
  
   Таблица 6 для мерзлых засоленных грунтов (неморской тип засоления) ( СНиП 2.02.04-88) :
   R_af (R_sh) = 0.607 кгс/см2   (t=-0.70)     (8)
  
   Таблица 8 для мерзлых биогенных грунтов ( СНиП 2.02.04-88 ) :
   R_af = 0.480 кгс/см2     (t=-0.7, Iom=0.1)     (8-2)
  
   Грунт засоленный и биогенный: меньшее из значений: R_af = 0.480
  
   F_up = ( Y_ice * Y_k * Y_af * Y_c * R_af * H_i * C_t) * 0.001 / 1.2 =
   (0.90 * 1.00 * 0.70 * 0.90 * 0.480 * 200.000 * 102.10) * 0.001 / 1.2 = 4.631
   Несущая способность по боковой поверхности сваи = 4.631 т
  
   =============================================================
  
      СЛОЙ  5
  
   Категория:Суглинки, Ii=0.2, Dsal=0.05, Iom=0.2, t=-0.7, H грунта=2.500, H сваи=2.500 м
   Грунт мерзлый засоленный биогенный — таблицы 6,5 или 8 ( СНиП 2.02.04-88 )
  
   РАСЧЕТ СОПРОТИВЛЕНИЯ ПО БОКОВОЙ ПОВЕРХНОСТИ:
  
   Таблица 6 для мерзлых засоленных грунтов (неморской тип засоления) ( СНиП 2.02.04-88) :
   R_af (R_sh) = 0.630 кгс/см2   (t=-0.70)     (8)
  
   Таблица 8 для мерзлых биогенных грунтов ( СНиП 2.02.04-88 ) :
   R_af = 0.240 кгс/см2     (t=-0.7, Iom=0.2)     (8-2)
  
   Грунт засоленный и биогенный: меньшее из значений: R_af = 0.240
  
   F_up = ( Y_ice * Y_k * Y_af * Y_c * R_af * H_i * C_t) * 0.001 / 1.2 =
   (0.80 * 1.00 * 0.70 * 0.90 * 0.240 * 250.000 * 102.10) * 0.001 / 1.2 = 2.573
   Несущая способность по боковой поверхности сваи = 2.573 т
  
   =============================================================
  
      СЛОЙ  6
  
   Категория:Пески, Ii=0.15, Dsal=0.1, Iom=0.1, t=-0.7, H грунта=1.000, H сваи=1.000 м
   Грунт мерзлый засоленный биогенный — таблицы 6,5 или 8 ( СНиП 2.02.04-88 )
  
   РАСЧЕТ СОПРОТИВЛЕНИЯ ПО БОКОВОЙ ПОВЕРХНОСТИ:
  
   Таблица 6 для мерзлых засоленных грунтов (неморской тип засоления) ( СНиП 2.02.04-88) :
   R_af (R_sh) = 0.490 кгс/см2   (t=-0.70)     (8)
  
   Таблица 8 для мерзлых биогенных грунтов ( СНиП 2.02.04-88 ) :
   R_af = 0.780 кгс/см2     (t=-0.7, Iom=0.1)     (8-2)
  
   Грунт засоленный и биогенный: меньшее из значений: R_af = 0.490
  
   F_up = ( Y_ice * Y_k * Y_af * Y_c * R_af * H_i * C_t) * 0.001 / 1.2 =
   (0.85 * 1.00 * 0.70 * 0.90 * 0.490 * 100.000 * 102.10) * 0.001 / 1.2 = 2.233
   Несущая способность по боковой поверхности сваи = 2.233 т
  
  
   РАСЧЕТ СОПРОТИВЛЕНИЯ ПОД ОСНОВАНИЕМ:
  
   Температура под основанием:-0.7
  
   Таблица 5 для мерзлых засоленных грунтов ( СНиП 2.02.04-88 ) :
   R = 3.200 кгс/см2   (t=-0.70,глуб. =8.000)       (7)
  
   Таблица 8 для мерзлых биогенных грунтов ( СНиП 2.02.04-88 ) :
   R = 2.080 кгс/см2    (t=-0.7, Iom=0.1)          (8-1)
  
   Грунт засоленный и биогенный: меньшее из значений: R = 2.080
  
   F_up = (Y_ice *  Y_c * R_tor * A_t) * 0.001 / 1.2
   (1.00 * 0.90 * 2.080 * 829.58) * 0.001 / 1.2 = 1.294
   Несущая способность под основанием сваи = 1.294
  
  
   ———   Результат по всем слоям  ——————
  
   Несущая способность сваи на вертикальную  нагрузку F_up = 11.04 т
   Несущая способность по боковой поверхности сваи         = 9.75 т
   Несущая способность сваи на выдергивающую нагрузку      = 7.80 т
  
   Несущая способность по боковой поверхности по слоям грунта:
      Слой_1 = 0.00 т
      Слой_2 = 0.00 т
      Слой_3 = 0.31 т
      Слой_4 = 4.63 т
      Слой_5 = 2.57 т
      Слой_6 = 2.23 т


 

Несущая способность оснований фундаментов: расчет

Последствия неправильного расчета несущей способности фундамента

Сразу же после сдачи любого сооружения в эксплуатацию, происходит процесс медленного опускания фундамента за счет прикладываемых нагрузок. Фундамент всегда опускается на расчетную глубину, это значение всегда учитывается и закладывается при проведении расчетов.

Большие, неравномерные осадки оснований влекут за собой деформацию конструкций с дальнейшим разрушением здания. Как правило причина кроется в неправильном расчете несущей способности фундаментов, а также из-за ошибок в расчетах допустимых нагрузок на грунты.

Необходимость геологических исследований

Для определения типа фундаментов, а также в расчете ориентировочной просадки грунтов зоны строительства, в обязательном порядке проводятся геологические исследования. С их помощью определяется тип почвы, глубина промерзания, уровень залегания грунтовых вод, структура грунта и прочие параметры. Поэтому несущая площадь фундамента должна быть такой, чтобы ее масса вместе с будущим зданием не превышала расчетное сопротивление грунта на строительной площадке.

Только тогда получится качественный, надежный фундамент, способный выдерживать горизонтальные и вертикальные нагрузки. При этом строить дополнительные этажи без укрепления существующего фундамента запрещено, так как в таком случае резко увеличивается масса объекта в целом.

Что подразумевают под расчетной способностью грунтов?

Данные о несущей способности различных типов грунта для расчета фундамента

Несущую способность грунтов оценивают в комплексном порядке при расчете фундаментов и сооружений. Главная цель такого расчета – это обеспечить прочность, устойчивость грунтов под подошвой фундамента, не допустить сдвиг здания по подошве в любую сторону.

Нарушение правильного состояния здания может привести не только к накоплению осадок, но впоследствии к нарушению конструкции самого основания. На фундамент также влияют вертикальные, горизонтальные нагрузки со стороны почвы и самого здания, поэтому грунт может просто не справиться с такой массой. Именно по этой причине особое внимание уделяют расчетам несущей способности оснований фундаментов, чтобы максимально определить допустимую зону нагрузки и защитить грунт от полного разрушения.

Какие факторы влияют на состояние грунта и основания?

Таблица с указанием допустимой нагрузки на грунт для расчета несущей способности основания

На несущую способность влияет огромное количество различных факторов, среди которых стоит отметить:

  • вид и характер нагрузок − вертикальная, наклонная, горизонтальная или, непосредственно, нагрузка под подошвой;
  • распределение центра тяжести площади фундамента относительно эксцентричной нагрузки;
  • размеры, характеристики, габариты и материал выполнения подошвы;
  • структура грунта;
  • форма подошвы;
  • глубина погружения основания в грунт, а также наличие под подошвой мягких осадочных пород с малой сопротивляемостью;
  • насколько ровно расположена подошва относительно горизонтали;
  • степень однородности почвы;
  • наличие внешних факторов, которые могут нанести вред подошве, такие как вибрация, сейсмические сдвиги, сезонный подъем грунтовых вод.

Все расчеты несущей способности оснований нужно делать по СНиП 2.02.01-83. Поэтому, обеспеченная несущая способность вычисляется по формуле:   F ≤ YcFu/Yn, где:

  • F – это равнодействующая сила, она должна быть разнонаправлена к основной нагрузке;
  • γс – коэффициент условий работы;
  • Fu— это максимальное сопротивление основания всем нагрузкам;
  • γn— коэффициент надежности по назначению сооружения, принимается равным 1,2; 1,15; 1,10 для сооружений I, II и III классов соответственно.

Когда нужно делать расчет оснований на несущую способность


Чертеж расчета фундамента по несущей способности

  1. Если на существующее или новое основание воздействуют значительные горизонтальные нагрузки, особенно от строящихся по соседству домов или регулярные вибрации от автомагистралей, промышленных предприятий.
  2. Сооружение было построено на уклоне или откос образовался со временем, обнажив внешнюю часть основания.
  3. Если подошва фундамента установлена на влагонасыщенных почвах.
  4. Когда на основание может воздействовать выталкивающая сила различного происхождения.
  5. Если нужно проверить устойчивость естественных и искусственных склонов.

Если на строительной площадке или в фундаменте существующего здания уже появились видимые деформации конструкций, всегда сначала обращают внимание на состояние почвы под подошвой и определяют их состояние. Поэтому, по нормативам существует сразу несколько различных видов деформаций почвы, которые зависят от внутренних и внешних факторов.

Этапы деформаций грунтов в классическом виде

Схема развития деформаций и возможных перемещений грунта при неправильном расчете несущей способности

В современной литературе принято различать три основных фазы деформирования грунтов:

  1. Начальная. Это этап уплотнения почвы под влиянием внешних факторов, происходит из-за уменьшения пор между частицами почвы под подошвой. Фаза отличается тем, что сейчас не происходит сдвига фундамента, ведь все касательные нагрузки равноценные и компенсируются нагрузкой. Но нагрузка всегда возникает спонтанно, она распределяется неравномерно. В результате, в одной точке деформация может быть незначительной, а в другой – сильной. Как итог – происходят сдвиги основания.
  2. Вторая стадия – фаза сдвига подошвы основания. По мере увеличения нагрузок грунт сжимается все сильнее, захватывает новые районы, происходит значительный сдвиг подошвы в сторону большей нагрузки. Нарушается стандартное равновесие, под подошвой образуется плотный шар почвы, а по сторонам – пустое пространство. Материал фундамента стремится занять освободившееся место за счет естественных сил тяготения, поэтому возникают трещины и разрывы в основании, а затем в несущих стенах дома.
  3. Третья фаза – это разрушение подошвы. Тут уже материал подошвы выпирает плотный шар грунта и сразу деформируется.

Такая ситуация возникает с теми фундаментами, которые заложены выше граничной глубины промерзания почвы или сверху над горизонтами грунтовых вод. Немного иная картина происходит с глубоко заложенными основаниями. В таких случаях под подошвой также образуется плотный слой грунта, но его не выпирает на поверхность из-за большой площади перекрытия подошвы. Поэтому такой фундамент обладает лучшими несущими способностями, чем мелкозаглубленный.

Если начинается процесс деформации грунтов, то его порой остановить уже нет возможности. Единственный выход, это устраивать специальные защитные конструкции, способные нивелировать нагрузки или по максимуму снизить их воздействие.

Влияние размеров фундамента на несущую способность основания

Графическое изображение зависимости осадки основания фундамента от несущей нагрузки

Некоторые строители вынуждены для одного сооружения использовать сразу несколько различных видов фундаментов. Причем расчеты нужно делать для каждой подошвы индивидуально. Также возможно применение оснований с длиной, значительно превышающих их ширину.

Графики указывают, что с увеличением ширины фундамента увеличивается объем грунта, способного привести к разрушению подошвы. Поэтому при абсолютно одинаковых условиях и составу грунта, узкие фундаменты менее склонны к деформации, чем широкие.

Также несущая способность оснований зависит от их формы и используемых строительных материалов. Если два фундамента имеют абсолютно одинаковые размеры, одинаково заглублены в грунт, но один имеет длину и ширину практически одинаковую, а другой – более длинный, тогда первая конструкция будет создавать большую нагрузку на грунт, чем другая.

Причина кроется в особенностях подошвы. Для деформации и сдвига квадратного или круглого фундамента нужно затратить больше энергии, чем для ленточного длинного. Также необходимо учесть, что на песчаное основание размеры и форма фундамента влияет больше, чем на глинистые грунты.

Как влияет глубина заложения фундамента на несущую способность оснований

Эскиз неравномерного поднятия дна котлована из-за неправильного расчета несущей способности основания

Почему глубоко погруженные основания менее склонны к разрушениям, чем мелкозаглубленные? Ведь мелкие основания нужно обязательно укреплять, подбирать оптимальную конструкцию свай и делать сложные расчеты. Причина здесь кроется в характере поведения грунтов на различных глубинах.

Так для песчаных оснований увеличение глубины погружения фундамента ведет за собой снижение осадки, а вот несущая способность резко увеличивается. Аналогичная ситуация наблюдается с любыми иными почвами, в составе которых есть песок в больших количествах.

Поэтому в зависимости от глубины заложения, различают мелкие и глубокие основания. Понятно, что для каждого типа приходится использовать свои строительные материалы и технику, но при этом надежность конструкций отличается в несколько раз.

Как происходит деформация песчаных грунтов под подошвой фундаментов мелкого заглубления? Сначала происходит укрупнение почвы под подошвой, затем она клиньями поднимается по разные стороны конструкции и формирует свободную полость под подошвой. Поэтому даже незначительные сдвиги и подвижки почвы, повлекут за собой частичное разрушение несущих конструкций. Часто наблюдаются сдвиги и провалы.

А вот фундаменты глубокого заложения разрушить значительно сложнее. Смещение почвы будет практически полностью нейтрализовано вертикальным перемещением почвы по сторонам поверхности основания, и в данном случае могут быть только локальные уплотнения почвы. Разрушение фундамента в третьей фазе деформации почвы имеет спокойный характер. Зависимость глубины фундамента от осадки на глинистых почвах практически не проявляется.

Таким образом, несущая способность оснований – это важный показатель состояния грунтов и пренебрегать им нельзя. Если правильно сделать расчет и учесть все факторы, то уже по готовому результату можно подобрать не только оптимальные размеры и форму будущего фундамента, но и обнаружить скрытые проблемы в уже существующем. И в дальнейшем оперативно принять меры по срочному ремонту или усилению конструкций, чтобы они не деформировались от внешнего воздействия.

Размер и размеры бетонной опоры

Итак, как несущая способность почвы соотносится с размером опор? Основание передает нагрузку на почву. Чем ниже несущая способность почвы, тем шире должно быть основание. Если почва очень прочная, то основание даже не обязательно, просто грунта под стеной будет достаточно, чтобы удержать здание.

Найдите ближайших подрядчиков по ремонту плит и фундаментов, которые помогут с вашими опорами.

Таблица размеров опор

Вот минимальная ширина для бетонных или каменных фундаментов (дюймы):

Несущая способность грунта (фунт / фут)
1,500 2 000 2,500 3 000 3,500 4 000
Традиционная конструкция деревянного каркаса
1-этажный 16 12 10 8 7 6
2-х этажный 19 15 12 10 8 7
3-х этажный 22 17 14 11 10 9
4-дюймовая кирпичная облицовка деревянным каркасом или 8-дюймовая пустотелая бетонная кладка
1-этажный 19 15 12 10 8 7
2-х этажный 25 19 15 13 11 10
3-х этажный 31 23 19 16 13 12
8-дюймовая сплошная или полностью залитая цементная кладка
1-этажный 22 17 13 11 10 9
2-х этажный 31 23 19 16 13 12
3-х этажный 40 30 24 20 17 15

Источник: Таблица 403.1; Кодекс CABO для проживания одной и двух семей; 1995.

Дополнительные размеры опоры:

  • Толщина основания — от 8 до 12 дюймов
  • Глубина опоры — варьируется в зависимости от линии промерзания и прочности почвы (некоторые опоры могут быть неглубокими, а другие — глубокими)

Калькулятор бетона — Подсчитайте, сколько бетона вам понадобится для фундамента .

Вы можете найти рекомендуемый размер фундамента в зависимости от размера и типа дома, а также несущей способности почвы.Как видите, тяжелые дома на слабой почве требуют опор шириной 2 фута и более. Но для самых легких зданий на самой прочной почве требуются опоры шириной 7 или 8 дюймов. Под стеной толщиной 8 дюймов это то же самое, что сказать, что у вас нет опоры.

Эти числа основаны на предположениях о весе строительных материалов, а также о динамических и статических нагрузках на крыши и перекрытия. Допустимая несущая способность грунта под основанием должна равняться нагрузке, создаваемой конструкцией. Читая таблицу, вы видите, что код требует основания шириной 12 дюймов под двухэтажным деревянным каркасным домом в почве с плотностью 2500 фунтов на квадратный фут.12-дюймовая опора — это 1 квадратный фут на линейный фут, поэтому в кодексе говорится, что часть двухэтажного деревянного дома, которая опирается на внешние стены, весит около 2500 фунтов, может быть, немного консервативно, но разумно. Фундамент такого же размера требуется под одноэтажный дом, если он облицован кирпичом, то предполагается, что вес кирпича равен целому второму этажу.

Если бы у вас был инженер, спроектировавший фундамент на основе результатов испытаний грунта и ваших отпечатков, он бы суммировал фактические веса бетона, дерева и кирпича, которые вы бы использовали в своем здании, с учетом требуемых временных нагрузок, и рассчитайте, какой вес будет иметь ваш дом.Это может быть немного меньше или немного больше, чем предполагает код. Затем он возьмет известную несущую способность грунта, на которую можно доверить квадратный фут почвы, и спроектировать основание таким образом, чтобы площадь под основанием, умноженная на несущую способность почвы, была равна фактической нагрузке или превышала ее.

На практике вам не нужно делать это для большинства домов. Не стоит беспокоиться о том, насколько сильно вы будете отличаться от стандартной, соответствующей требованиям кодекса. Если у вас нет подпорных стен или какой-либо другой особой ситуации, плата инженерам, вероятно, не оправдана.

В любом случае я бы не рекомендовал строителям сокращать стандартный размер опор, даже если они знают, что строят на прочной почве. Независимо от требований к опорам, каменщики и подрядчики по наливу стен хотят, чтобы их блоки или их формы могли сидеть на опорах. Но урок, который следует усвоить, заключается в том, что, когда грунт очень прочный (емкость 4000 фунтов на квадратный фут или выше), опоры могут не быть строго необходимыми с точки зрения несущей способности. Это означает, что не так важно, например, правильно ли расположена стена по центру фундамента.

Bentley — Документация по продукту

MicroStation

Справка MicroStation

Ознакомительные сведения о MicroStation

Справка MicroStation PowerDraft

Ознакомительные сведения о MicroStation PowerDraft

Краткое руководство по началу работы с MicroStation

Справка по синхронизатору iTwin

ProjectWise

Служба поддержки Bentley Automation

Ознакомительные сведения об услуге Bentley Automation

Сервер композиции Bentley i-model для PDF

Подключаемый модуль службы разметки

PDF для ProjectWise Explorer

Справка администратора ProjectWise

Справка службы загрузки данных ProjectWise Analytics

Коннектор ProjectWise для ArcGIS — Справка по расширению администратора

Коннектор ProjectWise для ArcGIS — Справка по расширению Explorer

Коннектор ProjectWise для ArcGIS Справка

Коннектор ProjectWise для Oracle — Справка по расширению администратора

Коннектор ProjectWise для Oracle — Справка по расширению Explorer

Коннектор ProjectWise для справки Oracle

Коннектор управления результатами ProjectWise для ProjectWise

Справка портала управления результатами ProjectWise

Ознакомительные сведения по управлению поставками ProjectWise

Справка ProjectWise Explorer

Справка по управлению полевыми данными ProjectWise

Справка администратора ProjectWise Geospatial Management

Справка ProjectWise Geospatial Management Explorer

Сведения о геопространственном управлении ProjectWise

Модуль интеграции ProjectWise для Revit Readme

Руководство по настройке управляемой конфигурации ProjectWise

Справка по ProjectWise Project Insights

ProjectWise Plug-in для Bentley Web Services Gateway Readme

ProjectWise ReadMe

Матрица поддержки версий ProjectWise

Веб-справка ProjectWise

Справка по ProjectWise Web View

Справка портала цепочки поставок

Услуги цифрового двойника активов

PlantSight AVEVA Diagrams Bridge Help

PlantSight AVEVA PID Bridge Help

Справка по экстрактору мостов PlantSight E3D

Справка по PlantSight Enterprise

Справка по PlantSight Essentials

PlantSight Открыть 3D-модель Справка по мосту

Справка по PlantSight Smart 3D Bridge Extractor

Справка по PlantSight SPPID Bridge

Управление эффективностью активов

Справка по AssetWise 4D Analytics

AssetWise ALIM Web Help

Руководство по внедрению AssetWise ALIM в Интернете

AssetWise ALIM Web Краткое руководство, сравнительное руководство

Справка по AssetWise CONNECT Edition

AssetWise CONNECT Edition Руководство по внедрению

Справка по AssetWise Director

Руководство по внедрению AssetWise

Справка консоли управления системой AssetWise

Анализ моста

Справка по OpenBridge Designer

Справка по OpenBridge Modeler

Строительное проектирование

Справка проектировщика зданий AECOsim

Ознакомительные сведения AECOsim Building Designer

AECOsim Building Designer SDK Readme

Генеративные компоненты для справки проектировщика зданий

Ознакомительные сведения о компонентах генерации

Справка по OpenBuildings Designer

Ознакомительные сведения о конструкторе OpenBuildings

Руководство по настройке OpenBuildings Designer

OpenBuildings Designer SDK Readme

Справка по генеративным компонентам OpenBuildings

Ознакомительные сведения по генеративным компонентам OpenBuildings

Справка OpenBuildings Speedikon

Ознакомительные сведения OpenBuildings Speedikon

OpenBuildings StationDesigner Help

OpenBuildings StationDesigner Readme

Гражданское проектирование

Помощь в канализации и коммунальных услугах

Справка OpenRail ConceptStation

Ознакомительные сведения по OpenRail ConceptStation

Справка по OpenRail Designer

Ознакомительные сведения по OpenRail Designer

Справка по конструктору надземных линий OpenRail

Справка OpenRoads ConceptStation

Ознакомительные сведения по OpenRoads ConceptStation

Справка по OpenRoads Designer

Ознакомительные сведения по OpenRoads Designer

Справка по OpenSite Designer

Файл ReadMe для OpenSite Designer

Инфраструктура связи

Справка по Bentley Coax

Справка по Bentley Communications PowerView

Ознакомительные сведения о Bentley Communications PowerView

Справка по Bentley Copper

Справка по Bentley Fiber

Bentley Inside Plant Help

Справка по OpenComms Designer

Ознакомительные сведения о конструкторе OpenComms

Справка OpenComms PowerView

Ознакомительные сведения OpenComms PowerView

Справка инженера OpenComms Workprint

OpenComms Workprint Engineer Readme

Строительство

ConstructSim Справка для руководителей

ConstructSim Исполнительный ReadMe

ConstructSim Справка издателя i-model

Справка по планировщику ConstructSim

ConstructSim Planner ReadMe

Справка стандартного шаблона ConstructSim

ConstructSim Work Package Server Client Руководство по установке

Справка по серверу рабочих пакетов ConstructSim

ConstructSim Work Package Server Руководство по установке

Справка управления SYNCHRO

SYNCHRO Pro Readme

Энергетическая инфраструктура

Справка конструктора Bentley OpenUtilities

Ознакомительные сведения о Bentley OpenUtilities Designer

Справка по подстанции Bentley

Ознакомительные сведения о подстанции Bentley

Справка подстанции OpenUtilities

Ознакомительные сведения о подстанции OpenUtilities

Promis.e Справка

Promis.e Readme

Руководство по установке Promis.e — управляемая конфигурация ProjectWise

Руководство по настройке подстанции

— управляемая конфигурация ProjectWise

Руководство пользователя sisNET

Геотехнический анализ

PLAXIS LE Readme

Ознакомительные сведения о PLAXIS 2D

Ознакомительные сведения о программе просмотра вывода PLAXIS 2D

Ознакомительные сведения о PLAXIS 3D

Ознакомительные сведения о программе просмотра 3D-вывода PLAXIS

PLAXIS Monopile Designer Readme

Управление геотехнической информацией

Справка администратора gINT

Справка gINT Civil Tools Pro

Справка gINT Civil Tools Pro Plus

Справка коллекционера gINT

Справка по OpenGround Cloud

Гидравлика и гидрология

Справка Bentley CivilStorm

Справка Bentley HAMMER

Справка Bentley SewerCAD

Справка Bentley SewerGEMS

Справка Bentley StormCAD

Справка Bentley WaterCAD

Справка Bentley WaterGEMS

Управление активами линейной инфраструктуры

Справка по услугам AssetWise ALIM Linear Referencing Services

Руководство администратора мобильной связи TMA

Справка TMA Mobile

Картография и геодезия

Справка карты OpenCities

Ознакомительные сведения о карте OpenCities

OpenCities Map Ultimate для Финляндии Справка

Карта OpenCities Map Ultimate для Финляндии Readme

Справка по карте Bentley

Справка по мобильной публикации Bentley Map

Ознакомительные сведения о карте Bentley

Проектирование шахты

Справка по транспортировке материалов MineCycle

Ознакомительные сведения по транспортировке материалов MineCycle

Моделирование мобильности и аналитика

Справка по подготовке САПР LEGION

Справка по построителю моделей LEGION

Справка по API симулятора LEGION

Ознакомительные сведения об API симулятора LEGION

Справка по симулятору LEGION

Моделирование и визуализация

Bentley Посмотреть справку

Ознакомительные сведения о Bentley View

Анализ морских конструкций

SACS Close the Collaboration Gap (электронная книга)

Ознакомительные сведения о SACS

Анализ напряжений в трубах и сосудов

AutoPIPE Accelerated Pipe Design (электронная книга)

Советы новым пользователям AutoPIPE

Краткое руководство по AutoPIPE

AutoPIPE & STAAD.Pro

Завод Проектирование

Ознакомительные сведения об экспортере завода Bentley

Bentley Raceway and Cable Management Help

Bentley Raceway and Cable Management Readme

Bentley Raceway and Cable Management — Руководство по настройке управляемой конфигурации ProjectWise

Справка по OpenPlant Isometrics Manager

Ознакомительные сведения о диспетчере изометрических данных OpenPlant

Справка OpenPlant Modeler

Ознакомительные сведения для OpenPlant Modeler

Справка по OpenPlant Orthographics Manager

Ознакомительные сведения для менеджера орфографии OpenPlant

Справка OpenPlant PID

Ознакомительные сведения о PID OpenPlant

Справка администратора проекта OpenPlant

Ознакомительные сведения для администратора проекта OpenPlant

Техническая поддержка OpenPlant Support

Ознакомительные сведения о технической поддержке OpenPlant

Справка PlantWise

Ознакомительные сведения о PlantWise

Выполнение проекта

Справка рабочего стола Bentley Navigator

Моделирование реальности

Справка консоли облачной обработки ContextCapture

Справка редактора ContextCapture

Файл ознакомительных сведений для редактора ContextCapture

Мобильная справка ContextCapture

Руководство пользователя ContextCapture

Справка Декарта

Ознакомительные сведения о Декарте

Структурный анализ

Справка OpenTower iQ

Справка по концепции RAM

Справка по структурной системе RAM

STAAD Close the Collaboration Gap (электронная книга)

STAAD.Pro Help

Ознакомительные сведения о STAAD.Pro

STAAD.Pro Physical Modeler

Расширенная справка по STAAD Foundation

Дополнительные сведения о STAAD Foundation

Детализация конструкций

Справка ProStructures

Ознакомительные сведения о ProStructures

ProStructures CONNECT Edition Руководство по внедрению конфигурации

ProStructures CONNECT Edition Руководство по установке — Управляемая конфигурация ProjectWise

14Б-18-1806 Расчетные значения несущей способности грунтов.

14Б-18-1806 Расчетные значения несущей способности грунтов.

Положения Раздела 1806 IBC приняты путем ссылки со следующими изменениями:

1. Внесите изменения в Раздел 1806.1, заменив «Таблицу 1806.2» на «Таблицу 1806.2 (1) или 1806.2 (2), в зависимости от обстоятельств» и исключив вторую предложение.

2. Измените раздел 1806.2, чтобы он читался так:

«1806.2 Предполагаемые значения несущей способности.

Если проводится только ограниченное инженерно-геологическое исследование в соответствии с разделом 1803.1, исключение 3, значения несущей способности, используемые при расчете опоры грунта вблизи поверхности, не должны превышать значений, указанных в таблице 1806.2 (1). Если у строительного чиновника есть основания сомневаться в классификации, прочности или сжимаемости грунта, должны выполняться требования Раздела 1803.5.2.

Если полное геотехническое исследование проводится в соответствии с Разделом 1803, значения несущей способности, используемые при проектировании для поддержки грунтов вблизи поверхности, не должны превышать значений, указанных в Таблице 1806.2 (2), если зарегистрированный инженер-геотехник не рекомендует использовать более высокие значения.

Предполагаемые значения несущей способности должны применяться к материалам с аналогичными физическими характеристиками и расположением. Грязь, органический ил, органические глины, торф или неподготовленная насыпь не должны считаться имеющими предполагаемую несущую способность, если не представлены данные, подтверждающие использование такого значения ».

3. Исключить таблицу 1806.2.

4. Вставьте таблицы 1806.2 (1), 1806.2 (2) и 1806.2 (3) читать:

ТАБЛИЦА 1806.2 (1)
ПРЕДВАРИТЕЛЬНЫЕ ЗНАЧЕНИЯ НАГРУЗКИ БЕЗ ПОЛНОГО ГЕОТЕХНИЧЕСКОГО ИССЛЕДОВАНИЯ гравий (GW и GP)

Песок, илистый песок, глинистый песок, илистый гравий и глинистый гравий (SW, SP, SM, SC, GM и GC)

Глина, песчанистая глина, алевритистая глина, глинистый ил, ил и песчаный ил (CL, ML, MH и CH)

Непроектированная насыпь

Для СИ: 1 фунт на квадратный фут = 0.0479 кПа, 1 фунт на квадратный фут на фут = 0,157 кПа / м.

а. Коэффициент, умноженный на статическую нагрузку.

г. Значение сцепления должно быть умножено на площадь контакта, как ограничено Разделом 1806.3.2.

ТАБЛИЦА 1806.2 (2)
ПРЕДВАРИТЕЛЬНЫЕ ЗНАЧЕНИЯ ДАВЛЕНИЯ ВЕРТИКАЛЬНОГО ФУНДАМЕНТА С ГЕОТЕХНИЧЕСКИМИ ИССЛЕДОВАНИЯМИ

9013

907 Поверхность ДОЛОМИТА

Minor

DOLOMITE

DOLOMITE

Трещиноватая поверхность ДОЛОМИТА

Блочный известняк с заполненными грунтом прослоями и трещинами

Трещиноватая поверхность ДОЛОМИТА

Блочный известняк

137

Порода с небольшими трещинами и трещинами

Поверхность ДОЛОМИТА

Порода с небольшими трещинами и трещинами

908DPAN

HARR, твердый ил y глина или очень плотный глинистый ил, (CL, CL-ML)

Очень твердый или очень плотный

Твердый или плотный

ПЕСОК, ГРАВИЙ или ИЛТ , илистый песок, глинистый песок, илистый гравий или глинистый гравий (SW, SP, GW, GP, SC, SM, GC, GM, ML)

Плотный

Средний

Рыхлый

Очень рыхлый

Ил ГЛИНА, глинистый SILT (CH, CL, ML-CL, MH)

Жесткий

18

Очень жесткий

Жесткий

Средний

Мягкий

Очень мягкий

Органический ИЛ, ГЛИНА или ТОРФ

НЕИСПОЛЬЗОВАННЫЙ НАПОЛНИТЕЛЬ

9ED % Модифицированный Проктор

Улучшенный грунт или насыпь на месте

Для SI: 1 фут = 304.8 мм, 1 фунт на квадратный фут = 0,0479 кПа.

а. Классифицируется в соответствии с таблицей 1806.2 (3).

г. Требуется технический анализ и испытания зарегистрированным инженером-геотехником.

г. 1 фут в прочную породу (извлечение более 95% и RQD более 70%) с увеличением на 20% на фут дополнительного проникновения до максимальных 400 000 фунтов на квадратный фут.

г. Поверхность отказа стандартного бурового шнека кессонной буровой установки, коррелирующая с бурением с извлечением более 90% и RQD более 40%, прочность породы на неограниченное сжатие более 2000 фунтов на квадратный дюйм.

эл. Поверхность отказа стандартного бурового шнека кессонной буровой установки, соответствующая скважинам с извлечением более 90% и RQD более 50%, прочность на сжатие без ограничения горных пород более 2500 фунтов на квадратный дюйм.

ф. Поверхность отказа стандартного бурового шнека кессонной буровой установки, коррелирующая с бурением с извлечением более 95% и RQD более 60%, прочность породы на неограниченное сжатие более 3000 фунтов на квадратный дюйм.

г. Поверхность отказа от стандартного бурового шнека кессонной буровой установки, связанная с бурением с извлечением более 95% и RQD более 70%, прочность на сжатие без ограничения горных пород более 3500 фунтов на квадратный дюйм.

ч. Испытания под нагрузкой до предполагаемого давления в подшипниках не требуются. Если требуется более высокое давление в подшипнике, чем указано в таблице или RQD, или если прочность на сжатие породы не соответствует указанным значениям, требуются испытания под нагрузкой для подтверждения допустимого давления в подшипнике.

и. Где qu больше 14 000 фунтов на квадратный фут или N больше или равно 50.

j. Где qu больше или равно 8000 фунтов на квадратный фут, или N больше или равно 30.

к. Допустимая полезная несущая способность предполагает, что минимальная глубина заделки составляет 2,5 фута, а минимальная ширина — 1,5 фута. Допустимые значения несущей способности должны быть уменьшены пропорционально меньшей глубине заделки или уменьшению эффекта удержания из-за подъема уровня грунтовых вод над уровнем фундамента.

г. Органический означает более 10% органических веществ, как определено в соответствии с ASTM D2974.

н. Предположительная стоимость легкой или временной конструкции. В противном случае требуется инженерный анализ.

о. Контролируемое наполнение должно быть помещено в указанные лифты с контролем влажности под постоянным наблюдением зарегистрированного инженера-геотехника или его квалифицированного представителя в соответствии с ASTM D1557.

стр. Улучшенная насыпь или грунт на месте за счет динамического уплотнения, уплотняющего раствора или других методов.

ТАБЛИЦА 1806.2 (3)
СТАНДАРТЫ ДЛЯ КЛАССИФИКАЦИИ СООТВЕТСТВИЯ И ОТНОСИТЕЛЬНОЙ ПЛОТНОСТИ ПОЧВЫ

Для SI: 1 фунт на квадратный фут = 0,0479 кПа.

5.Измените раздел 1806.3, чтобы он читался так:

«1806.3 Сопротивление боковой нагрузке.

Если предполагаемые значения таблицы 1806.2 (1) используются для определения сопротивления боковым нагрузкам, расчеты должны производиться в соответствии с разделами 1806.3.1–1806.3.4. Если используются предположительные значения из таблицы 1806.2 (2), сопротивление поперечным нагрузкам должно быть таким, как указано в геотехническом отчете ».

6. Внесите изменения в Раздел 1806.3.1, заменив «Таблицу 1806.2» на «Таблицу 1806.2 (1).»

7. Внесите изменения в Раздел 1806.3.3, заменив« Таблица 1806.2 »на« Таблица 1806.2 (1) ».

(Изменить адвокат. J. 10-7-20, стр. 21791, ст. II, § 29)

Мы не можем найти эту страницу

(* {{l10n_strings.REQUIRED_FIELD}})

{{l10n_strings.CREATE_NEW_COLLECTION}} *

{{l10n_strings.ADD_COLLECTION_DESCRIPTION}}

{{l10n_strings.COLLECTION_DESCRIPTION}} {{addToCollection.description.length}} / 500 {{l10n_strings.TAGS}} {{$ item}} {{l10n_strings.PRODUCTS}} {{l10n_strings.DRAG_TEXT}}

{{l10n_strings.DRAG_TEXT_HELP}}

{{l10n_strings.LANGUAGE}} {{$ select.selected.display}}

{{article.content_lang.display}}

{{l10n_strings.АВТОР}}

{{l10n_strings.AUTHOR_TOOLTIP_TEXT}}

{{$ select.selected.display}} {{l10n_strings.CREATE_AND_ADD_TO_COLLECTION_MODAL_BUTTON}} {{l10n_strings.CREATE_A_COLLECTION_ERROR}}

Хозяйственные постройки … — Ch5 Элементы конструкции: опоры и фундаменты

Хозяйственные постройки … — Ch5 Элементы конструкции: опоры и фундаменты
Опоры и фундаменты

Содержание Назад Вперед

Фундамент необходим для поддержки здания и нагрузки, находящиеся внутри или на здании.Сочетание опора и фундамент распределяют нагрузку на подшипник поверхность и поддерживает уровень здания и отвес и уменьшает доведение до минимума. При правильном проектировании должно быть небольшое или полное отсутствие трещин в фундаменте и отсутствие протечек воды. В фундамент и фундамент должны быть изготовлены из материала, который не будет выходят из строя при наличии грунтовых или поверхностных вод. Перед фундамент для фундамента можно спроектировать, необходимо определить общую поддерживаемую нагрузку.

Если по какой-то причине нагрузка сосредоточена в одном или нескольких области, которые необходимо будет принять во внимание. Однажды нагрузка определяется несущими характеристиками грунта участка необходимо изучить.

Подшипник грунта

Самый верхний слой почвы редко подходит для основания. Почва может быть рыхлой, нестабильной и содержать органические материал. Следовательно, следует удалить верхний слой почвы и траншея для фундамента, углубленная, чтобы обеспечить ровную, ненарушенную поверхность для всего фундамента здания.Если это невозможно из-за уклона к основанию потребуется ступенька. Эта процедура описана ниже и проиллюстрирована на рисунке. 5.5. Основание никогда не следует ставить на залитую поверхность, если только было достаточно времени для консолидации. Это обычно занимает не менее одного года при нормальном количестве осадков. В несущая способность почвы зависит от типа почвы и ожидаемый уровень влажности. В таблице 5.6 приведены типичные допустимые почвенные ценности.

Таблица 5.6 Допустимая нагрузка на грунт

Тип почвы кН / м
Мягкий, влажный, пастообразный или мутный грунт 27–35
Аллювиальный грунт суглинок песчаный суглинок (глина + 40 до 70% песка) 80–160
Суглинок супесчаный (глина + 30% песок), влажная глина 215–270
Глина плотная, почти сухая 215–270
Твердая глина с очень мелкой песок–430
Глина компактная сухая (толстая слой) 320–540
Песок рыхлый 160–270
Песок плотный 215–320
Красная земля–320
Муррам–430
Плотный гравий 750–970
Скала–1700

Обширное исследование почвы обычно не проводится. необходим для малогабаритных построек.Фундамент и опоры опор легко спроектировать так, чтобы выдерживать безопасную несущую способность почвы, найденной на строительной площадке.

Дренаж участка

Любую постройку желательно размещать на хорошо дренированном участке. Однако другие соображения, такие как подъездные пути, водоснабжение, существующие услуги или нехватка земли могут диктовать плохой осушаемый участок.

Если необходимо использовать строительную площадку с плохим естественным дренажом, могут быть улучшены за счет использования дренажей-перехватчиков контура или подземные стоки, чтобы перекрыть поток поверхностных вод или понизить уровень грунтовых вод.Aparn от защиты здание от повреждений от влаги, дренаж также улучшится устойчивость грунта и понижение влажности участка. Рисунки 5.1 и 5.2 иллюстрируют эти методы.

Подземные дрены обычно прокладываются на глубину от 0,6 до 1,5 м, и расположение труб должно соответствовать уклону участка. Расстояние между дренажами будет варьироваться от 10 м для глинистых почв до 50 м для песок. Подземные дрены обычно формируются из глины, соединенной встык. трубы проложены в узких траншеях.В тех случаях, когда желательно ловить стекающую по поверхности воду, траншея засыпана почти до самого верха с щебнем либо непрерывно по тренч или в карманах. Траншея, засыпанная щебнем или битым камнем обеспечит проход для воды и эффективен в борьбе с течет по поверхности. Трубы и траншеи, относящиеся к основным дренажная система участка может вызвать неравномерное осаждение, если пропускать рядом со зданиями или под ними. Где нужен отдельный сток, чтобы окружают здание и устанавливаются не глубже подошвы, используется для дренажа котлована под фундамент.

Рисунок 5.1 Контур перехватчик слива.

Рисунок 5.2 Подземный участок стоки.

Опоры фундамента

Фундамент — это увеличенное основание для фундамента, предназначенного для распределить строительную нагрузку на большую площадь почвы и обеспечить твердую ровную поверхность для строительства фундамента стена.

Фундаментная стена, независимо от материала, из которого она изготовлена. конструкция, должна быть построена на непрерывном фундаменте из залитых конкретный.Хотя основание будет покрыто и постными смесями бетон считается удовлетворительным, прочное основание достаточно, чтобы противостоять растрескиванию, также помогает защитить фундамент от растрескивание. Предлагается соотношение цемент — песок — гравий 1: 3: 5. из расчета 311 воды на мешок цемента весом 50 кг. Количество воды предполагает наличие сухих заполнителей. Если песок влажный, вода должна быть уменьшен на 4 до 5л.

Общая площадь основания определяется путем деления общая нагрузка, включая расчетную массу самой опоры, по подшипнику, разделив площадь на длину.Во многих случаях ширина, необходимая для легких хозяйственных построек, будет равна или меньше запланированной фундаментной стены. В этом случае опора это несколько шире фундамента, по-прежнему рекомендуется как минимум по двум причинам. Опоры соответствуют малым вариации траншеи и моста на небольших участках рыхлого грунта создание хорошей поверхности для начала строительства фундаментной стены любого Добрый. Опоры легко выравниваются, и это облегчает задачу. для установки опалубки на бетонную стену или для начала первый ход блочной или кирпичной стены.

Даже когда загрузка не требует этого, это обычная практика залить бетонный фундамент глубиной до толщины стены и вдвое шире. Фундамент для больших тяжелых постройки требуют армирования. Однако это редко бывает необходимо. для легких хозяйственных построек. Как только прочная опора будет на месте, для строительства дома подходит ряд различных материалов. Фонд. На рисунке 5.3 показаны пропорции опор для стен, опор. и столбцы.

Рисунок 5.3 Опора пропорции.

Хотя сплошные стены часто подвергаются очень сильной нагрузке. Слегка это не относится к опорам колонн и опор. Это поэтому важно тщательно оценить долю строительная нагрузка, которую несет каждая опора или колонна. Фигура 5.4 показано распределение нагрузки на здание с фронтоном. крыша и подвесной пол.

Если стенные опоры очень слабо нагружены, рекомендуется проектировать любые опоры или опоры колонн, необходимые для здания, с примерно одинаковая нагрузка на единицу площади.Тогда если есть происходит оседание, оно должно быть равномерным на всем протяжении. Для того же причина, если часть фундамента или фундамента построена на скале, баланс опоры должен быть в два раза шире обычного для грунт и погрузка. Опоры должны быть нагружены равномерно эксцентрично. загрузка может привести к опрокидыванию и поломке.

Если фундамент установлен на наклонной площадке, он может быть необходимо выкопать ступенчатую траншею и установить ступенчатую опору и фундамент.Важно, чтобы все секции были ровными и что каждая горизонтальная секция фундамента как минимум вдвое больше пока вертикальный перепад из предыдущего раздела. Армирование в стене, как показано на рисунке 5.5.

Рисунок 5.4 Разделение грузы на опорах.

Каждая опора опоры должна выдерживать т / 8 нагрузки на перекрытие. Стена должны нести 5/8 нагрузки на пол, а также всю крышу и стену нагрузка.

Рисунок 5.5 Ступенчатая опора и фундамент.

Процедура поиска подходящей опоры может быть проиллюстрировано на Рисунке 5.4. Предположим, что здание имеет длину 16 м и Ширина 8м. Каркас крыши плюс ожидаемая суммарная ветровая нагрузка 130 кН. Стена над фундаментом — 0,9 кН / м. Пол будет будут использоваться для хранения зерна и выдержат до 7,3 кН / м. Конструкция пола дополнительно составляет 0,5 кН / м. Основание стена и опоры имеют высоту 1 м над основанием.Стена Толщиной 200мм и опоры 300мм кв. Почва на участке Считается, что это плотная глина на хорошо дренированном участке. Найдите размер фундамента и опоры опоры, которая будет надежно поддерживать нагрузки. Предположим, что вес груза 1 кг примерно равно 10Н. Масса бетона 2400 кг / м.

1 Распределение нагрузки на каждую стену:

a Нагрузка на крышу — 50% на каждую стенка, 130кН 65 кН
b Нагрузка на стену — с каждой стороны 16 х 0.9 кН 14,4 кН
c Нагрузка на пол — с каждой стороны несет 7/32 x 998 кН 218,4 кН
d Нагрузка на фундамент — каждый сторона, 16 x 0,2 x 24 кН 76,8 кН
e Расчетное основание 0,4 x 0,2 x 16 x 24 кН 30,7 кН
f Всего с одной стороны 405.3кН
г Сила на единицу длины 405,3 / 16 25,3 кН / м
h Использование на практике причины и принятая ширина 0,4, 25,3 / 0,4 63,3 кН / м
i Компактная глина при 215 — 217кН / м легко выдерживает нагрузку.
2 Дивизия нагрузки на каждый пирс:
Нагрузка на пол — 1/8 x 998 кН 124.8
Опора 0,3 x 0,3 x 1 x 24 кН 2,2
Оценка опоры 0,8 x 0,8 x 0 5 x 24 кН 7,7
Итого 134,7 кН
Нагрузка / м 210 кН / м
O.K. но 1 x 1 x 0 7 дает больше равенства нагрузке на стену 144 кН / м

Наиболее логичным действием было бы добавить один или несколько дополнительные опоры, которые позволят использовать как опоры меньшего размера, так и меньшие опорные элементы пола.

Опорные траншеи

Траншея должна быть вырыта достаточно глубоко, чтобы дойти до твердой поверхности пачкаться. Для легких зданий в теплом климате это может быть как минимум как 30см. Однако для больших и тяжелых зданий траншеи могут должны быть на глубине до 1 метра.

Карманы из мягкого материала следует выкопать и заполнить бетон, камни или гравий. В траншеях не должно быть стоячая вода при заливке бетона для фундамента.

Ровная траншея нужной глубины может быть застрахована растяжка линий между разметочными профилями (тестовыми досками) а затем с помощью обвалочного стержня проверьте глубину траншеи, как он раскопан.

Опоры основания должны быть тщательно выровнены так, чтобы легко устанавливаются фундаментные опалубки, кирпич или блок стена началась. Если фундаментные стены будут из кирпича или бетонные блоки, важно, чтобы опоры были единым целым количество ярусов ниже вершины готового фундаментного уровня.

В качестве альтернативы фундамент можно залить прямо в траншею. Хотя это позволяет сэкономить на опорах для опор, необходимо позаботиться о том, чтобы чтобы в бетон не замешивался грунт с боков. Правильный Толщина основания может быть обеспечена установкой направляющих колышки, вершины которых установлены ровно и на правильную глубину, на центр котлована.

Типы фундаментов

Фонды можно разделить на несколько категорий: подходит для конкретных ситуаций.

Фундамент с непрерывной стенкой можно использовать как подвал. стены или ненесущие стены. Сплошная стена для цоколя здание должно не только поддерживать здание, но и быть водонепроницаемый барьер, способный противостоять боковой силе почва снаружи. Однако из-за структурных проблем и трудности с исключением воды рекомендуется избегать все подвальные конструкции, за исключением некоторых особых обстоятельств. Навесные стены также являются непрерывными по своей природе, но устанавливаются. в траншее в грунте они обычно не подвергаются значительные боковые силы, и они не должны быть водонепроницаемыми.Можно построить навесные стены, а затем снова засыпать землю с обеих сторон, или они могут быть из бетона, залитого напрямую в узкую траншею. Только та часть над уровнем земли требует формы при заливке бетона. См. Рисунок 5.9. Навесные стены прочные, относительно водонепроницаемые и хорошо защита от грызунов и других вредителей.

Фундаменты опор часто используются для поддержки деревянных каркасов. легких зданий без подвесных перекрытий.Они требуют многого меньше земляных и строительных материалов. Камень или бетон опоры обычно ставят на опоры. Однако для очень легких в зданиях пирс может иметь форму сборного железобетона. установите на твердую почву на несколько сантиметров ниже уровня земли. Размер опор часто зависит от веса, необходимого для сопротивления ветру. подъем всего здания.

Фундамент с подушкой и опорой состоит из небольших бетонных подушек, залитых на дне отверстий, поддерживающих опоры, обработанные давлением.В столбы достаточно длинные, чтобы расширять и поддерживать конструкцию крыши. Это, вероятно, самый дешевый тип фундамента и очень подходит для легких зданий без нагрузки на пол и где доступны опоры, обработанные давлением.

Плавучий плиточный или плотный фундамент состоит из залитого бетонный пол, у которого внешние края утолщены до 20 до 30см и усиленный. Это простая система для небольших зданий. который должен иметь надежное соединение между полом и боковины.

Фундамент с опорой и балкой на уровне земли обычно используется там, где была необходима обширная засыпка, и фундамент мог бы должны быть очень глубокими, чтобы добраться до нетронутой почвы. Это состоит из железобетонной балки, опирающейся на опоры. В опоры должны быть достаточно глубокими, чтобы достичь ненарушенной почвы и балка должна быть заделана в почву достаточно глубоко, чтобы предотвратить грызунов от роения под ней. Для очень легких зданий, таких как теплицы, можно использовать деревянные балки на уровне земли.

Сваи — это длинные колонны, которые забиваются в мягкий грунт, где они поддерживают свой груз за счет трения о почву, а не за счет прочный слой на их нижнем конце. Они редко используются в хозяйстве здания.

Фундаментные материалы

Материал фундамента должен быть не менее долговечным, чем баланс конструкции. Фонды подвержены атакам со стороны влага, грызуны, термиты и, в ограниченной степени, ветер.В влага может поступать из-за дождя, поверхностных или грунтовых вод, а также хотя дренаж фундамента может уменьшить проблему, это важно использовать фундаментный материал, который не будет поврежден водой или боковая сила, создаваемая насыщенным грунтом на внешней стороне стена. В некоторых случаях фундамент должен быть водонепроницаемым, чтобы не допускать попадания воды в подвал или через фундамент и в стены здания выше. Любой фундамент должна быть продолжена на высоте не менее 150 мм над уровнем земли, чтобы адекватная защита основания колодца от влаги, поверхностные воды и др.

Камни

Камни прочные, долговечные и экономичные в использовании, если они в наличии рядом со строительной площадкой. Камни подходят для невысоких опоры и навесные стены, где они могут быть заложены без раствора если экономия — главный фактор, их трудно заставить поливать плотно, даже если укладывать строительным раствором. Также сложно исключить термитов из зданий с каменным фундаментом из-за многочисленные проходы между камнями.Однако укладывая верх конечно-два в хорошем густом растворе и установка термитников может в значительной степени преодолеть проблему термитов.

Земля

Основное преимущество использования земли в качестве материала фундамента это его невысокая стоимость и доступность. Подходит только в очень сухих климат. Если осадки и влажность почвы немного высоки для незащищенный земляной фундамент, они могут быть облицованы камнями, как показано на рисунке 5.6 или защищен от влаги полиэтиленом лист. См. Рисунок 5.8.

Земляной фундамент облицован камни.

Жидкий бетон

Бетон — один из лучших материалов для фундамента, потому что он жесткий, прочный и сильный при сжатии. Не повреждается влаги и может быть сделан почти водонепроницаемым для стен подвала. Это легко отливается в уникальные формы, необходимые для каждого Фонд.

Например, навесные стены можно заливать в узкую траншею с требуется очень небольшая опалубка.Принципиальный недостаток — относительно высокая стоимость цемента, необходимого для изготовления бетона.

Бетонные блоки

Бетонные блоки можно использовать для строительства привлекательных и прочные фундаментные стены. Формы, необходимые для заливки бетона стены не нужны и из-за их большого размера бетонные блоки будут складываться быстрее, чем кирпичи. Блочная стена больше труднее сделать водонепроницаемым, чем бетонную стену, и не выдерживают боковые нагрузки, а также бетонную стену.

кирпичей

Стабилизированные земляные кирпичи, блоки или блоки по своей природе те же ограничения, что и у монолитных земляных фундаментов. Они есть подходят только в очень сухих местах и ​​даже там защита от влаги. Кирпичи Adobe легко повредить вода или грунтовая влага для использования в фундаменте. Локально сделанные, обожженные кирпичи часто можно получить по низкой цене, но только кирпичи лучшего качества пригодны для использования во влажных условия.Заводские кирпичи, как правило, слишком дороги, чтобы их можно было используется для фундаментов.

Строительство фундамента

Каменный фундамент

Если камни относительно плоские, их можно укладывать. до сухого (без раствора), начиная с твердой почвы на дне траншея. Это делает очень дешевый фундамент подходящим для легкое здание. Если должны быть построены монолитные земляные стены поверх каменного фундамента не требуется связующего для камни.Если будут использоваться каменные блоки любого типа, это будет благоразумно использовать раствор в последних двух слоях камня, чтобы иметь прочное ровное основание для начала кладки стены. Если планируется деревянный каркас, затем раствор для верхних слоев плюс металлический термитный щит необходим как для обеспечения ровной поверхности и исключить термитов.

Если камни имеют круглую или неправильную форму, лучше всего засыпать их строительным раствором, чтобы получить адекватный стабильность.На рисунке 5.7 показаны формы земли, используемые для удержания камней. неправильной формы, вокруг которой заливается раствор для стабилизации их. Камни, предназначенные для укладки в раствор или раствор, должны быть чистыми для склеивания. хорошо.

Рисунок 5.7a. показана крышка из раствора, на которой стена из бетонных блоков построен. Каменный щит для защиты основания земли блочная стена показана в b. и в c. вложение полюсов в каменный фундамент, а также брызговик. Надлежащее экранирование может снизить риск заражения термитами.

Рисунок 5.7 Камень основы.

Фонд Земли

Хотя обычно используются более влагостойкие материалы. рекомендуется для фондов, обстоятельства могут диктовать использование земля. На рисунке 5.6 показан земляной фундамент, облицованный. с полевыми камнями. Швы залиты цементно-известковым раствор и вся поверхность залита битумом. Рисунок 5.8 иллюстрирует использование листового полиэтилена для исключения влаги из фундаментная стена.Хотя любой из этих методов помогает изолировать влажность, использование земли для фундаментных стен следует ограничить в засушливые районы.

Положите полиэтиленовый лист на тонкий слой песка или на бетонный фундамент. Перекрывайте отдельные листы как минимум на 20 см. Соорудить фундаментную стену из стабилизированной утрамбованной земли или блоки из стабилизированного грунта. Как только стена затвердеет и высохнет, полиэтилен разматывают и снова засыпают грунтом в фундамент траншеи.Прикрепите концы листа к стене и защитите полосой отвода капель, плинтусом или солодом и штукатурка.

Рисунок 5.8 Земля фундамент защищен от влаги листом полиэтилена.


Содержание Назад Вперед

Повышение несущей способности грунта за счет использования природного геотекстиля

Как правило, размещение фундамента конструкции на рыхлых слоях грунта вызывает структурные повреждения.Эти рыхлые слои грунта не способны выдерживать структурную нагрузку конструкций. В результате на конструкциях развиваются осадки и трещины, и конструкция разрушается. Поэтому люди выбирают глубокий фундамент, чтобы построить свою конструкцию в этих слоях рыхлой почвы. Но иногда затраты на возведение конструкций больше из-за принятия глубокого фундамента. Следовательно, чтобы избежать вышеупомянутых проблем, приняты улучшения грунта. Использование геосинтетики — наиболее распространенный метод улучшения грунта.Эти геосинтетические материалы используются в качестве армирующего агента для усиления слоев почвы, в результате чего плотность и прочность (несущая способность) слоев почвы увеличиваются.

Термин «армированный грунт» относится к грунту, который был укреплен путем размещения армирующего материала внутри грунтового массива в виде полос, стержней, листов или сетки (сеток). Когда нагрузка прилагается к армированной массе грунта, эти материалы противостоят растягивающим напряжениям, которые развиваются в массе укрепленного грунта. Когда предел прочности элемента низкий, он может сломаться или деформироваться и стать неэффективным.Если предел прочности на разрыв достаточен, но его растяжение под напряжением велико, то почва может проявлять сильное движение или оседание из-за недостаточной жесткости системы усиления грунта.

Большинство исследований проводится на ленточных или круглых фундаментах, несмотря на то, что прямоугольные и квадратные фундаменты гораздо более распространены на практике. Укрепление квадратных фундаментов на укрепленных грунтах изучается очень немногими исследователями, такими как Акинмусуру и Акинболаде [2], Омар и др. [22], Адамс и Коллин [1], Газави и Лавасан [14], Лата и Сомванши [19], Кумар и Каур [18], Лавасан и Газави [20], Фарсах и др.[12] и Ронад [27]. Очень немногие из более ранних исследователей изучали разницу в эффекте армирования для разных форм фундаментов. Омар и др. [22] изучали влияние армирования георешеткой как на ленточные, так и на квадратные фундаменты, покоящиеся на песке.

Благоприятное использование армирующих материалов, таких как металлические полосы и геосинтетические материалы, для увеличения несущей способности песка, было явно традиционным. Обширные исследования были проведены несколькими исследователями, такими как Бинке и Ли [4, 5], Фрагази и Лоутон [13], Хуанг и Тацуока [15], Кхинг и др.[17], Yetimoglu et al. [34], Shin and Das [31], Dash et al. [11], Sitharam and Sireesh [32] и Patra et al. [23], чтобы понять роль армирующих материалов в повышении несущей способности грунтов основания. Из этого исследования сделан вывод, что протяженность эффективной зоны армирования и оптимальная ширина армирующих слоев меньше для квадратных фундаментов по сравнению с ленточными фундаментами. В этом направлении необходимы дополнительные исследования, чтобы установить точные процедуры проектирования для квадратных фундаментов, армированных геотекстилем (RSF) в полевых условиях.

Текстильное армирование Geo эффективно используется в качестве строительного материала для увеличения несущей способности и уменьшения осадки фундамента на слабых или бедных почвах. Его можно использовать для многих геотехнических сооружений, таких как фундаменты, подпорные стены, насыпи и т. Д. Геотекстиль представляет собой проницаемую ткань, которая при использовании в сочетании с почвой обладает способностью отделять, фильтровать, укреплять, защищать или дренировать. Поскольку использование геотекстильных тканей расширилось, появились геотекстильные композиты и разработка таких продуктов, как георешетки и сетки.В целом эти материалы называют геотекстилем и сопутствующими товарами.

Геотекстиль широко классифицируется как природный или синтетический геотекстиль в зависимости от материала, из которого он состоит. Геоджут и сети из кокосового волокна являются обычно используемыми биоразлагаемыми натуральными геотекстилями, тогда как геотекстили, изготовленные из синтетических полимерных материалов, являются постоянными и не поддаются биологическому разложению. Геоджут получают из джутовых растений, выращиваемых в основном в Индии и Бангладеш. В последние годы предпринимаются попытки использовать джутовый геотекстиль (JGT) во многих областях гражданского строительства.

Ранганатан [24] представил развитие и потенциал JCT и сообщил, что после того, как дорога полностью построена и используется, геотекстиль становится излишним, и, следовательно, биоразлагаемость джута не создает проблем для этого конечного использования. Рао и Балан [25] сообщили, что прочность на разрыв JGT, внедренного в почву, будет незначительной через 3–4 месяца. Рао и Венсири [26] сообщили об успешном строительстве насыпи по мягкой глине с JGT в качестве армирующего слоя в основании насыпи.Он пришел к выводу, что старение почвы улучшает общие характеристики усиленного основания, несмотря на снижение прочности на разрыв JGT. Саху и др. [30] изучали поведение геоджута, армированного в почвенном слое, при циклической нагрузке. Они отметили, что общие характеристики дорожного покрытия не ухудшаются даже после полного биоразложения геоджута. Джадхав и Дамгир [16] успешно использовали джутовый геотекстиль JGT для усиления грунта с целью повышения несущей способности.

Для повышения долговечности JGT было проведено большое количество исследований.Macaulay [21] оценил влияние щелочной обработки джутовых тканей, армированных эпоксидным композитом, и пришел к выводу, что улучшение адгезии между волокном и матрицей, что обычно приводит к увеличению прочности на растяжение, изгиб и ударных свойств джут-эпоксидного композита по сравнению с необработанной тканью. Экспериментальные результаты, полученные в вышеупомянутом исследовании, подтвердили работу, проделанную Rong et al. [28, 29] и Cao et al. [7]. Изделие на основе джута может не прослужить достаточно долго под воздействием элементов природы из-за его способности к биоразложению.Банерджи и Гош [3] изучали механическое поведение джута в асфальтовой среде после гигральной обработки и обработки ферментами, моделируя микробную атаку, которые показали, что гигральная обработка даже в течение 6-месячного периода неэффективна для повреждения границы раздела джут-асфальт и заключенного в оболочку джута, потому что , асфальт защищает джут от микробов. Кроме того, наблюдается, что использование джутового геотекстиля в качестве армирующего материала в почве является экономически эффективным и технически целесообразным, даже несмотря на то, что джут биоразлагаемый по своей природе [8,9,10].

Опубликован ряд результатов лабораторных испытаний и несколько результатов полевых испытаний, касающихся предельной и допустимой несущей способности фундаментов мелкого заложения, поддерживаемых песком и глиной, армированными геотекстилем. Видаль [33] из Франции представил армирующий механизм для улучшения несущей способности почвы. Однако основные принципы, лежащие в основе армированного грунта, полностью не исследованы до настоящего времени. Однако существует очень мало исследований по повышению несущей способности с использованием армирования геоджутом.

Таким образом, в настоящем исследовании была сделана попытка изучить улучшение несущей способности почвы (песка) за счет использования местного геоджута (природного геотекстиля) в качестве арматуры.

(PDF) Цвет почвы как простой индикатор несущей способности в бразильских Latosols

2011] ЦВЕТ КАК ИНДЕКС ПОДШИПНИКА 21

Embrapa (1997) Manual de Métodos de Análise de Solo.

2 изд. rev. атуаль. Empresa Brasileira de Pesquisa

Agropecuária, Рио-де-Жанейро.212 стр.

Embrapa (2006) Sistema Brasileiro de Classificação de

Solos. 2-е изд. Empresa Brasileira de Pesquisa

Agropecuária, Rio de Janeiro 306 pp.

Fontes, M.P.F. и Карвалльо-младший, А. (2005) Color at-

дань и минералогические характеристики, оценено

с помощью радиометрии сильно выветренных тропических почв.

Журнал Американского общества почвоведения 69, 1162 —

1172.

Fontes, M.P.F. и Виид С.Б. (1991) Оксиды железа в селекции

бразильских оксисолей. Общество почвоведения

America Journal 55, 1143-1149.

Имхофф, С., да Силва, А.П. и Фаллоу, Д. (2004) Suscepti-

способность к уплотнению, несущая способность и грунт

сжимаемость по Hapludox. Общество почвоведения

of America Journal 68, 17–24.

Кампф Н. и Швертманн У. (1982) Гетит и матит

в климатической последовательности в Южной Бразилии и

их применение в классификации каолинитовых почв.

Geoderma 29, 27-39.

Левула, Дж., Ильвесниеми, Х. и Вестман, С.Дж. (2003) Связь между свойствами почвы и древесными породами составляет

положение в древостоях сосны обыкновенной и ели обыкновенной в

южной Финляндии. Silva Fennica 37, 205-218.

Мехра. О.П., Джексон М. (1960) Удаление оксида железа

из почв и глины системой дитионит — цитрат — бикарбонат

, забуференной бикарбонатом натрия.

Глина и минералы глины 7, 317 — 327.

Мосаддеги, М.Р., Хеммат, А., Хаджаббаси, Массачусетс, и

Александру А. (2003) Напряжение предварительного сжатия и

его связь с физическими и механическими свойствами-

Свойства структурно нестабильного грунта в центральном Иране .

Исследование почвы и обработки почвы 70, 53-64.

Таблицы цветов почвы Munsell (1992) Пересмотренное издание.

Macbeth, подразделение Kolmorgen Instruments Corp.

Нью-Йорк.

Пэн, X.H., Хорн, Р., Чжан, Б.и Zhaoa, Q.G. (2004)

Механизмы уязвимости почвы к уплотнению

гомогенизированных и повторно уплотненных ультисолей. Почва и

Исследование обработки почвы 76, 125-137.

Перейра, Дж. О., де Фоссез, П. и Ричард, Г. (2007) Sus-

Восприимчивость почвы к уплотнению колесом как функция

некоторых свойств илистой почвы под влиянием системы обработки почвы

. Европейский журнал почвоведения

58, 34–44.

Реатто, А., Bruand A., Silva, E.M., Martins, E.S. и

Brossard, M. (2007) Гидравлические свойства агностического горизонта di-

Латосола регионального топоследовательности

через Центральное плато Бразилии.

Geoderma 139, 51–59.

Санчес-Мара, Н.М., Дельгадо, Г., Мельгоса, М., Хита, E.

и Дельгадо, Р. (1997) Цветовые параметры Cielab и

их взаимосвязь с характеристиками почвы в средиземноморских красных почвах

. Почвоведение 162, 833-842.

Schwertmann U. (1986) Влияние педогенетической среды на минералы оксида железа. Достижения в почве

Наука 1, 171-200.

Snedecor, G.W. and Cochran, W.G. (1989) Статистические методы

. 8-е изд. Эймс: Издательство государственного университета Айовы.

503стр.

Spoor, G., Tijink, F.G.J. и Вайскопф П. (2003) Уплотнение недр

: риск, предотвращение, идентификация и сборы. Исследование почвы и обработки почвы 73, 175 — 182.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *