Skip to content

Несущая способность грунта cbr – ПНСТ 323-2019 Дороги автомобильные общего пользования. Грунты. Метод определения Калифорнийского числа (CBR) для оценки несущей способности грунта, ПНСТ от 16 мая 2019 года №323-2019

Содержание

ПНСТ 323-2019 Дороги автомобильные общего пользования. Грунты. Метод определения Калифорнийского числа (CBR) для оценки несущей способности грунта, ПНСТ от 16 мая 2019 года №323-2019

ПНСТ 323-2019

ОКС 93.080.20

Срок действия с 2019-07-01
до 2022-07-01

Предисловие

1 РАЗРАБОТАН Обществом с ограниченной ответственностью «Центр метрологии, испытаний и стандартизации» (ООО «ЦМИиС»)

2 ВНЕСЕН Техническим комитетом по стандартизации ТК 418 «Дорожное хозяйство»

3 УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Приказом Федерального агентства по техническому регулированию и метрологии от 16 мая 2019 г. N 12-пнст

Правила применения настоящего стандарта и проведения его мониторинга установлены в ГОСТ Р 1.16-2011 (разделы 5 и 6).

Федеральное агентство по техническому регулированию и метрологии собирает

сведения о практическом применении настоящего стандарта. Данные сведения, а также замечания и предложения по содержанию стандарта можно направить не позднее чем за 4 мес до истечения срока его действия разработчику настоящего стандарта по адресу: tk418@bk.ru и/или в Федеральное агентство по техническому регулированию и метрологии по адресу: 109074 Москва, Китайгородский проезд, д.7, стр.1.

В случае отмены настоящего стандарта соответствующая информация будет опубликована в ежемесячном информационном

указателе «Национальные стандарты« и также будет размещена на официальном сайте Федерального агентства по техническому регулированию и метрологии в сети Интернет (www.gost.ru)

1 Область применения


Настоящий стандарт распространяется на грунты, в том числе стабилизированные и укрепленные, предназначенные для строительства, реконструкции и ремонта автомобильных дорог общего пользования, и устанавливает методы определения индекса непосредственной несущей способности (IPI), Калифорнийского числа (CBR) и линейного набухания грунтов.

Настоящий стандарт не распространяется на грунты с зернами крупнее 31,5 мм.

2 Нормативные ссылки


В настоящем стандарте использованы нормативные ссылки на следующие стандарты:

ГОСТ 12.4.131 Халаты женские. Технические условия

ГОСТ 12.4.132 Халаты мужские. Технические условия

ГОСТ 12.4.252 Система стандартов безопасности труда. Средства индивидуальной защиты рук. Перчатки. Общие технические требования. Методы испытаний

ГОСТ Р 12.1.019 Система стандартов безопасности труда. Электробезопасность. Общие требования и номенклатура видов защиты

ПНСТ 324-2019 Дороги автомобильные общего пользования. Грунты. Определение оптимальной влажности и максимальной плотности методом Проктора

Примечание — При пользовании настоящим стандартом целесообразно проверить действие ссылочных стандартов в информационной системе общего пользования — на официальном сайте Федерального агентства по техническому регулированию и метрологии в сети Интернет или по ежегодному информационному указателю «Национальные стандарты», который опубликован по состоянию на 1 января текущего года, и по выпускам ежемесячного информационного указателя «Национальные стандарты» за текущий год. Если заменен ссылочный стандарт, на который дана недатированная ссылка, то рекомендуется использовать действующую версию этого стандарта с учетом всех внесенных в данную версию изменений. Если заменен ссылочный стандарт, на который дана датированная ссылка, то рекомендуется использовать версию этого стандарта с указанным выше годом утверждения (принятия). Если после утверждения настоящего стандарта в ссылочный стандарт, на который дана датированная ссылка, внесено изменение, затрагивающее положение, на которое дана ссылка, то это положение рекомендуется применять без учета данного изменения. Если ссылочный стандарт отменен без замены, то положение, в котором дана ссылка на него, рекомендуется применять в части, не затрагивающей эту ссылку.


3 Термины и определения


В настоящем стандарте применены следующие термины с соответствующими определениями:

3.1 индекс непосредственной несущей способности; IPI: Величина, характеризующая несущую способность грунта, определяемая на образцах с максимальной плотностью и оптимальной влажностью путем вдавливания в образец штампа диаметром 50 мм при скорости нагружения 1,27 мм/мин.

3.2 Калифорнийское число; CBR: Величина, характеризующая несущую способность грунта, определяемая после насыщения образцов водой путем вдавливания в образец штампа диаметром 50 мм при скорости нагружения 1,27 мм/мин.

3.3 стабилизированный грунт: Грунт, получаемый смешением грунтов со стабилизаторами (или стабилизаторами совместно с вяжущим в количестве не более 2% массы необработанного грунта) в слое механизированным способом на дороге или в смесительных установках с последующим уплотнением при оптимальной влажности, обеспечивающим изменение водно-физических свойств грунтов.

3.4 стабилизаторы: Многокомпонентные системы, включающие в своем составе (в основном) поверхностно-активные вещества как ионогенного, так и неионогенного типов, обладающие свойствами гидрофобизаторов, суперпластификаторов, полимеров и применяемые в строительстве для обработки грунтов с целью изменения их водно-физических свойств.

3.5 укрепленный грунт: Грунт, получаемый смешением грунта с вяжущим в количестве более 2% массы необработанного грунта (с введением или без введения в грунт стабилизатора) в слое механизированным способом на дороге или в смесительных установках с последующим уплотнением при оптимальной влажности.

3.6 водно-физические свойства: Свойства грунта, определяющие его водопроницаемость, пучинистость, набухание, высоту капиллярного поднятия, оптимальную влажность при максимальной плотности.


4 Требования к средствам измерений и вспомогательным устройствам

4.1 При выполнении испытаний применяют следующие средства измерений и вспомогательные устройства:

— испытательная установка (испытательный пресс) с пределом измерения не менее 50 кН, позволяющая обеспечить равномерное погружение плунжера в образец со скоростью (1,27±0,20) мм/мин;

— нагружающий плунжер (штамп) диаметром (50,0±0,5) мм с основанием из закаленной стали;

— сборная форма типа В для уплотнения грунта, состоящая в соответствии с ПНСТ 324-2019 из съемного удлинительного кольца высотой не менее 50 мм, цилиндрической части и съемного основания. Внутренние части формы должны быть без царапин, вмятин и других видимых дефектов.

Примечание — Допускается применение форм высотой более 120 мм с использованием металлического вкладыша для получения образца при уплотнении высотой (120±1) мм;


— уплотняющий молот с грузом массой (4500±40) г, диаметром основания (50,0±0,5) мм и высотой падения груза (457±3) мм в соответствии с ПНСТ 324-2019;

— основание формы должно иметь перфорацию. Перфорация основания формы должна составлять от 1% до 2% его площади;

— перфорированная пластина диаметром, соответствующим внутреннему диаметру формы, с регулируемым по высоте стержнем. Перфорированная пластина должна свободно перемещаться внутри формы. Типовая конструкция перфорированной пластины представлена на рисунке 1;

— держатель для индикатора часового типа;

— индикатор часового типа с ценой деления не более 0,01 мм;

— емкость для насыщения образцов водой геометрическими размерами, позволяющими устанавливать в нее форму, при этом высота емкости должна быть не менее высоты сборной формы;

— пригрузочный диск. Диаметр диска должен соответствовать внутреннему диаметру формы типа В. Диск должен свободно перемещаться в сборной форме. Пригрузочный диск должен иметь отверстие в центре диаметром (53±1) мм и должен быть массой (2000±50) г.

Примечание — Допускается применение пригрузочных дисков, состоящих из двух равных частей;

— лабораторные сита с ячейками квадратной формы размерами 4; 22,4 и 31,5 мм;

— сушильный шкаф, способный создавать и поддерживать температуру (110±5)°С;

Рисунок 1 — Перфорированная пластина


— лабораторные весы с наибольшим пределом взвешивания не менее 15000 г и с ценой деления не более 5 г;

— бетонная плита массой не менее 50 кг, толщиной не менее 100 мм, с ровной, близкой к горизонтальной поверхностью, обеспечивающей плотное прилегание основания формы. Площадь плиты должна быть больше площади основания применяемой формы.

Примечание — Вместо бетонной плиты может быть применена металлическая горизонтальная плита массой не менее 50 кг и толщиной не менее 20 мм. Площадь плиты должна быть больше площади основания применяемой формы;

— контейнер с герметичной крышкой для хранения материала;

— металлический совок или шпатель;

— металлические противни.

5 Метод испытаний


Сущность метода определения индекса непосредственной несущей способности и Калифорнийского числа заключается в определении зависимости создаваемого усилия и глубины погружения плунжера, погружаемого в образец с постоянной скоростью, непосредственно после изготовления образца и после насыщения его водой.


6 Требования безопасности


При работе с грунтами используют специальную защитную одежду по ГОСТ 12.4.131 или ГОСТ 12.4.132. Для защиты рук используют перчатки по ГОСТ 12.4.252.

При выполнении измерений соблюдают правила по электробезопасности по ГОСТ Р 12.1.019 и инструкции по эксплуатации оборудования.

7 Требования к условиям испытаний


При выполнении измерений температура в помещениях, в которых проводят испытания, должна быть (22±3)°С.

ПНСТ 323-2019 Дороги автомобильные общего пользования. Грунты. Метод определения Калифорнийского числа (CBR) для оценки несущей способности грунта, ПНСТ от 16 мая 2019 года №323-2019

ПНСТ 323-2019

ОКС 93.080.20

Срок действия с 2019-07-01
до 2022-07-01

Предисловие

1 РАЗРАБОТАН Обществом с ограниченной ответственностью «Центр метрологии, испытаний и стандартизации» (ООО «ЦМИиС»)

2 ВНЕСЕН Техническим комитетом по стандартизации ТК 418 «Дорожное хозяйство»

3 УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Приказом Федерального агентства по техническому регулированию и метрологии от 16 мая 2019 г. N 12-пнст

Правила применения настоящего стандарта и проведения его мониторинга установлены в ГОСТ Р 1.16-2011 (разделы 5 и 6).

Федеральное агентство по техническому регулированию и метрологии собирает сведения о практическом применении настоящего стандарта. Данные сведения, а также замечания и предложения по содержанию стандарта можно направить не позднее чем за 4 мес до истечения срока его действия разработчику настоящего стандарта по адресу: tk418@bk.ru и/или в Федеральное агентство по техническому регулированию и метрологии по адресу: 109074 Москва, Китайгородский проезд, д.7, стр.1.

В случае отмены настоящего стандарта соответствующая информация будет опубликована в ежемесячном информационном указателе «Национальные стандарты« и также будет размещена на официальном сайте Федерального агентства по техническому регулированию и метрологии в сети Интернет (www.gost.ru)

1 Область применения


Настоящий стандарт распространяется на грунты, в том числе стабилизированные и укрепленные, предназначенные для строительства, реконструкции и ремонта автомобильных дорог общего пользования, и устанавливает методы определения индекса непосредственной несущей способности (IPI), Калифорнийского числа (CBR) и линейного набухания грунтов.

Настоящий стандарт не распространяется на грунты с зернами крупнее 31,5 мм.

2 Нормативные ссылки


В настоящем стандарте использованы нормативные ссылки на следующие стандарты:

ГОСТ 12.4.131 Халаты женские. Технические условия

ГОСТ 12.4.132 Халаты мужские. Технические условия

ГОСТ 12.4.252 Система стандартов безопасности труда. Средства индивидуальной защиты рук. Перчатки. Общие технические требования. Методы испытаний

ГОСТ Р 12.1.019 Система стандартов безопасности труда. Электробезопасность. Общие требования и номенклатура видов защиты

ПНСТ 324-2019 Дороги автомобильные общего пользования. Грунты. Определение оптимальной влажности и максимальной плотности методом Проктора

Примечание — При пользовании настоящим стандартом целесообразно проверить действие ссылочных стандартов в информационной системе общего пользования — на официальном сайте Федерального агентства по техническому регулированию и метрологии в сети Интернет или по ежегодному информационному указателю «Национальные стандарты», который опубликован по состоянию на 1 января текущего года, и по выпускам ежемесячного информационного указателя «Национальные стандарты» за текущий год. Если заменен ссылочный стандарт, на который дана недатированная ссылка, то рекомендуется использовать действующую версию этого стандарта с учетом всех внесенных в данную версию изменений. Если заменен ссылочный стандарт, на который дана датированная ссылка, то рекомендуется использовать версию этого стандарта с указанным выше годом утверждения (принятия). Если после утверждения настоящего стандарта в ссылочный стандарт, на который дана датированная ссылка, внесено изменение, затрагивающее положение, на которое дана ссылка, то это положение рекомендуется применять без учета данного изменения. Если ссылочный стандарт отменен без замены, то положение, в котором дана ссылка на него, рекомендуется применять в части, не затрагивающей эту ссылку.

3 Термины и определения


В настоящем стандарте применены следующие термины с соответствующими определениями:

3.1 индекс непосредственной несущей способности; IPI: Величина, характеризующая несущую способность грунта, определяемая на образцах с максимальной плотностью и оптимальной влажностью путем вдавливания в образец штампа диаметром 50 мм при скорости нагружения 1,27 мм/мин.

3.2 Калифорнийское число; CBR: Величина, характеризующая несущую способность грунта, определяемая после насыщения образцов водой путем вдавливания в образец штампа диаметром 50 мм при скорости нагружения 1,27 мм/мин.

3.3 стабилизированный грунт: Грунт, получаемый смешением грунтов со стабилизаторами (или стабилизаторами совместно с вяжущим в количестве не более 2% массы необработанного грунта) в слое механизированным способом на дороге или в смесительных установках с последующим уплотнением при оптимальной влажности, обеспечивающим изменение водно-физических свойств грунтов.

3.4 стабилизаторы: Многокомпонентные системы, включающие в своем составе (в основном) поверхностно-активные вещества как ионогенного, так и неионогенного типов, обладающие свойствами гидрофобизаторов, суперпластификаторов, полимеров и применяемые в строительстве для обработки грунтов с целью изменения их водно-физических свойств.

3.5 укрепленный грунт: Грунт, получаемый смешением грунта с вяжущим в количестве более 2% массы необработанного грунта (с введением или без введения в грунт стабилизатора) в слое механизированным способом на дороге или в смесительных установках с последующим уплотнением при оптимальной влажности.

3.6 водно-физические свойства: Свойства грунта, определяющие его водопроницаемость, пучинистость, набухание, высоту капиллярного поднятия, оптимальную влажность при максимальной плотности.

4 Требования к средствам измерений и вспомогательным устройствам

4.1 При выполнении испытаний применяют следующие средства измерений и вспомогательные устройства:

— испытательная установка (испытательный пресс) с пределом измерения не менее 50 кН, позволяющая обеспечить равномерное погружение плунжера в образец со скоростью (1,27±0,20) мм/мин;

— нагружающий плунжер (штамп) диаметром (50,0±0,5) мм с основанием из закаленной стали;

— сборная форма типа В для уплотнения грунта, состоящая в соответствии с ПНСТ 324-2019 из съемного удлинительного кольца высотой не менее 50 мм, цилиндрической части и съемного основания. Внутренние части формы должны быть без царапин, вмятин и других видимых дефектов.

Примечание — Допускается применение форм высотой более 120 мм с использованием металлического вкладыша для получения образца при уплотнении высотой (120±1) мм;

— уплотняющий молот с грузом массой (4500±40) г, диаметром основания (50,0±0,5) мм и высотой падения груза (457±3) мм в соответствии с ПНСТ 324-2019;

— основание формы должно иметь перфорацию. Перфорация основания формы должна составлять от 1% до 2% его площади;

— перфорированная пластина диаметром, соответствующим внутреннему диаметру формы, с регулируемым по высоте стержнем. Перфорированная пластина должна свободно перемещаться внутри формы. Типовая конструкция перфорированной пластины представлена на рисунке 1;

— держатель для индикатора часового типа;

— индикатор часового типа с ценой деления не более 0,01 мм;

— емкость для насыщения образцов водой геометрическими размерами, позволяющими устанавливать в нее форму, при этом высота емкости должна быть не менее высоты сборной формы;

— пригрузочный диск. Диаметр диска должен соответствовать внутреннему диаметру формы типа В. Диск должен свободно перемещаться в сборной форме. Пригрузочный диск должен иметь отверстие в центре диаметром (53±1) мм и должен быть массой (2000±50) г.

Примечание — Допускается применение пригрузочных дисков, состоящих из двух равных частей;

— лабораторные сита с ячейками квадратной формы размерами 4; 22,4 и 31,5 мм;

— сушильный шкаф, способный создавать и поддерживать температуру (110±5)°С;

Рисунок 1 — Перфорированная пластина


— лабораторные весы с наибольшим пределом взвешивания не менее 15000 г и с ценой деления не более 5 г;

— бетонная плита массой не менее 50 кг, толщиной не менее 100 мм, с ровной, близкой к горизонтальной поверхностью, обеспечивающей плотное прилегание основания формы. Площадь плиты должна быть больше площади основания применяемой формы.

Примечание — Вместо бетонной плиты может быть применена металлическая горизонтальная плита массой не менее 50 кг и толщиной не менее 20 мм. Площадь плиты должна быть больше площади основания применяемой формы;

— контейнер с герметичной крышкой для хранения материала;

— металлический совок или шпатель;

— металлические противни.

5 Метод испытаний


Сущность метода определения индекса непосредственной несущей способности и Калифорнийского числа заключается в определении зависимости создаваемого усилия и глубины погружения плунжера, погружаемого в образец с постоянной скоростью, непосредственно после изготовления образца и после насыщения его водой.

6 Требования безопасности


При работе с грунтами используют специальную защитную одежду по ГОСТ 12.4.131 или ГОСТ 12.4.132. Для защиты рук используют перчатки по ГОСТ 12.4.252.

При выполнении измерений соблюдают правила по электробезопасности по ГОСТ Р 12.1.019 и инструкции по эксплуатации оборудования.

7 Требования к условиям испытаний


При выполнении измерений температура в помещениях, в которых проводят испытания, должна быть (22±3)°С.

ПНСТ 323-2019 Дороги автомобильные общего пользования. Грунты. Метод определения Калифорнийского числа (CBR) для оценки несущей способности грунта, ПНСТ от 16 мая 2019 года №323-2019

ПНСТ 323-2019

ОКС 93.080.20

Срок действия с 2019-07-01
до 2022-07-01

Предисловие

1 РАЗРАБОТАН Обществом с ограниченной ответственностью «Центр метрологии, испытаний и стандартизации» (ООО «ЦМИиС»)

2 ВНЕСЕН Техническим комитетом по стандартизации ТК 418 «Дорожное хозяйство»

3 УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Приказом Федерального агентства по техническому регулированию и метрологии от 16 мая 2019 г. N 12-пнст

Правила применения настоящего стандарта и проведения его мониторинга установлены в ГОСТ Р 1.16-2011 (разделы 5 и 6).

Федеральное агентство по техническому регулированию и метрологии собирает сведения о практическом применении настоящего стандарта. Данные сведения, а также замечания и предложения по содержанию стандарта можно направить не позднее чем за 4 мес до истечения срока его действия разработчику настоящего стандарта по адресу: tk418@bk.ru и/или в Федеральное агентство по техническому регулированию и метрологии по адресу: 109074 Москва, Китайгородский проезд, д.7, стр.1.

В случае отмены настоящего стандарта соответствующая информация будет опубликована в ежемесячном информационном указателе «Национальные стандарты« и также будет размещена на официальном сайте Федерального агентства по техническому регулированию и метрологии в сети Интернет (www.gost.ru)

1 Область применения


Настоящий стандарт распространяется на грунты, в том числе стабилизированные и укрепленные, предназначенные для строительства, реконструкции и ремонта автомобильных дорог общего пользования, и устанавливает методы определения индекса непосредственной несущей способности (IPI), Калифорнийского числа (CBR) и линейного набухания грунтов.

Настоящий стандарт не распространяется на грунты с зернами крупнее 31,5 мм.

2 Нормативные ссылки


В настоящем стандарте использованы нормативные ссылки на следующие стандарты:

ГОСТ 12.4.131 Халаты женские. Технические условия

ГОСТ 12.4.132 Халаты мужские. Технические условия

ГОСТ 12.4.252 Система стандартов безопасности труда. Средства индивидуальной защиты рук. Перчатки. Общие технические требования. Методы испытаний

ГОСТ Р 12.1.019 Система стандартов безопасности труда. Электробезопасность. Общие требования и номенклатура видов защиты

ПНСТ 324-2019 Дороги автомобильные общего пользования. Грунты. Определение оптимальной влажности и максимальной плотности методом Проктора

Примечание — При пользовании настоящим стандартом целесообразно проверить действие ссылочных стандартов в информационной системе общего пользования — на официальном сайте Федерального агентства по техническому регулированию и метрологии в сети Интернет или по ежегодному информационному указателю «Национальные стандарты», который опубликован по состоянию на 1 января текущего года, и по выпускам ежемесячного информационного указателя «Национальные стандарты» за текущий год. Если заменен ссылочный стандарт, на который дана недатированная ссылка, то рекомендуется использовать действующую версию этого стандарта с учетом всех внесенных в данную версию изменений. Если заменен ссылочный стандарт, на который дана датированная ссылка, то рекомендуется использовать версию этого стандарта с указанным выше годом утверждения (принятия). Если после утверждения настоящего стандарта в ссылочный стандарт, на который дана датированная ссылка, внесено изменение, затрагивающее положение, на которое дана ссылка, то это положение рекомендуется применять без учета данного изменения. Если ссылочный стандарт отменен без замены, то положение, в котором дана ссылка на него, рекомендуется применять в части, не затрагивающей эту ссылку.

3 Термины и определения


В настоящем стандарте применены следующие термины с соответствующими определениями:

3.1 индекс непосредственной несущей способности; IPI: Величина, характеризующая несущую способность грунта, определяемая на образцах с максимальной плотностью и оптимальной влажностью путем вдавливания в образец штампа диаметром 50 мм при скорости нагружения 1,27 мм/мин.

3.2 Калифорнийское число; CBR: Величина, характеризующая несущую способность грунта, определяемая после насыщения образцов водой путем вдавливания в образец штампа диаметром 50 мм при скорости нагружения 1,27 мм/мин.

3.3 стабилизированный грунт: Грунт, получаемый смешением грунтов со стабилизаторами (или стабилизаторами совместно с вяжущим в количестве не более 2% массы необработанного грунта) в слое механизированным способом на дороге или в смесительных установках с последующим уплотнением при оптимальной влажности, обеспечивающим изменение водно-физических свойств грунтов.

3.4 стабилизаторы: Многокомпонентные системы, включающие в своем составе (в основном) поверхностно-активные вещества как ионогенного, так и неионогенного типов, обладающие свойствами гидрофобизаторов, суперпластификаторов, полимеров и применяемые в строительстве для обработки грунтов с целью изменения их водно-физических свойств.

3.5 укрепленный грунт: Грунт, получаемый смешением грунта с вяжущим в количестве более 2% массы необработанного грунта (с введением или без введения в грунт стабилизатора) в слое механизированным способом на дороге или в смесительных установках с последующим уплотнением при оптимальной влажности.

3.6 водно-физические свойства: Свойства грунта, определяющие его водопроницаемость, пучинистость, набухание, высоту капиллярного поднятия, оптимальную влажность при максимальной плотности.

4 Требования к средствам измерений и вспомогательным устройствам

4.1 При выполнении испытаний применяют следующие средства измерений и вспомогательные устройства:

— испытательная установка (испытательный пресс) с пределом измерения не менее 50 кН, позволяющая обеспечить равномерное погружение плунжера в образец со скоростью (1,27±0,20) мм/мин;

— нагружающий плунжер (штамп) диаметром (50,0±0,5) мм с основанием из закаленной стали;

— сборная форма типа В для уплотнения грунта, состоящая в соответствии с ПНСТ 324-2019 из съемного удлинительного кольца высотой не менее 50 мм, цилиндрической части и съемного основания. Внутренние части формы должны быть без царапин, вмятин и других видимых дефектов.

Примечание — Допускается применение форм высотой более 120 мм с использованием металлического вкладыша для получения образца при уплотнении высотой (120±1) мм;

— уплотняющий молот с грузом массой (4500±40) г, диаметром основания (50,0±0,5) мм и высотой падения груза (457±3) мм в соответствии с ПНСТ 324-2019;

— основание формы должно иметь перфорацию. Перфорация основания формы должна составлять от 1% до 2% его площади;

— перфорированная пластина диаметром, соответствующим внутреннему диаметру формы, с регулируемым по высоте стержнем. Перфорированная пластина должна свободно перемещаться внутри формы. Типовая конструкция перфорированной пластины представлена на рисунке 1;

— держатель для индикатора часового типа;

— индикатор часового типа с ценой деления не более 0,01 мм;

— емкость для насыщения образцов водой геометрическими размерами, позволяющими устанавливать в нее форму, при этом высота емкости должна быть не менее высоты сборной формы;

— пригрузочный диск. Диаметр диска должен соответствовать внутреннему диаметру формы типа В. Диск должен свободно перемещаться в сборной форме. Пригрузочный диск должен иметь отверстие в центре диаметром (53±1) мм и должен быть массой (2000±50) г.

Примечание — Допускается применение пригрузочных дисков, состоящих из двух равных частей;

— лабораторные сита с ячейками квадратной формы размерами 4; 22,4 и 31,5 мм;

— сушильный шкаф, способный создавать и поддерживать температуру (110±5)°С;

Рисунок 1 — Перфорированная пластина


— лабораторные весы с наибольшим пределом взвешивания не менее 15000 г и с ценой деления не более 5 г;

— бетонная плита массой не менее 50 кг, толщиной не менее 100 мм, с ровной, близкой к горизонтальной поверхностью, обеспечивающей плотное прилегание основания формы. Площадь плиты должна быть больше площади основания применяемой формы.

Примечание — Вместо бетонной плиты может быть применена металлическая горизонтальная плита массой не менее 50 кг и толщиной не менее 20 мм. Площадь плиты должна быть больше площади основания применяемой формы;

— контейнер с герметичной крышкой для хранения материала;

— металлический совок или шпатель;

— металлические противни.

5 Метод испытаний


Сущность метода определения индекса непосредственной несущей способности и Калифорнийского числа заключается в определении зависимости создаваемого усилия и глубины погружения плунжера, погружаемого в образец с постоянной скоростью, непосредственно после изготовления образца и после насыщения его водой.

6 Требования безопасности


При работе с грунтами используют специальную защитную одежду по ГОСТ 12.4.131 или ГОСТ 12.4.132. Для защиты рук используют перчатки по ГОСТ 12.4.252.

При выполнении измерений соблюдают правила по электробезопасности по ГОСТ Р 12.1.019 и инструкции по эксплуатации оборудования.

7 Требования к условиям испытаний


При выполнении измерений температура в помещениях, в которых проводят испытания, должна быть (22±3)°С.

Определение несущей способности грунта калифорнийским методом

 LOADTRAC-II

Нагрузочная рама «LoadTrac-II» обеспечивает проведение целого ряда геотехнических испытаний на сжатие/расширение, при которых необходимо точное управление  скоростью перемещения во время приложения нагрузки. Со вспомогательными устройствами этот блок может выполнять определение несущей способности грунта калифорнийским методом, испытания на  одноосное сжатие  и поэтапное трехосное испытание на сдвиг.

Базовый блок включает в себя шаговый двигатель, ходовой винт, вертикальные несущие стойки и ригель, датчик перемещения, электронные управляющие устройства и сетевые средства связи.  Имеются в наличии варианты блока, предназначенные для испытательной нагрузки до  90 килоньютонов (20000 фунт-сила).  Может быть установлено любое значение скорости деформирования в интервале от 0,00003 до 15 мм в минуту (от 0,000001 до 0.6 дюйма в минуту). Скорость деформирования при определение несущей способности грунта калифорнийским методом устанавливается программно на уровне 1,27 мм/мин (0,05 дюйма/мин) в соответствии со стандартом ASTM D 1883.

Базовый блок может работать в автономном режиме без компьютера. У него имеется встроенное устройство для сбора данных и  возможность вывода информации на дисплей. Показания датчика отображаются в единицах СИ или в английских единицах измерения и сохраняются в памяти.

Дополнительное программное обеспечение, работающее в среде Windows® 2000, XP, или Vista полностью автоматизирует испытание, предварительно обрабатывая данные и подготавливая  результаты испытаний.

ПРЕИМУЩЕСТВА ДЛЯ ПОЛЬЗОВАТЕЛЕЙ

 Выбор моделей с нагрузкой 22, 45 и 90 кН (5000, 10000 и 20000 фунт-сила) для удовлетворения потребностей пользователя

 Полная автоматизация сбора данных и подготовки отчета о результатах испытаний

 Составление таблиц и графиков, пригодных для отчетности, в течение нескольких минут после завершения испытания

 Формирование колонок с данными для их легкого преобразования с помощью имеющегося у вас программного пакета электронных таблиц

 Возможность получать доступ к устройству и управлять им через компьютерную сеть, при использовании опции «Geo-Net»

ПРИМЕНИМЫЕ СТАНДАРТЫ ИСПЫТАНИЙ

 ASTM D-1883

 AASHTO T-193 «Стандартныq метод определения несущей способности грунта калифорнийским методом (CBR) для  уплотненных в лаборатории грунтов»

 ТЕХНИЧЕСКАЯ СПЕЦИФИКАЦИЯ 

ДВИГАТЕЛЬШаговый двигатель со встроенным устройством управления
ПЕРЕМЕЩЕНИЕВстроенный датчик перемещения с диапазоном 76 мм (3 дюйма) и дискретностью 0.0013 мм (0.00005 дюйма)
СМЕЩЕНИЕРегулирование от 0.00003 до 15 мм в минуту (от 0.000001 до 0.6 дюймов в минуту)
ПИТАНИЕ110/220В, 50/60Гц, 1 фаза
РАЗМЕРЫ
LoadTrac-II464 мм x 546 мм x1206 мм
ВЕС
LoadTrac-II55 кг (120 фунтов)
МОДЕЛИ
Модели LoadTrac- IIДопустимая нагрузка
LTII-5,00022 кН (5000 фунт-сила)
LTII-10,00045 кН (10000 фунт-сила)
LTII-20,00090 кН (20000 фунт-сила)
LTII–50,000222 кН (50000 фунт-сила)
ВСПОМОГАТЕЛЬНЫЕ УСТРОЙСТВА
7010Поршень для калифорнийского метода с адаптером датчика нагрузки.
Geo-NET™Сетевая карта/адаптер связи и кабель для подключения силовой рамы к ПК.
CBRПакет программного обеспечения для автоматического проведения и получения протоколов испытаний по определению несущей способности грунта калифорнийским методом
ОПЦИИМодули  испытаний на одноосное сжатие, уплотнение и трехосное сжатие

Для просмотра форм отчета и интерфейса управляющей программы щелкните мышью на соответствующей миниатюре.

Методы экспресс-контроля качества строительства автомобильных дорог. Часть 2. Уплотнение щебеночных оснований



Методы экспресс-контроля качества строительства автомобильных дорог. Часть 2. Уплотнение щебеночных оснований

Стригун Ксения Юрьевна, магистрант

Сибирская государственная автомобильно-дорожная академия

В публикации выполнен обзор оборудования и приборов, которые могут быть применены для оперативного контроля степени уплотнения щебеночных оснований. Разработан алгоритм расчета коэффициента уплотнения по показаниям конусного пенетрометра. Применение результатов, полученных в работе, позволит повысить однородность уплотнения щебеночных оснований, и уменьшить величину, накапливаемой ими остаточной деформации. Это позволит повысить ровность покрытий и увеличить межремонтные сроки возобновления ровности.

Ключевые слова: коэффициент уплотнения, экспресс оценка степени уплотнения, динамический пенетрометр.

В работах [1–5] что величина необратимой деформации щебеночных материалов зависит от ряда факторов, в том числе и степени уплотнения. Особенностью щебеночных материалов является, что острые грани минеральных частиц вдавливаются в материал подстилающего слоя, вызывая возникновение достаточно больших напряжений. Этот эффект называют концентрацией напряжений. Вследствие этого фактическая величина напряжений превышает значения, используемые в любом условии пластичности [7–15], применяемом для расчета материала слоя, подстилающего щебеночное основание по сопротивлению сдвигу. Традиционные [16, 17] и современные [18–21] модели расчета главных напряжений не учитывают эффекта концентрации напряжений. Поэтому при расчете по сопротивлению сдвигу, вычисляемые касательные напряжения [22] оказываются недооценены. Аналогичная ситуация складывается при расчете по критерию безопасных давлений [23, 24]. Такое увеличение компонент тензора напряжений приводит к нелинейной зависимости пластических деформаций материала, подстилающего щебеночные основания от напряжений [25–31], вследствие чего показатели ровности дорожного покрытия превышают требуемые значения [32–34]. Одним из мероприятий минимизации такого ущерба является строительство щебеночных оснований высокой плотности при строгом контроле степени уплотнения. Уменьшить трудоемкость контроля можно применением экспресс методов, которые интенсивно разрабатываются в настоящее время [35–38]. Определение максимальной плотности щебня в основаниях дорожных одежд можно при помощи по методу Р. Проктора, используя тест C (Си — англ.) [39].

Исследования, выполненные за рубежом выявили корреляцию между модулем упругости и калифорнийским числом несущей способности (см. табл. 1).

Таблица 1

Эмпирические формулы для определения модуля упругости

Автор или документ

Формула для расчета модуля упругости при измерении в

psi (фунт/дюйм2)

кПа

W. Heukelom и A. J. G. Klomp [40]

Witczak [41]

Green and Hall [42]

Sukumaran [43]

Powell et al. [44]

Из анализа данных таблицы 1 следует, что модуль упругости и калифорнийское число несущей способности могут быть взаимосвязаны друг с другом линейной или степенной зависимостью.

(1)

(2)

Учитывая связь калифорнийского числа несущей способности с плотностью сухого грунта или коэффициентом уплотнения (см. первую часть публикации [38]) формулы (1) и (2) можно представить в виде:

(3)

Из анализа (3) следует, что для вычисления коэффициента уплотнения грунта достаточно установить его взаимосвязь с модулем упругости или калифорнийским числом несущей способности.

Из анализа исследований [38] следует, что взаимосвязь модуля упругости с коэффициентом уплотнения и влажностью грунта можно представить в обобщенном виде

(4)

Решая (4) относительно коэффициента уплотнения получим

(5)

Подставляя в зависимость (5) формулу (2) получим:

(8)

Формула (8) является наилучшим приближением коэффициента уплотнения от CBR, и параметров щебеночного материала (А, В, a и b). Эта зависимость позволяет определять коэффициент уплотнения грунтов в зависимости от величины CBR, измеренной на месте производства работ. В свою очередь, калифорнийское число несущей способности связано с глубиной проникновения динамического конусного пенетрометра в щебеночное основания от одного удара груза (или как еще говорят с индексом динамического проникновения конуса — DCPI).

В таблице 2 приведены эмпирические формулы, связывающие калифорнийское число несущей способности щебеночных материалов и грунтов (CBR) и сопротивлением проникновению конуса (DSP), равно и индексом динамического проникновения конуса (DCPI).

Таблица 2

Корреляционные зависимости между CBR иDSPI

Автор

Материал

Формула

M. Livneh [45]

Щебеночные материалы

J. R. Harison [46]

S. L. Webster, R. H. Grau и T. P. Williams [47]

Различные виды дисперсных грунтов

Из анализа данных таблицы 2 следует, что коэффициенты эмпирических формул являются индивидуальными параметрами для каждого грунта, но они могут быть установлены испытаниями непосредственно на строительной площадке.

Результаты исследований [45–47] свидетельствуют том, что корреляционная связь CBR с DCPI может быть записана в общем виде, а именно формулой:

(9)

где, DSPI — индекс проникновения конуса, мм/удар; f и g — параметры уравнения регрессии, зависящие от вида тестируемого материала.

Используя основные свойства логарифмов и применяя правило антилогарифмирования, получим формулу:

(10)

Подставив (10) в (8) получим

(11)

Зависимость (11) позволяет производить оценку коэффициента уплотнения щебеночных материалов и грунта на месте производства работ при помощи динамического конусного пенетрометра.

При применении динамического конусного пенетрометра и предлагаемую нами методику испытаний наконечник прибора устанавливают в точке измерений. Затем выполняют 10–15 сбросов груза, отсчитывая число ударов. После этого снимают отсчет о глубине проникновения и вычисляют ее среднее значение, то есть за один удар. По формуле (11) рассчитывают коэффициент уплотнения. Перемещают прибор к другой точке и повторяют процедуру испытания.

Литература:

1. Семенова Т. В., Гордеева С. А., Герцог В. Н. Определение пластических деформаций материалов, используемых в дорожных конструкциях // Вестник Томского государственного архитектурно-строительного университета. — 2012. — № 4(37). — С. 247–254.

2. Александров А. С., Киселева Н. Ю. Пластическое деформирование гнейс- и диабаз материалов при воздействии повторяющихся нагрузок // Известия высших учебных заведений. Строительство. — 2012. — № 6. — С. 49–59.

3. Семенова Т. В., Герцог В. Н. Пластическое деформирование материалов с дискретной структурой в условиях трехосного сжатия при воздействии циклических нагрузок // Вестник Сибирской государственной автомобильно-дорожной академии. — 2013. — № 1(29). — С. 68–73.

4. Александров А. С. Пластическое деформирование гранодиоритового щебня и песчано-гравийной смеси при воздействии трехосной циклической нагрузки // Инженерно-строительный журнал. — 2013. — № 4(39) — С. 22–34.

5. Wichtmann T., Niemunis A. Triantafyllidis Th. Strain accumulation in sand due to drained cyclic loading: on the effect of monotonic and cyclic preloading (Miner’s rule) // Soil Dynamics and Earthquake Engineering, 2010. Vol. 30, № 8, Pp.736–745.

6. Александров А. С. Применение теории наследственной ползучести к расчету деформаций при воздействии повторных нагрузок: монография. — Омск: СибАДИ, 2014. — 152 с.

7. Александров А. С., Долгих Г. В. Калинин А. Л. Модификация критериев прочности сплошной среды для расчета грунтов земляного полотна по сопротивлению сдвигу // В сборнике: Архитектура. Строительство. Транспорт. Технологии. Инновации Материалы Международного конгресса ФГБОУ ВПО «СибАДИ». — Омск: СибАДИ, 2013. — С. 228–235.

8. Калинин А. Л. Применение модифицированных условий пластичности для расчета безопасных давлений на грунты земляного полотна. // Инженерно-строительный журнал — 2013. № 4(39). — С. 35–45.

9. Александров А. С., Долгих Г. В., Калинин А. Л. Применение критерия Друкера-Прагера для модификации условий пластичности // Наука и техника в дорожной отрасли. — 2013. № 2. — С. 26–29.

10. Калинин А. Л. Совершенствование расчета касательных напряжений в дорожных конструкциях. Часть 1. Модификация критерия Писаренко-Лебедева и его применение при расчете касательных напряжений // Молодой ученый. — 2016. — № 6(110). — С. 108–114.

11. Александров А. С. Совершенствование расчета дорожных конструкций по сопротивлению сдвигу. Ч. 1. Состояние вопроса: монография. — Омск: СибАДИ, 2015. — 292 с.

12. Александров А. С. Совершенствование расчета дорожных конструкций по сопротивлению сдвигу. Ч. 2. Предложения: монография. — Омск: СибАДИ, 2015. — 262 с.

13. Чусов В. В. Перспективы применения эмпирических условий пластичности грунтов и определение их параметров при трехосных испытаниях грунтов Вестник ВолГАСУ. — 2015. № 4(61). — С. 49–57.

14. Александров А. С., Калинин А. Л. Совершенствование расчета дорожных конструкций по сопротивлению сдвигу. Часть 1. Учет деформаций в условии пластичности Кулона-Мора // Инженерно-строительный журнал. — 2015. № 7(59). — С. 4–17.

15. Калинин А. Л. Применение модифицированного критерия Писаренко — Лебедева для расчета касательных напряжений в земляном полотне // В сборнике: Архитектура. Строительство. Транспорт. Технологии. Инновации Материалы Международного конгресса ФГБОУ ВПО «СибАДИ». — Омск, СибАДИ, 2013. — С. 299–307.

16. Foster С. R., Ahlvin R. G. Stresses and deflections induced by a uniform circular load. // Proc. Highway Research Board. — 1954. — Vol. 33. — P. 236–246.

17. Ahlvin R. G., Ulery H. H. Tabulated Values for Determining the Complete Pattern of Stresses, Strains and Deflections Beneath a Uniform Load on a Homogeneous Half Space, Bull. 342, Highway Research Record, pp. 1–13, 1962.

18. Александров А. С., Александрова Н. П., Долгих Г. В. Модифицированные модели для расчета главных напряжений в дорожных конструкциях из дискретных материалов // Строительные материалы. — 2012. — № 10. — С. 14–17.

19. Александрова Н. П. Модифицированные модели для расчета главных напряжений в грунте земляного полотна // В сборнике: Архитектура. Строительство. Транспорт. Технологии. Инновации Материалы Международного конгресса ФГБОУ ВПО «СибАДИ». Омск, 2013. — С. 236–246.

20. Александров А. С. Один из путей расчета минимальных главных напряжений в грунтах земляного полотна / А. С. Александров // В сборнике: Архитектура. Строительство. Транспорт. Технологии. Инновации Материалы Международного конгресса ФГБОУ ВПО «СибАДИ». — Омск, СибАДИ, 2013. — С. 217–228.

21. Александрова Н. П., Семенова Т. В., Долгих Г. В. Совершенствование моделей расчета главных напряжений и девиатора в грунте земляного полотна // Вестник СИБАДИ. — 2014. — № 2(36). С. 49–54.

22. Александров А. С., Долгих Г. В. Калинин А. Л. Один из путей совершенствования расчета дорожных одежд по условию сопротивления сдвигу в грунте земляного полотна // Модернизация и научные исследования в транспортном комплексе. — Пермь: Пермский национальный исследовательский политехнический университет, 2013. — С. 9–22.

23. Долгих Г. В. Расчет грунтов земляного полотна по критерию безопасных давлений // Вестник Сибирской государственной автомобильно-дорожной академии. — 2013. — № 6(34). — С. 4349.

24. Александров А. С., Долгих Г. В., Калинин А. Л. О допускаемых давлениях на грунты земляного полотна и слои дорожной одежды // Наука и техника в дорожной отрасли. — 2012. № 2. — С. 10–13.

25. Александров А. С. Расчет пластических деформаций материалов и грунтов дорожных при воздействии транспортной нагрузки // Строительная механика инженерных конструкций и сооружений. Строительство. — 2009. — № 2. — С. 3–11.

26. Золотарь И. А. К определению остаточных деформаций в дорожных конструкциях при многократных динамических воздействиях на них подвижных транспортных средств / И. А. Золотарь. — Санкт-Петербург: Изд-во ВАТТ, 1999. — 31 с.

27. Александров А. С. Моделирование деформационных процессов, протекающих в связных грунтах // Наука и техника в дорожной отрасли. — 2002. — № 4. — С. 16–19.

28. Фадеев В. Б. Влияние остаточных деформаций грунта земляного полотна на колееобразование на проезжей части дорог с нежесткими дорожными одеждами: / В. Б. Фадеев // Автореф. канд. техн. наук, М.: МАДИ (ТУ), 1999. — 21 с.

29. Александров А. С. Нелинейное пластическое деформирование материалов при воздействии повторных кратковременных нагрузок / А. С. Александров // Известия высших учебных заведений. Строительство. — 2008. — № 10. — С. 74–84.

30. Горячев М. Г. Обоснование суммарного размера движения для расчета нежестких дорожных одежд с учетом процесса накопления остаточных деформаций: / М. Г. Горячев // Автореф. канд. техн. наук — М., МАДИ (ТУ), 1999. — 17 с.

31. Жустарева Е. В. Влияние плотности связного грунта в рабочем слое земляного полотна на остаточные деформации нежестких дорожных одежд: / Е. В. Жустарева // Автореф. канд. техн. наук — М.: МАДИ (ТУ), 2000. — 20 с.

32. Александров А. С. Критерии расчета дорожных конструкций по ровности, допускаемые и предельные неровности // Вестник гражданских инженеров. — 2008. — № 4. — С. 97–104.

33. Герцог В. Н., Долгих Г. В., Кузин В. Н. Расчет дорожных одежд по критериям ровности. Часть 1. Обоснование норм ровности асфальтобетонных покрытий // Инженерно-строительный журнал. — 2015. — № 5(57) — С. 45–57.

34. Александров А. С., Гордеева С. А., Шпилько Д. Н. О допускаемых и предельных значениях неровностей асфальтобетонных покрытий дорожных одежд жесткого типа //Автомобильная промышленность. — 2011. — № 2. — С. 31–35.

35. Александрова Н. П., Троценко Н. А. Применение измерителя жесткости грунта Geogauge для оценки качества уплотнения при операционном контроле // Вестник СибАДИ, 2014, № 3 — С. 40–47.

36. Семенова Т. В., Долгих Г. В., Полугородник Б. Н. Применение Калифорнийского числа несущей способности и динамического конусного пенетрометра для оценки качества уплотнения грунта // Вестник СибАДИ, 2014, № 1 — С. 59–66.

37. Александрова Н. П., Семенова Т. В., Стригун К. Ю. Совершенствование методов экспресс оценки качества уплотнения грунтов земляного полотна строительства автомобильных дорог / Н. П. Александрова // Вестник СибАДИ. — 2015. — № 4. — С. 46–57.

38. Стригун К. Ю. Методы экспресс-контроля качества строительства автомобильных дорог. Часть первая. Уплотнение грунтов земляного полотна. // Молодой ученый. — 2016. — № 6(110). — С. 200–204.

39. Александрова Н. П., Семенова Т. В., Долгих Г. В. Методы определения максимальной плотности грунтов земляного полотна автомобильных дорог [Электронный ресурс]: учебно-методическое пособие — Электрон. дан. − Омск: СибАДИ, 2015. — Режим доступа: http://bek.sibadi.org/fulltext/ESD53.pdf, свободный после авторизации. — Загл. с экрана.

40. Heukelom W., Klomp A. J. G. Dynamic Testing as a Means of Controlling Pavements During and After Construction. Proc., of 1st International Conference on Structural Design of Asphalt Pavements. 1962

41. Witczak M. W., Qi X., Mirza M. W. Use of Nonlinear Subgrade Modulus in AASHTO Design Procedure // Journal of Transportation Engineering, Vol. 121, № 3 1995. Pp. 273–282.

42. Green J. L., Hall J. W. Nondestructive Vibratory Testing of Airport Pavements Volume I: Experimental Test Results and Development of Evaluation Methodology and Procedure // Federal Aviation Administration Report №. FAA-RD-73–205–1 (September 1975).p 214.

43. Sukumaran B., Kyatham V., Shah A., Sheth D. Suitability of Using California Bearing Ratio Test to Predict Resilient Modulus // Proceedings: Federal Aviation Administration Airport Technology Transfer Conference, 2002. 9 p.

44. Powell W. D., Potter J. F., Mayhew H. C., Nunn M. E. The Structural Design of Bituminous Roads // Transport and Road Research Laboratory, TRRL Laboratory Report 1132, Department of Transport, Berkshire, United Kingdom.

45. Livneh M. Validation of Correlations between a Number of Penetration Tests and In Situ California Bearing Ratio Tests. Transp. Res. Rec. 1219. 1987 Pp. 56–67.

46. Harison J. R. Orrelation between California Bearing Ratio and Dynamic Cone Penetrometer Strength Measurement of Soils. Proc. Instn. Of Civ. Engrs., London, Part 2, 1987. Pp. 83–87.

47. Webster S. L., Grau R. H., Williams T. P. Description and Application of Dual Mass Dynamic Cone Penetrometer,. Final Report, Department of Army, Waterways Experiment Station, Vicksburg, MS. 1992.

Основные термины (генерируются автоматически): CBR, калифорнийское число, несущая способность, DCPI, коэффициент уплотнения, модуль упругости, формула, динамический конусный пенетрометр, щебеночное основание, динамическое проникновение конуса.

правила определения, размещение свай и калькулятор

Foto1Сваи широко применяют в строительстве. Они позволяют устраивать фундамент на неустойчивых почвах, ограждать котлованы, возводить подпорные стенки и укреплять грунт.

Это экономичный, устойчивый вариант установки фундамента, применяемый практически в любых условиях.

В статье мы расскажем о видах свай, порядке и различных методах расчета фундамента.

Виды

Расчет свай начинается с выбора их типа.

По способу заглубления в грунт различают:

  • Забивные сваи. Самый популярный вид. Погружаются в грунт путем забивки пневматическим молотом на рассчитанную глубину;
  • Буронабивные сваи устанавливаются в самые короткие сроки. Сначала методом шнекового бурения разрабатывают скважину и уплотняют грунт вокруг нее. Потом одновременно с извлечением бура под давлением закачивают в скважину бетонную смесь. Сразу после этого в ней устанавливают армирующий каркас. Его изготавливают из металлических стержней на заводе или строительной площадке;
  • Вибропогружаемые опускаются в толщу пород под действием собственного веса. Специальная установка передает вибрацию через сваю на грунт, за счет этого уменьшается сила трения между конструкцией и частицами почвы и свая постепенно погружаются в породу. Метод применяется на площадках с песчаным или насыщенным влагой грунтом;
  • Винтовые конструкции имеют лопасти на концах, благодаря им конструкция погружается в землю. Хорошо работают на неустойчивых грунтах и плывунах при наличии недалеко от поверхности прочной породы. При монтаже не издают шума, не повреждают почву, могут устанавливаться на площадках с плотной застройкой. Монтаж осуществляется вручную или с применением легкой техники;
  • Вдавливаемые устанавливаются без сильных толчков и вибраций, создают минимальную нагрузку на почву и фундаменты расположенных вблизи сооружений. Подходят для строительства крупных объектов в местах с плотной застройкой и вблизи зданий с неустойчивыми или старыми фундаментами.

По виду материала:

  • Железобетон. Самый популярный материал для возведения крупных объектов. Металл, составляющий каркас обеспечивает стойкость к изгибающим нагрузкам, а бетон защищает металлоконструкцию от воздействия окружающей среды, обеспечивает стойкость к вертикальным нагрузкам и увеличивает силу трения с грунтом;
  • Дерево. Применяется в индивидуальном строительстве на сухих почвах. Дешевый и доступный материал, но требует дополнительной гидроизоляции;
  • Металл. Из этого материала выполняют винтовые сваи. После изготовления их покрывают специальным составом, защищающим их от коррозии.

Сваи отличаются по виду конструкции и форме. Это могут быть квадратные, прямоугольные, многоугольные и круглые сечения. Последний вид приобрел наибольшую популярность благодаря простоте изготовления и расчета нагрузки на такую конструкцию.

Foto2

По характеру работы:

  • Сваи-стойки работают за счет установки их нижней части на прочную породу. Они передают нагрузку на устойчивое основание, миную другие, менее надежные слои;
  • Висячие сваи работают за счет силы трения между ними и сжатыми грунтами вокруг.

На выбор типа конструкции влияют условия работы, особенности грунтов, конструкция и вес здания. Для правильного расчета необходимо обратиться к специалистам, способным провести все необходимые измерения и изыскания.

Проектирование свайного фундамента

При проектировании свайного фундамента необходимо участь ряд факторов, влияющих на его устойчивость:

  • Глубина залегания толщина и надежность пород;
  • Масса здания;
  • Условия строительства и эксплуатации;
  • Конструктивные особенности здания.

При проектировании инженеры опираются на данные геологических изысканий и на их основе определяют возможность строительства, рассчитывают количество свай, выбирают их вид, форму и материал.

Второй важный фактор — это нагрузка от здания.

Она складывается из нескольких видов нагрузки:

  • Постоянная. Включает в себя вес самого здания;
  • Долгосрочная временная — это вес станков, оборудования и других тяжелых конструкций;
  • Краткосрочная временная складывается из веса мебели и людей в здании;
  • Снеговая и ветровая нагрузки рассчитываются отдельно для каждого здания на основании климатических данных региона согласно СП 131.13330.2012 «Строительная климатология».
Foto3

Карта снеговых районов России

Вид сваи зависит от технико-экономических показателей строительства. Подбирается самый дешевый вариант, удовлетворяющий все требования и обеспечивающий надежность конструкции.

На этапе проектирования инженеры предусматривают запас прочности, обеспечивающий длительный срок эксплуатации фундамента даже при больших нагрузках.

Расчет ростверка

Важный показатель для строительства — количество свай в ростверке. Этот показатель напрямую влияет на способность конструкции правильно передавать нагрузку на основание и обеспечивать прочность фундамента.

Ростверк — это балка, соединяющая верхние части свай и равномерно распределяющая между ними нагрузку.

Foto4

Крепление ростверка к разным видам свай

Количество свай в ростверке находят по формуле:

где:

  • dp — заглубление ростверка;
  • N0I — максимальное значение суммы нагрузок от веса здания;
  • Yk — коэффициент надежности;
  • F — максимальная нагрузка на одну сваю;
  • A — площадь ростверка;
  • Ymt — усредненный вес ростверков и грунта на его обрезах.

Полученное в результате вычислений число округляется всегда в большую сторону до целого значения.

Сваи распределяют согласно правилам:

  • В шахматном порядке, в два ряда или в одну линию с равными промежутками;
  • Расстояние между соседними сваями не менее трех их диаметров;
  • Минимальное расстояние от края ростверка до ближайшей сваи равно одному ее диаметру;
  • При возникновении только вертикальных нагрузок сваи заглубляют в ростверк всего на 5–10 см, в иных случаях соединение делают более надежным и дополнительно рассчитывают.

При расчетах ростверков инженеры работают, основываясь на СП 63.13330.2012 «Бетонные и железобетонные конструкции».

Алгоритм расчета свайного фундамента

Процесс расчета начинается с определения общего веса здания.

Он состоит из суммы массы всех конструкций:

  • Кровля;
  • Стены;
  • Перекрытия;
  • Железобетонный каркас.

При расчете толщина каждого слоя конструкции умножается на ее высоту и на плотность. В результате рассчитывается нагрузка на 1 м2 конструкции.

Кратковременные равномерно распределенные нагрузки (вес людей и мебели) берутся с расчетом 150 кг/м2. Сумма нагрузок вычисляется путем умножения значения на общую площадь здания. После этого определяется нагрузка от веса снега. Она будет зависеть от климатического района и форму крыши.

Чем больше угол наклона крыши, тем меньше будет снеговая нагрузка.

После этого определяется несущая способность каждой сваи и их количество в ростверках. Полученные значения дополнительно проверяют и только после этого приступают к дальнейшему проектированию и строительству здания.

Расчет несущей способности по грунту

Несущая способность — это значение, необходимое для выполнения правильных расчетов. Выполнить расчет можно с помощью нескольких методов.

Предварительный теоретический расчет по формуле Fd = Yc * (Ycr * R * A + U * ∑ Ycri * fi * li), где:

  • А — площадь опирания на грунт нижней части единицы конструкции;
  • Yc, Ycr, Ycri — коэффициенты, учитывающие условия работы фундамента, основания, сил трения;
  • U — периметр разреза сваи;
  • fi — сила трения на боковых стенках;
  • R — величина несущей способности грунта в месте опирания;
  • li — длина боковых частей.

Метод статических нагрузок — это комплекс полевых работ, связанных с практическим нахождением несущей способности.

Foto6Это наиболее точный метод:

  • На площадке устанавливают пробную сваю;
  • Дают конструкции набраться прочности в течение положенного срока;
  • Установленный на сваю ступенчатый домкрат передает на нее нагрузку;
  • Специальный прибор замеряет усадку сваи;
  • На основе полученных данных проводятся расчеты.

Метод динамической нагрузки -на уже установленный свайный фундамент передают ударную нагрузку и после каждого удара определяют усадку и проводят необходимые расчеты.

Метод зондирования — пробную сваю оснащают датчиками, погружают на расчетную глубину и определяют сопротивление грунтов.

После выполнения теоретического расчета необходимо дополнительно выполнить одно или несколько полевых испытаний и дополнительных расчетов на их основании. Это поможет проверить правильность расчетов и изысканий на практике.

Для упрощения расчетов инженерами был создан калькулятор несущей способности грунта с использованием макросов в Excel.

Он способен:

  • Построить график изменения несущей способности;
  • Разбить толщу пород на слои, основываясь на введенных данных;
  • Найти коэффициент работы всей поверхности сваи;
  • Учесть коэффициенты, уменьшающие несущую способность.

Расчет сваи-стойки, опирающейся на несжимаемое основание

Данные для расчета берут в СП 24.13330.2011 «Свайные фундаменты».

В таблице указаны значения расчетных сопротивлений свай:

Foto5

Табличные значения сопротивлений для разных типов грунта

Формула для расчета сваи-стойки:

Fd=gcRA, где:

  • gc — коэффициент, учитывающий работу грунта;
  • R — взятое из таблицы сопротивление грунта;
  • А — площадь разреза сваи.

Результат расчета используется для дальнейшего нахождения количества свай в ростверке.

Заключение

Расчет несущей способности сваи по грунту — это непростой процесс, требующий опыта и внимания со стороны инженеров. Расчет выполняется в несколько этапов, теоретически полученные значения проверяют в ходе полевых испытаний, полностью исключая возможность ошибки.

Расчет свайного фундамента могут выполнять только профессионалы с инженерным образованием и разрешением на подобную деятельность.

Вконтакте

Facebook

Twitter

Google+

Одноклассники

Мой мир

Несущая способность оснований фундаментов: расчет

Последствия неправильного расчета несущей способности фундаментаПоследствия неправильного расчета несущей способности фундамента

Сразу же после сдачи любого сооружения в эксплуатацию, происходит процесс медленного опускания фундамента за счет прикладываемых нагрузок. Фундамент всегда опускается на расчетную глубину, это значение всегда учитывается и закладывается при проведении расчетов.

Большие, неравномерные осадки оснований влекут за собой деформацию конструкций с дальнейшим разрушением здания. Как правило причина кроется в неправильном расчете несущей способности фундаментов, а также из-за ошибок в расчетах допустимых нагрузок на грунты.

Необходимость геологических исследований

Для определения типа фундаментов, а также в расчете ориентировочной просадки грунтов зоны строительства, в обязательном порядке проводятся геологические исследования. С их помощью определяется тип почвы, глубина промерзания, уровень залегания грунтовых вод, структура грунта и прочие параметры. Поэтому несущая площадь фундамента должна быть такой, чтобы ее масса вместе с будущим зданием не превышала расчетное сопротивление грунта на строительной площадке.

Только тогда получится качественный, надежный фундамент, способный выдерживать горизонтальные и вертикальные нагрузки. При этом строить дополнительные этажи без укрепления существующего фундамента запрещено, так как в таком случае резко увеличивается масса объекта в целом.

Что подразумевают под расчетной способностью грунтов?

Данные о несущей способности различных типов грунта для расчета фундаментаДанные о несущей способности различных типов грунта для расчета фундамента

Несущую способность грунтов оценивают в комплексном порядке при расчете фундаментов и сооружений. Главная цель такого расчета – это обеспечить прочность, устойчивость грунтов под подошвой фундамента, не допустить сдвиг здания по подошве в любую сторону.

Нарушение правильного состояния здания может привести не только к накоплению осадок, но впоследствии к нарушению конструкции самого основания. На фундамент также влияют вертикальные, горизонтальные нагрузки со стороны почвы и самого здания, поэтому грунт может просто не справиться с такой массой. Именно по этой причине особое внимание уделяют расчетам несущей способности оснований фундаментов, чтобы максимально определить допустимую зону нагрузки и защитить грунт от полного разрушения.

Какие факторы влияют на состояние грунта и основания?

Таблица с указанием допустимой нагрузки на грунт для расчета несущей способности основанияТаблица с указанием допустимой нагрузки на грунт для расчета несущей способности основания

На несущую способность влияет огромное количество различных факторов, среди которых стоит отметить:

  • вид и характер нагрузок − вертикальная, наклонная, горизонтальная или, непосредственно, нагрузка под подошвой;
  • распределение центра тяжести площади фундамента относительно эксцентричной нагрузки;
  • размеры, характеристики, габариты и материал выполнения подошвы;
  • структура грунта;
  • форма подошвы;
  • глубина погружения основания в грунт, а также наличие под подошвой мягких осадочных пород с малой сопротивляемостью;
  • насколько ровно расположена подошва относительно горизонтали;
  • степень однородности почвы;
  • наличие внешних факторов, которые могут нанести вред подошве, такие как вибрация, сейсмические сдвиги, сезонный подъем грунтовых вод.

Все расчеты несущей способности оснований нужно делать по СНиП 2.02.01-83. Поэтому, обеспеченная несущая способность вычисляется по формуле:   F ≤ YcFu/Yn, где:

  • F – это равнодействующая сила, она должна быть разнонаправлена к основной нагрузке;
  • γс – коэффициент условий работы;
  • Fu— это максимальное сопротивление основания всем нагрузкам;
  • γn— коэффициент надежности по назначению сооружения, принимается равным 1,2; 1,15; 1,10 для сооружений I, II и III классов соответственно.

Когда нужно делать расчет оснований на несущую способность

Чертеж расчета фундамента по несущей способностиЧертеж расчета фундамента по несущей способности
  1. Если на существующее или новое основание воздействуют значительные горизонтальные нагрузки, особенно от строящихся по соседству домов или регулярные вибрации от автомагистралей, промышленных предприятий.
  2. Сооружение было построено на уклоне или откос образовался со временем, обнажив внешнюю часть основания.
  3. Если подошва фундамента установлена на влагонасыщенных почвах.
  4. Когда на основание может воздействовать выталкивающая сила различного происхождения.
  5. Если нужно проверить устойчивость естественных и искусственных склонов.

Если на строительной площадке или в фундаменте существующего здания уже появились видимые деформации конструкций, всегда сначала обращают внимание на состояние почвы под подошвой и определяют их состояние. Поэтому, по нормативам существует сразу несколько различных видов деформаций почвы, которые зависят от внутренних и внешних факторов.

Этапы деформаций грунтов в классическом виде

Схема развития деформаций и возможных перемещений грунта при неправильном расчете несущей способностиСхема развития деформаций и возможных перемещений грунта при неправильном расчете несущей способности

В современной литературе принято различать три основных фазы деформирования грунтов:

  1. Начальная. Это этап уплотнения почвы под влиянием внешних факторов, происходит из-за уменьшения пор между частицами почвы под подошвой. Фаза отличается тем, что сейчас не происходит сдвига фундамента, ведь все касательные нагрузки равноценные и компенсируются нагрузкой. Но нагрузка всегда возникает спонтанно, она распределяется неравномерно. В результате, в одной точке деформация может быть незначительной, а в другой – сильной. Как итог – происходят сдвиги основания.
  2. Вторая стадия – фаза сдвига подошвы основания. По мере увеличения нагрузок грунт сжимается все сильнее, захватывает новые районы, происходит значительный сдвиг подошвы в сторону большей нагрузки. Нарушается стандартное равновесие, под подошвой образуется плотный шар почвы, а по сторонам – пустое пространство. Материал фундамента стремится занять освободившееся место за счет естественных сил тяготения, поэтому возникают трещины и разрывы в основании, а затем в несущих стенах дома.
  3. Третья фаза – это разрушение подошвы. Тут уже материал подошвы выпирает плотный шар грунта и сразу деформируется.

Такая ситуация возникает с теми фундаментами, которые заложены выше граничной глубины промерзания почвы или сверху над горизонтами грунтовых вод. Немного иная картина происходит с глубоко заложенными основаниями. В таких случаях под подошвой также образуется плотный слой грунта, но его не выпирает на поверхность из-за большой площади перекрытия подошвы. Поэтому такой фундамент обладает лучшими несущими способностями, чем мелкозаглубленный.

Если начинается процесс деформации грунтов, то его порой остановить уже нет возможности. Единственный выход, это устраивать специальные защитные конструкции, способные нивелировать нагрузки или по максимуму снизить их воздействие.

Влияние размеров фундамента на несущую способность основания

Графическое изображение зависимости осадки основания фундамента от несущей нагрузкиГрафическое изображение зависимости осадки основания фундамента от несущей нагрузки

Некоторые строители вынуждены для одного сооружения использовать сразу несколько различных видов фундаментов. Причем расчеты нужно делать для каждой подошвы индивидуально. Также возможно применение оснований с длиной, значительно превышающих их ширину.

Графики указывают, что с увеличением ширины фундамента увеличивается объем грунта, способного привести к разрушению подошвы. Поэтому при абсолютно одинаковых условиях и составу грунта, узкие фундаменты менее склонны к деформации, чем широкие.

Также несущая способность оснований зависит от их формы и используемых строительных материалов. Если два фундамента имеют абсолютно одинаковые размеры, одинаково заглублены в грунт, но один имеет длину и ширину практически одинаковую, а другой – более длинный, тогда первая конструкция будет создавать большую нагрузку на грунт, чем другая.

Причина кроется в особенностях подошвы. Для деформации и сдвига квадратного или круглого фундамента нужно затратить больше энергии, чем для ленточного длинного. Также необходимо учесть, что на песчаное основание размеры и форма фундамента влияет больше, чем на глинистые грунты.

Как влияет глубина заложения фундамента на несущую способность оснований

Эскиз неравномерного поднятия дна котлована из-за неправильного расчета несущей способности основанияЭскиз неравномерного поднятия дна котлована из-за неправильного расчета несущей способности основания

Почему глубоко погруженные основания менее склонны к разрушениям, чем мелкозаглубленные? Ведь мелкие основания нужно обязательно укреплять, подбирать оптимальную конструкцию свай и делать сложные расчеты. Причина здесь кроется в характере поведения грунтов на различных глубинах.

Так для песчаных оснований увеличение глубины погружения фундамента ведет за собой снижение осадки, а вот несущая способность резко увеличивается. Аналогичная ситуация наблюдается с любыми иными почвами, в составе которых есть песок в больших количествах.

Поэтому в зависимости от глубины заложения, различают мелкие и глубокие основания. Понятно, что для каждого типа приходится использовать свои строительные материалы и технику, но при этом надежность конструкций отличается в несколько раз.

Как происходит деформация песчаных грунтов под подошвой фундаментов мелкого заглубления? Сначала происходит укрупнение почвы под подошвой, затем она клиньями поднимается по разные стороны конструкции и формирует свободную полость под подошвой. Поэтому даже незначительные сдвиги и подвижки почвы, повлекут за собой частичное разрушение несущих конструкций. Часто наблюдаются сдвиги и провалы.

А вот фундаменты глубокого заложения разрушить значительно сложнее. Смещение почвы будет практически полностью нейтрализовано вертикальным перемещением почвы по сторонам поверхности основания, и в данном случае могут быть только локальные уплотнения почвы. Разрушение фундамента в третьей фазе деформации почвы имеет спокойный характер. Зависимость глубины фундамента от осадки на глинистых почвах практически не проявляется.

Таким образом, несущая способность оснований – это важный показатель состояния грунтов и пренебрегать им нельзя. Если правильно сделать расчет и учесть все факторы, то уже по готовому результату можно подобрать не только оптимальные размеры и форму будущего фундамента, но и обнаружить скрытые проблемы в уже существующем. И в дальнейшем оперативно принять меры по срочному ремонту или усилению конструкций, чтобы они не деформировались от внешнего воздействия.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *