Skip to content

Напряжение на нулевом проводе: Почему на нулевом проводе появляется напряжение: откуда фаза на нуле

Содержание

Почему на нулевом проводе появляется напряжение: откуда фаза на нуле

Во время эксплуатации электроприборов иногда возникает ситуация, при которой они не работают или выходят из строя, причём происходит это одновременно во всей квартире.

Это указывает на проблемы с параметрами электросети и, в некоторых случаях, при проверке наличия напряжения индикатор показывает наличие напряжения на нулевой клемме в розетке. Это аварийная ситуация и для её устранения необходимо знать, почему на нулевом проводе появляется напряжение.

Почему индикатор показывает напряжение на нуле

Простейшим прибором, указывающим на наличие напряжения, является индикаторная отвёртка, показывающая потенциал между жалом прибора и землёй. При прикосновении щупа к элементу электропроводки, находящемуся под напряжением, загорается сигнальная лампочка. Чувствительность прибора зависит от конструкции индикатора:

  • неоновая лампа — от 90В;
  • светодиод или ЖК-дисплей — от 12В.

В обычной ситуации напряжение на нулевом проводе отсутствует или недостаточно для свечения индикаторной лампы. Если он горит, то возможны два варианта:

  • На нулевом проводе находится та же фаза, что и на фазном проводе. В этом случае при измерении напряжения в розетке вольтметр покажет отсутствие потенциала. Электроприборы работать не будут, но их желательно отключить до выяснения причины неисправности. Причина этого явления чаще всего в обрыве нейтрали и напряжение должно исчезнуть после отключения всех аппаратов от сети.
  • На нейтральной клемме имеется другая фаза. В этом случае напряжение в розетке или клеммах двухполюсного автомата значительно превышает 220В и может достигать 380В. Необходимо немедленно выключить вводной автоматический выключатель или все светильники и вынуть все вилки из розеток. Такая ситуация возникает при обрыве нейтрали или коротком замыкании между фазным и нулевым проводниками.

Зачем нужен нулевой провод

Электроснабжение жилых районов и большинства промышленных предприятий осуществляется при помощи трёхфазных понижающих трансформаторов, вторичные обмотки которых соединены в «звезду». Средняя точка звезды соединена шиной с контуром заземления, поэтому такая схема называется «TN».

Первоначально это была четырёхпроводная система, в которой функции нейтрального и заземляющего проводников были объединены в проводнике «PEN», однако она не обеспечивала необходимый уровень безопасности. В этой схеме по нейтральному проводу протекает уравнительный ток, вызванный неравномерной нагрузкой на разных фазах.

Попадание напряжения на корпус электрооборудования может привести к электротравмам, поэтому для повышения электробезопасности в 30-е годы ХХ века была разработана пятипроводная система заземления TN-S.

Основной особенностью этой схемы является наличие дополнительного заземляющего провода РЕ, проложенного от глухозаземлённой нейтрали питающего трансформатора без каких-либо разрывов и выключателей до заземляющей клеммы в розетке или корпуса электроприбора.

Система заземления TN-S является самой безопасной из существующих, однако замена на неё ранее установленной схемы TN-С является дорогостоящим мероприятием, поэтому был разработан компромиссный вариант — система TN-С-S.

В этой схеме используется четырёхпроводная схема электропередач, в которой провод PEN во вводном щитке в здании разделяется на два проводника — PE и N. Место разделения подлежит обязательному разделению.

Справка! Требования к различным системам заземления указаны в ПУЭ п.1.7.

Напряжение между фазой, нулем и заземлением

Современная квартирная электропроводка выполнена при помощи трёх проводов — фазный «L», нейтраль «N» и заземление «РЕ». Напряжение между ними нормируется ПУЭ и другими нормативными документами и определяется техническим состоянием сетей электроснабжения.

Какое напряжение между нулем и заземлением

В идеальных условиях напряжение между нейтральным и нулевым проводниками отсутствует. Именно такая ситуация возникает возле нулевой точки трансформатора или места

разделения проводника PEN на РЕ и N во вводном щитке в здании, но по мере увеличения длины нейтрального провода между этими проводниками появляется и растёт напряжение.

Это связано с тем, что нагрузка по фазам в трёхфазной сети распределена неравномерно и по нейтрали протекает уравнительный ток, отсутствующий в заземляющем проводе. Соответственно, в этом проводнике происходит падение напряжение и разность потенциалов между землёй и нейтралью составляет именно эту величину.

Такое напряжение не нормируется ни в одном из документов, но на практике при большой протяжённости линий электропередач может достигать 20-30В или даже больше. В некоторых случаях между этими клеммами можно даже подключить лампочку 12-36В.

Кроме обычного падения напряжения из-за протекания уравнительных токов возможно значительное напряжение между нейтралью и землёй в аварийной ситуации, вызванной обрывом нулевого провода и (или) коротким замыканием между нулём и фазой.

В этом случае уравнительный ток отсутствует, индикатор показывает напряжение на нулевом проводе, а в сети появляется перекос фаз. При этом напряжение между этими нулём и заземлением может достигать 220В.

Напряжение между фазой и нулевым и заземляющим проводниками

Напряжение между фазой и нулевым и заземляющим проводниками так же может быть различным:

  • Возле трансформаторной подстанции оно одинаковое. Из-за отсутствия падения напряжения в проводах оно равно выходному напряжению трансформатора;
  • На значительном удалении от подстанции разница в напряжении между фазой и нулевым и заземляющим проводниками определяется падением напряжения в нейтральном проводе. Поэтому разность потенциалов между фазой и нейтралью может быть как больше, так и меньше, чем между фазой и землёй.
  • При обрыве нейтрали напряжение между фазой и землёй составляет 220В, а между фазным проводом и нейтралью может достигать 380В. Это может привести к выходу из строя всех подключённых к сети электроприборов.
Совет! Для защиты бытовых приборов от перенапряжения желательно установить сразу после вводного автомата реле напряжения РН.

Почему ноль бьется током

При прикосновении к элементам, находящимся под напряжением, человек попадает под разность потенциалов между местом контакта и землёй, поэтому в обычных условиях ноль током ударить не может.

Наличие значительного потенциала на нейтральной клемме указывает на аварийную ситуацию. Существует несколько причин, почему на нулевом проводе появляется напряжение.

Обрыв нуля в квартире

Самой частой причиной того, что горит индикатор на нуле, является обрыв или плохой контакт на соединении в цепи нейтрального проводника. В том случае, если обрыв произошёл в однофазной электропроводке в квартире, напряжение на нулевую клемму попадает через включённые в розетку электроприборы на обоих контактах будет присутствовать одна и та же фаза.

Поэтому между ними будет отсутствовать разность потенциалов и при измерении напряжения вольтметром прибор покажет его отсутствие.

Такая ситуация чаще всего возникает при проведении ремонтных работ в помещении и не приводит к выходу из строя электроприборов. Кроме того, обрыв нуля может быть при выходе из строя автоматического выключателя.

Обрыв нейтрали в питающем кабеле

Намного хуже, если оборван нейтральный провод на участке между этажным щитком и местом разделения проводника PEN на РЕ и N или подключением нейтрали к питающему трансформатору. При этом по кабелю перестаёт протекать уравнительный ток и на этой клемме появляется напряжение.

Его величина, а так же напряжение в розетке зависит от равномерности распределения нагрузки по фазам и может достигать 220 и 380В соответственно. В этом случае необходимо немедленно отключить вводной автомат и обратиться в электроснабжающую компанию.

Замыкание фазы на нуль

Ещё одной причиной того, почему нулевой провод показывает напряжение

, может быть короткое замыкание между фазным и нулевым проводниками с последующим перегоранием нейтрали. Чаще всего это происходит в воздушных линиях электропередач. При этом на нулевой клемме в розетке появляется ещё одна фаза и напряжение в сети составит 380В.

Необходимые действия такие же, как и в предыдущей ситуации — выключить питание линии и обратиться в соответствующие службы.

Наведенное напряжение

Наведённое напряжение, или наводка, может появляться на отключённых проводах линии электропередач большой протяжённости, проложенных рядом с действующей линией высокого напряжения.

В этом случае провода являются как бы обмотками трансформатора и на отключённой линии может появиться напряжение, достаточное для получения электрического удара. Ток при этом будет небольшим, но достаточным для того, чтобы испытать неприятные ощущения. Поэтому перед работой на отключённых кабелях необходимо проверить, есть ли напряжение на нулевом проводе.

Перекос фаз

В частном секторе, сельской местности и в отдельностоящих зданиях, расположенных на значительном удалении от трансформаторной подстанции может быть ещё одна причина, почему ноль бьётся током. Это связано с падением напряжения в нейтральном проводнике при протекании по нему уравнительных токов.

Большинство воздушных линий было проложено ещё в советское время, когда самым мощным электроприбором был утюг, а на вводе в квартиру устанавливался предохранитель 5А.

Сейчас во многих домах имеются кондиционеры, электрические бойлеры, а обогрев частных домов осуществляется при помощи электроотопления. Это приводит к росту тока в проводах и, как следствие, уравнительных токов.

При этом в проводах происходит падение напряжения, в результате чего фазное напряжение может понизиться до 170-180В, а на нулевом проводнике оно может достигать 20-30В.

Устранить такую неисправность невозможно, для этого необходимо менять линии электропередач, поэтому в подобных ситуациях рекомендуется установить стабилизатор.

Важно! Пониженное напряжение так же может привести к выходу из строя электроприборов, особенно имеющих электродвигатели — холодильники, стиральные машины или кондиционеры.

Вывод

Существует ряд причин, почему на нулевом проводе появляется напряжение:

  • плохой контакт или обрыв нейтрали;
  • питающего кабеля недостаточного сечения;
  • неравномерного распределения нагрузки по фазам;
  • большой протяжённости линии и однофазной нагрузки;
  • короткого замыкания между фазным и нейтральным проводами.

В большинстве случаев такая ситуация является аварийной и требует немедленного отключения питания.

Похожие материалы на сайте:

Понравилась статья — поделись с друзьями!

 

Почему «ноль» бьется током? | ichip.ru

Появление фазы на нуле — довольно частое явление. Ничего хорошего в этом нет: такого быть не должно. В чем может быть проблема, что проверить в своей квартире или щитке? Как правило, тут ничего сложного. 

1 Обрыв нуля

Первая причина возникновения напряжения на нуле заключается в его обрыве. Если на пути от электрощитка к розетке произошел обрыв нуля, тогда при включенной нагрузке ноль в розетке может биться током. На рисунке ниже мы схематически показали, как из-за обрыва нулевого провода появляются две фазы в розетке (точнее та же фаза).

К примеру, мы нечаянно дрелью задели нулевой проводник, тем самым оборвав его на пути к розетке. Если в это время подключен какой-то потребитель (например, лампочка),  через него та же фаза придет на ноль в розетку, и при проверке индикаторной отверткой мы увидим на нуле напряжение.

Если такое произошло, нужно выключить автомат и проверить целостность нуля на всем промежутке от щита (или счетчика) до розетки, в которой нулевой контакт стал биться током.

2 Замыкание фазы на нуль

Вторая причина заключается в замыкании фазы на рабочий ноль в розетке. Произойти это может, если мы сверлили в стену или забивали в нее гвоздь, нечаянно оборвали ноль и закоротили ее на фазу (см рис.).

В этом случае по нулю пойдет напряжение даже в том случае, если нет ни одного подключенного потребителя. Это будет та же фаза, что приходит в розетку.
Вот, собственно, основные причины «бьющегося» нуля в розетке.

3 Наведенное напряжение

Такая ситуация может возникнуть на воздушной линии электропередач. Если по одним и тем же опорам идут линии в 10 кВ и 0,4 кВ, то в сырую погоду на нуле линии 0,4 кВ может возникнуть напряжение. Оно будет невелико, но при этом достаточно ощутимо.

Автору когда-то доводилось ремонтировать линию 0,4 кВ в сырую погоду без отключения линии 10 кВ. Расстояние между проводами было примерно 1,2 м. При этом и нулевой, и фазный провод линии 0,4 кВ ощутимо бились током, так что приходилось ремонтные работы выполнять в диэлектрических перчатках.

Интересное из мира электрики:

Теги электропроводка

Почему на нулевом проводе появляется напряжение

Как в обычной розетке может появиться две фазы

При выходе из строя электропроводки иногда случается, что индикатор показывает в розетке две фазы, а электроприборы при этом не работают.

Такая неисправность является достаточно распространенной, но начинающий или неопытный электрик может долго над этим ломать голову.

Рассмотрим такую ситуацию. Вы сверлите стену, подключив дрель в розетке. Отверстие почти уже досверлено, как вдруг на счетчика сработал автомат.

Вы включаете автомат, но в результате ни один электроприбор не работает. Проверяете розетку – в обоих гнездах индикатор сигнализирует о наличии фазы. Что это все значит?

Почему в розетке две фазы?

В квартиру через счетчик и автоматы заходит только одна фаза. В розетке должна быть одна фаза и ноль, а в приведенной выше ситуации индикатор свидетельствует о наличии в обоих гнездах розетки одной и той же фазы.

Наиболее вероятной причиной возникновения неисправности в данном случае является повреждение (разрыв) нулевого провода, идущего к розетке, в процессе сверления стены.

Наличие фазы там, где должен быть ноль обусловлено тем, что она проходит через нагрузку – постоянно включенную лампочку или какой-нибудь другой электроприбор.

Как правило, все нулевые провода в доме или квартире замыкаются на нулевую шину электрического щита. фаза будет появляться в розетке. Проверить это очень легко – нужно просто выключить все электроприборы, которые имеются в квартире.

Почему после отключения всех электроприборов от сети в розетке все равно наблюдается две фазы?

Итак, вы выключили из розеток все потребители электроэнергии, выключили все выключатели, а две фазы в розетке все равно присутствуют. Причина этого может заключаться в следующем.

В процессе сверления ноль был перебит сверлом и замкнут на фазу. Такая же ситуация может возникнуть при коротком замыкании, когда оплетка проводов плавится и проводники замыкаются.

В любом случае необходимо отключить все электроприборы, после чего обследовать место сверления и устранить неисправность.

Причина появления двух фаз в розетке может быть самой банальной – это может произойти просто по причине перегорания предохранителя (пробки) или выключения автомата защиты сети на электрощите.

Возможна ли ситуация, когда в розетке появляются действительно две разные фазы. Автор этой статьи однажды сталкивался и с этим. При этом сгорел телевизор, холодильник и несколько лампочек, так как напряжение между разными фазами действительно составляла 380, а не 220 вольт.

Причина заключалась в замыкании одной из трех фаз, идущих по воздушной линии электропередач, на нулевой провод (дело было в частном секторе).

Для того чтобы иметь достоверную информацию о наличии фазы и напряжении в сети вашей квартиры, одного фазоуказателя не достаточно. Для измерения напряжения лучше приобрести комбинированный прибор — мультиметр, измеряющий напряжение, силу тока и сопротивление.

Для домашних нужд подойдет самый дешевый.

В любом случае нельзя забывать о мерах безопасности, так как даже через нагрузку можно получить весьма ощутимый электрический удар.

Похожие материалы на сайте:

О распространенной неисправности проводки, когда в обоих разъемах розетки 220 В — фаза. О том, почему это происходит и чем опасно. От первого лица и немного неформально.

Есть одна характерная неисправность электропроводки, которая способна поставить в тупик начинающего или неопытного электрика. Чтобы пояснить, о чем речь, приведу рассказ одного из знакомых:

«Приходит ко мне в субботу соседка – бабушка одинокая. И просит разобраться с электрикой в квартире. Дескать, ничего не работает, а свет, вроде не отключали.

Ну, я, понятное дело, выхожу на площадку и проверяю автоматические выключатели. Все в порядке, все автоматы включены. Беру индикатор: фаза проходит. Захожу в квартиру к бабушке, проверяю первую же розетку. Первый разъем – «фаза». Проверяю второй разъем – тоже «фаза»! Что за бред!

Перехожу к другой розетке: та же картина. Две фазы. Откуда две фазы? Ну, положим, ладно, «ноль» может пропасть. Но откуда вторая фаза может появиться в розетке 220 вольт? В квартиру же только одна фаза заведена.

Ничего я не понял, извинился перед бабусей, и пришлось ей до понедельника ожидать электрика из ЖЭКа. А что там за беда была, я так и не понял.»

Сразу попрошу специалистов не смеяться над рассказом моего знакомого. Он совсем не глупый человек, просто не электрик по профессии. А я пролью немного света на темную историю, приключившуюся с ним.

Если бы у героя рассказа кроме индикаторной отвертки при себе был тестер, и он умел бы им пользоваться, то он смог бы сделать одно интересное наблюдение. Напряжение между двумя «фазами» в розетке отсутствовало. Это значит, что «фаза» была одноименная. Оно и понятно, иначе бы технике и светильникам в квартире не поздоровилось бы.

Но откуда же все-таки «фаза» попала на проводник, который прежде был нулевым? Она просто прошла через нагрузку, то есть, например, через лампочку коридорного светильника, который всегда включен, и… и все. Оказалось, что дальше ей идти просто некуда. Причина всей катавасии в том, что вводной нулевой рабочий проводник оборван. Он может просто отломиться на нулевой шине в щите, для алюминиевого провода это проще простого.

Когда такое происходит, ток в цепи, разумеется, пропадает. Нет тока – нет и падения напряжения. Поэтому «фаза» одна и та же, что на входе, что на выходе лампочки. Получается «фаза» в обоих проводах. Ну, а поскольку все нулевые провода квартиры имеют прямое электрическое соединение между собой на все той же нулевой шине квартирного щитка, то «заблудившаяся фаза» появляется и в розетке тоже. Достаточно было выключить все выключатели и отключить от розеток все приборы в квартире, чтобы аномалия исчезла.

Ну, а для исправления ситуации было достаточно зачистить и вновь подключить отвалившийся нулевой провод, предварительно, конечно, выключив вводной пакетник.

Здесь отдельно стоит заметить, что, хотя «фаза» на нулевом проводнике в подобных ситуациях и кажется призрачной и ненастоящей, опасность она может представлять собой вполне реальную. Даже через нагрузку вас может очень неплохо «дернуть», ведь человеку и надо-то всего около 7 миллиампер для очень неприятных ощущений.

Опять же для того, чтобы избежать поражения током в подобных ситуациях, нельзя производить защитное зануление корпусов электроприборов непосредственно в месте их подключения, без отдельной заземляющей линии и повторного заземления. Ведь если пренебречь этим запретом, то при обрыве нулевого провода можно получить фазу прямо на корпусе прибора, пусть и «не совсем настоящую».

Электрик Инфо — электротехника и электроника, домашняя автоматизация, статьи про устройство и ремонт домашней электропроводки, розетки и выключатели, провода и кабели, источники света, интересные факты и многое другое для электриков и домашних мастеров.

Информация и обучающие материалы для начинающих электриков.

Кейсы, примеры и технические решения, обзоры интересных электротехнических новинок.

Вся информация на сайте Электрик Инфо предоставлена в ознакомительных и познавательных целях. За применение этой информации администрация сайта ответственности не несет. Сайт может содержать материалы 12+

Перепечатка материалов сайта запрещена.

Две фазы в розетке. Причины. Что делать?

Здравствуйте, уважаемые читатели сайта sesaga.ru. Иногда в электрической проводке возникает интересная неисправность, которая приводит неопытного электрика или простого любителя в затруднительное положение. Такой неисправностью является возникновение второй фазы в розетке. которая там оказывается на месте нуля, что заставляет сильно призадуматься.

На самом же деле на обоих гнездах розетки присутствует одна и та же фаза, так как в однофазной электрической сети переменное напряжение 220В формируется одним фазным и одним нулевым проводниками, и второй фазы там быть не может. Но именно понимание этого и вызывает некоторое недоумение, когда на месте штатного нуля обнаруживается фаза.

Если бы в розетке действительно оказалась вторая фаза, то напряжение между обеими фазами составило бы 380В и все включенные бытовые приборы пришлось бы нести в ремонтную мастерскую.

Немного теории.

Не вдаваясь в технические подробности можно сказать так, что однофазная электрическая сеть это такой способ передачи электрического тока, когда к потребителю (нагрузке) переменный ток течет по одному проводу, а от потребителя возвращается по другому проводу.

Возьмем, к примеру, замкнутую электрическую цепь, состоящую из источника переменного напряжения, двух проводов и лампы накаливания. От источника напряжения к лампе ток течет по одному проводу и, пройдя через нить накала лампы, раскалив ее, ток возвращается к источнику напряжения по другому проводу. Так вот, провод, по которому ток течет к лампе, называют фазным или просто фазой (L ), а провод, по которому ток возвращается от лампы, называют нулевым или просто нулем (N ).

При разрыве, например, фазного провода, цепь размыкается, движение тока прекращается и лампа гаснет. При этом участок фазного провода от источника напряжения и до места разрыва будет находиться под током или фазным напряжением (фазой). Остальная же часть фазного и нулевого проводов будут обесточены.

При разрыве нулевого провода движение тока также прекратится, но теперь под фазным напряжением окажутся фазный провод, оба вывода лампы и часть нулевого провода, отходящего от цоколя лампы к месту разрыва.

Убедиться в наличии фазы на обоих выводах лампы и на нулевом проводе, отходящем от лампы, можно индикаторной отверткой. Но если на этих же выводах и проводе измерить напряжение вольтметром, то он ничего не покажет, так как в этой части цепи присутствует одна и та же фаза, которую относительно себя измерить нельзя.

Вывод: между одной и той же фазой никакого напряжения нет. Напряжение есть только между нулевым и фазным проводом.

Совет. Для определения наличия фазы и напряжения в электрической сети необходимо совместное использование индикаторной отвертки и вольтметра. В качестве вольтметра можно использовать мультиметр .

А теперь перейдем к практике и рассмотрим некоторые ситуации с нулем, которые можно самостоятельно определить и по возможности устранить без привлечения службы коммунэнерго:

1. Обрыв нуля во входном щитке дома или квартиры ;
2. Обрыв нуля на входе или внутри распределительной коробки ;
3. Замыкание нулевой жилы на фазную при механическом повреждении изоляции .

1. Обрыв нуля во входном щитке дома или квартиры.

Во входном щитке дома или квартиры нулевой провод может оборваться на вводном автоматическом выключателе или на нулевой шине. Как правило, ослабляется винтовое соединение, из-за чего теряется контакт между проводом и зажимом, или, в редких случаях, нулевой провод обламывается на зажиме и повисает в воздухе.

Также из-за плохого контакта между зажимом и проводом происходит нагрев и обгорание провода и, как следствие, между ними образуется большое переходное сопротивление в виде нагара. которое постепенно переходит в обрыв.

При отсутствии нуля все электрические приборы в доме работать не будут. Но если останется включенный в розетку хоть один бытовой прибор или останется включенный выключатель света, фаза через радиокомпоненты блока питания бытовой техники или нить накала лампы беспрепятственно пройдет на нулевую шину, а с шины на все нулевые провода электрической проводки. И как следствие, на обоих гнездах розеток и контактах выключателей будет присутствовать фаза. Это объясняется тем, что все нулевые провода электрической проводки соединяются вместе на нулевой шине.

Для определения такой неисправности достаточно отключить из розеток все бытовые приборы и отключить все выключатели света или выкрутить лампочки. После этих действий вторая фаза из розеток и контактов выключателей пропадет. Лечится неисправность восстановлением контактов на зажимах вводного автомата или на нулевой шине.

2. Обрыв нуля на входе или внутри распределительной коробки.

При обрыве нулевой жилы перед распределительной коробкой или в самой коробке проблема с нулем и работой электрооборудования будет именно в том помещении дома или квартиры, в которое распределяет напряжение данная коробка. При этом в соседних помещениях все будет работать в штатном режиме.

На рисунке выше видно, что перед левой распределительной коробкой произошел разрыв нулевой жилы провода, и фаза через нить накала лампы (нагрузку) попадает на розеточный ноль.

При поиске такой неисправности вскрывается проблемная коробка и находится скрутка общего нуля (она самая толстая в коробке). Жилы скрутки отрезаются, заново разделываются и опять скручиваются вместе.

Совет. Если провод медный, то скрутку желательно пропаять.

Когда ноль обрывается перед распределительной коробкой, как показано на верхнем рисунке, для поиска обрыва часто приходится вскрывать в стене штробу с этим проводом, чтобы найти место повреждения.

При поиске такой неисправности сначала в коробке находят скрутку с общим нулем и раскручивают на отдельные жилы. Затем каждая нулевая жила вызванивается до розеток и до потолка. Жила, которая не прозвонится, и будет являться входящим проводом в коробку.

Далее этот провод продергивается и вскрывается штукатурка в стене для поиска места повреждения провода. Однако такая неисправность относится к разряду трудновыполнимых, потому как ковырять стену мало кто берется – проще проложить новую трассу.

3. Замыкание нулевой жилы на фазную при механическом повреждении изоляции.

Может возникнуть ситуация, когда при сверлении отверстия, вкручивании самореза или забивании гвоздя в стену нарушается электрическая проводка. В довесок к этому, повреждение проводки сопровождается коротким замыканием, из-за которого провод повреждается полностью или частично. Лечится такая неисправность вскрытием места повреждения и восстановлением поврежденного участка провода.

Иногда при такой неисправности можно также наблюдать две фазы в розетке.
В момент замыкания происходит сварка фазной и нулевой жилы вместе, и поэтому фаза беспрепятственно попадает на нулевую жилу. Причем даже при выключенном из розеток электрооборудования и отключенных выключателей освещения фаза будет присутствовать на тех розетках и выключателях, на которые подается напряжение от этого провода.

Лечится неисправность восстановлением поврежденного участка проводки.

Если же остались вопросы, то в дополнение к статье посмотрите видеоролик, где также раскрыта тема обрыва нуля.

В этой статье мы рассмотрели только самые распространенные неисправности, возникающие в однофазной электрической сети при повреждении нулевой жилы провода. Теперь если у Вас в розетке появятся две фазы. Вы сможете легко определить и устранить подобную неисправность.
Удачи!

Понравилась статья — поделитесь с друзьями:

Виктор Филюк
22. Apr. 2016 в 21:11

В принципе написано просто, доступно и внятно.Кому интересно, то нужно вникнуть в суть. и все станет предельно ясно. Автору Спасибо. Статья получилась достаточно интересной, и. главное ,полезной. Хотелось, что-бы Вы сделали статью о том случае, где действительно при обрыве нуля на вводе. появляется две фазы в розетке. Такое случается в многоквартирных домах довольно часто. С таким описанием, какое делаете Вы, получится просто отличная статья.Буду ждать с нетерпением.СПАСИБО ВАМ — ТАК ДЕРЖАТЬ.

Сергей
23. Apr. 2016 в 09:07

Добрый день, Виктор!
Озадачили Вы меня своим комментарием.
Я считал, что в статье описал все основные варианты с проблемой нуля, которые можно устранить самостоятельно.
А какие варианты еще могут быть?
Спасибо.

Виктор Филюк
23. Apr. 2016 в 12:31

Сергей, Здравствуйте.Я имел в виду. тот вариант ,при котором появлятся напряжение 38о вольт в квартирах многоквартирного дома ( с трехфазним вводом в дом — то есть подключение происходит четырьмя проводами, а именно фаза А. фазаВ, фазаС, и ноль. Так вот, при обрыве нуля в соответствующем месте. в некоторых квартирах появляется напряжение на входе именно в 2 фазы, то-есть 380 вольт. Самому пришлось это видеть, и скажу ,что точно напряжение в розетке было 380в.Это была конечно авария.Паяльник нагрелся до рабочей температуры за 10 секунд.Хорошо. что не сгорел вовсе.А причиной всему был перегоревший нулевой провод. Так вот, я и хотел бы. что-бы Вы со своим умением очень просто, и доступно выкладывать материал ,(мне чесно очень понравилось) рассказали об таком случае.Думаю. это было-бы интересно не только мне, но другим читателям.Спасибо.

Сергей
23. Apr. 2016 в 20:56

Было такое недавно,решили вопрос подключив на другую линию.

Как в обычной розетке может появиться две фазы

При выходе из строя электропроводки иногда случается, что индикатор показывает в розетке две фазы, а электроприборы при этом не работают.

Такая неисправность является достаточно распространенной, но начинающий или неопытный электрик может долго над этим ломать голову.

Рассмотрим такую ситуацию. Вы сверлите стену, подключив дрель в розетке. Отверстие почти уже досверлено, как вдруг на счетчика сработал автомат.

Вы включаете автомат, но в результате ни один электроприбор не работает. Проверяете розетку – в обоих гнездах индикатор сигнализирует о наличии фазы. Что это все значит?

Почему в розетке две фазы?

В квартиру через счетчик и автоматы заходит только одна фаза. В розетке должна быть одна фаза и ноль, а в приведенной выше ситуации индикатор свидетельствует о наличии в обоих гнездах розетки одной и той же фазы.

Наиболее вероятной причиной возникновения неисправности в данном случае является повреждение (разрыв) нулевого провода, идущего к розетке, в процессе сверления стены.

Наличие фазы там, где должен быть ноль обусловлено тем, что она проходит через нагрузку – постоянно включенную лампочку или какой-нибудь другой электроприбор.

Как правило, все нулевые провода в доме или квартире замыкаются на нулевую шину электрического щита. фаза будет появляться в розетке. Проверить это очень легко – нужно просто выключить все электроприборы, которые имеются в квартире.

Почему после отключения всех электроприборов от сети в розетке все равно наблюдается две фазы?

Итак, вы выключили из розеток все потребители электроэнергии, выключили все выключатели, а две фазы в розетке все равно присутствуют. Причина этого может заключаться в следующем.

В процессе сверления ноль был перебит сверлом и замкнут на фазу. Такая же ситуация может возникнуть при коротком замыкании, когда оплетка проводов плавится и проводники замыкаются.

В любом случае необходимо отключить все электроприборы, после чего обследовать место сверления и устранить неисправность.

Причина появления двух фаз в розетке может быть самой банальной – это может произойти просто по причине перегорания предохранителя (пробки) или выключения автомата защиты сети на электрощите.

Возможна ли ситуация, когда в розетке появляются действительно две разные фазы. Автор этой статьи однажды сталкивался и с этим. При этом сгорел телевизор, холодильник и несколько лампочек, так как напряжение между разными фазами действительно составляла 380, а не 220 вольт.

Причина заключалась в замыкании одной из трех фаз, идущих по воздушной линии электропередач, на нулевой провод (дело было в частном секторе).

Для того чтобы иметь достоверную информацию о наличии фазы и напряжении в сети вашей квартиры, одного фазоуказателя не достаточно. Для измерения напряжения лучше приобрести комбинированный прибор — мультиметр, измеряющий напряжение, силу тока и сопротивление.

Для домашних нужд подойдет самый дешевый.

В любом случае нельзя забывать о мерах безопасности, так как даже через нагрузку можно получить весьма ощутимый электрический удар.

Похожие материалы на сайте:

О распространенной неисправности проводки, когда в обоих разъемах розетки 220 В — фаза. О том, почему это происходит и чем опасно. От первого лица и немного неформально.

Есть одна характерная неисправность электропроводки, которая способна поставить в тупик начинающего или неопытного электрика. Чтобы пояснить, о чем речь, приведу рассказ одного из знакомых:

«Приходит ко мне в субботу соседка – бабушка одинокая. И просит разобраться с электрикой в квартире. Дескать, ничего не работает, а свет, вроде не отключали.

Ну, я, понятное дело, выхожу на площадку и проверяю автоматические выключатели. Все в порядке, все автоматы включены. Беру индикатор: фаза проходит. Захожу в квартиру к бабушке, проверяю первую же розетку. Первый разъем – «фаза». Проверяю второй разъем – тоже «фаза»! Что за бред!

Перехожу к другой розетке: та же картина. Две фазы. Откуда две фазы? Ну, положим, ладно, «ноль» может пропасть. Но откуда вторая фаза может появиться в розетке 220 вольт? В квартиру же только одна фаза заведена.

Ничего я не понял, извинился перед бабусей, и пришлось ей до понедельника ожидать электрика из ЖЭКа. А что там за беда была, я так и не понял.»

Сразу попрошу специалистов не смеяться над рассказом моего знакомого. Он совсем не глупый человек, просто не электрик по профессии. А я пролью немного света на темную историю, приключившуюся с ним.

Если бы у героя рассказа кроме индикаторной отвертки при себе был тестер, и он умел бы им пользоваться, то он смог бы сделать одно интересное наблюдение. Напряжение между двумя «фазами» в розетке отсутствовало. Это значит, что «фаза» была одноименная. Оно и понятно, иначе бы технике и светильникам в квартире не поздоровилось бы.

Но откуда же все-таки «фаза» попала на проводник, который прежде был нулевым? Она просто прошла через нагрузку, то есть, например, через лампочку коридорного светильника, который всегда включен, и… и все. Оказалось, что дальше ей идти просто некуда. Причина всей катавасии в том, что вводной нулевой рабочий проводник оборван. Он может просто отломиться на нулевой шине в щите, для алюминиевого провода это проще простого.

Когда такое происходит, ток в цепи, разумеется, пропадает. Нет тока – нет и падения напряжения. Поэтому «фаза» одна и та же, что на входе, что на выходе лампочки. Получается «фаза» в обоих проводах. Ну, а поскольку все нулевые провода квартиры имеют прямое электрическое соединение между собой на все той же нулевой шине квартирного щитка, то «заблудившаяся фаза» появляется и в розетке тоже. Достаточно было выключить все выключатели и отключить от розеток все приборы в квартире, чтобы аномалия исчезла.

Ну, а для исправления ситуации было достаточно зачистить и вновь подключить отвалившийся нулевой провод, предварительно, конечно, выключив вводной пакетник.

Здесь отдельно стоит заметить, что, хотя «фаза» на нулевом проводнике в подобных ситуациях и кажется призрачной и ненастоящей, опасность она может представлять собой вполне реальную. Даже через нагрузку вас может очень неплохо «дернуть», ведь человеку и надо-то всего около 7 миллиампер для очень неприятных ощущений.

Опять же для того, чтобы избежать поражения током в подобных ситуациях, нельзя производить защитное зануление корпусов электроприборов непосредственно в месте их подключения, без отдельной заземляющей линии и повторного заземления. Ведь если пренебречь этим запретом, то при обрыве нулевого провода можно получить фазу прямо на корпусе прибора, пусть и «не совсем настоящую».

Электрик Инфо — электротехника и электроника, домашняя автоматизация, статьи про устройство и ремонт домашней электропроводки, розетки и выключатели, провода и кабели, источники света, интересные факты и многое другое для электриков и домашних мастеров.

Информация и обучающие материалы для начинающих электриков.

Кейсы, примеры и технические решения, обзоры интересных электротехнических новинок.

Вся информация на сайте Электрик Инфо предоставлена в ознакомительных и познавательных целях. За применение этой информации администрация сайта ответственности не несет. Сайт может содержать материалы 12+

Перепечатка материалов сайта запрещена.

Две фазы в розетке. Причины. Что делать?

Здравствуйте, уважаемые читатели сайта sesaga.ru. Иногда в электрической проводке возникает интересная неисправность, которая приводит неопытного электрика или простого любителя в затруднительное положение. Такой неисправностью является возникновение второй фазы в розетке. которая там оказывается на месте нуля, что заставляет сильно призадуматься.

На самом же деле на обоих гнездах розетки присутствует одна и та же фаза, так как в однофазной электрической сети переменное напряжение 220В формируется одним фазным и одним нулевым проводниками, и второй фазы там быть не может. Но именно понимание этого и вызывает некоторое недоумение, когда на месте штатного нуля обнаруживается фаза.

Если бы в розетке действительно оказалась вторая фаза, то напряжение между обеими фазами составило бы 380В и все включенные бытовые приборы пришлось бы нести в ремонтную мастерскую.

Немного теории.

Не вдаваясь в технические подробности можно сказать так, что однофазная электрическая сеть это такой способ передачи электрического тока, когда к потребителю (нагрузке) переменный ток течет по одному проводу, а от потребителя возвращается по другому проводу.

Возьмем, к примеру, замкнутую электрическую цепь, состоящую из источника переменного напряжения, двух проводов и лампы накаливания. От источника напряжения к лампе ток течет по одному проводу и, пройдя через нить накала лампы, раскалив ее, ток возвращается к источнику напряжения по другому проводу. Так вот, провод, по которому ток течет к лампе, называют фазным или просто фазой (L ), а провод, по которому ток возвращается от лампы, называют нулевым или просто нулем (N ).

При разрыве, например, фазного провода, цепь размыкается, движение тока прекращается и лампа гаснет. При этом участок фазного провода от источника напряжения и до места разрыва будет находиться под током или фазным напряжением (фазой). Остальная же часть фазного и нулевого проводов будут обесточены.

При разрыве нулевого провода движение тока также прекратится, но теперь под фазным напряжением окажутся фазный провод, оба вывода лампы и часть нулевого провода, отходящего от цоколя лампы к месту разрыва.

Убедиться в наличии фазы на обоих выводах лампы и на нулевом проводе, отходящем от лампы, можно индикаторной отверткой. Но если на этих же выводах и проводе измерить напряжение вольтметром, то он ничего не покажет, так как в этой части цепи присутствует одна и та же фаза, которую относительно себя измерить нельзя.

Вывод: между одной и той же фазой никакого напряжения нет. Напряжение есть только между нулевым и фазным проводом.

Совет. Для определения наличия фазы и напряжения в электрической сети необходимо совместное использование индикаторной отвертки и вольтметра. В качестве вольтметра можно использовать мультиметр .

А теперь перейдем к практике и рассмотрим некоторые ситуации с нулем, которые можно самостоятельно определить и по возможности устранить без привлечения службы коммунэнерго:

1. Обрыв нуля во входном щитке дома или квартиры ;
2. Обрыв нуля на входе или внутри распределительной коробки ;
3. Замыкание нулевой жилы на фазную при механическом повреждении изоляции .

1. Обрыв нуля во входном щитке дома или квартиры.

Во входном щитке дома или квартиры нулевой провод может оборваться на вводном автоматическом выключателе или на нулевой шине. Как правило, ослабляется винтовое соединение, из-за чего теряется контакт между проводом и зажимом, или, в редких случаях, нулевой провод обламывается на зажиме и повисает в воздухе.

Также из-за плохого контакта между зажимом и проводом происходит нагрев и обгорание провода и, как следствие, между ними образуется большое переходное сопротивление в виде нагара. которое постепенно переходит в обрыв.

При отсутствии нуля все электрические приборы в доме работать не будут. Но если останется включенный в розетку хоть один бытовой прибор или останется включенный выключатель света, фаза через радиокомпоненты блока питания бытовой техники или нить накала лампы беспрепятственно пройдет на нулевую шину, а с шины на все нулевые провода электрической проводки. И как следствие, на обоих гнездах розеток и контактах выключателей будет присутствовать фаза. Это объясняется тем, что все нулевые провода электрической проводки соединяются вместе на нулевой шине.

Для определения такой неисправности достаточно отключить из розеток все бытовые приборы и отключить все выключатели света или выкрутить лампочки. После этих действий вторая фаза из розеток и контактов выключателей пропадет. Лечится неисправность восстановлением контактов на зажимах вводного автомата или на нулевой шине.

2. Обрыв нуля на входе или внутри распределительной коробки.

При обрыве нулевой жилы перед распределительной коробкой или в самой коробке проблема с нулем и работой электрооборудования будет именно в том помещении дома или квартиры, в которое распределяет напряжение данная коробка. При этом в соседних помещениях все будет работать в штатном режиме.

На рисунке выше видно, что перед левой распределительной коробкой произошел разрыв нулевой жилы провода, и фаза через нить накала лампы (нагрузку) попадает на розеточный ноль.

При поиске такой неисправности вскрывается проблемная коробка и находится скрутка общего нуля (она самая толстая в коробке). Жилы скрутки отрезаются, заново разделываются и опять скручиваются вместе.

Совет. Если провод медный, то скрутку желательно пропаять.

Когда ноль обрывается перед распределительной коробкой, как показано на верхнем рисунке, для поиска обрыва часто приходится вскрывать в стене штробу с этим проводом, чтобы найти место повреждения.

При поиске такой неисправности сначала в коробке находят скрутку с общим нулем и раскручивают на отдельные жилы. Затем каждая нулевая жила вызванивается до розеток и до потолка. Жила, которая не прозвонится, и будет являться входящим проводом в коробку.

Далее этот провод продергивается и вскрывается штукатурка в стене для поиска места повреждения провода. Однако такая неисправность относится к разряду трудновыполнимых, потому как ковырять стену мало кто берется – проще проложить новую трассу.

3. Замыкание нулевой жилы на фазную при механическом повреждении изоляции.

Может возникнуть ситуация, когда при сверлении отверстия, вкручивании самореза или забивании гвоздя в стену нарушается электрическая проводка. В довесок к этому, повреждение проводки сопровождается коротким замыканием, из-за которого провод повреждается полностью или частично. Лечится такая неисправность вскрытием места повреждения и восстановлением поврежденного участка провода.

Иногда при такой неисправности можно также наблюдать две фазы в розетке.
В момент замыкания происходит сварка фазной и нулевой жилы вместе, и поэтому фаза беспрепятственно попадает на нулевую жилу. Причем даже при выключенном из розеток электрооборудования и отключенных выключателей освещения фаза будет присутствовать на тех розетках и выключателях, на которые подается напряжение от этого провода.

Лечится неисправность восстановлением поврежденного участка проводки.

Если же остались вопросы, то в дополнение к статье посмотрите видеоролик, где также раскрыта тема обрыва нуля.

В этой статье мы рассмотрели только самые распространенные неисправности, возникающие в однофазной электрической сети при повреждении нулевой жилы провода. Теперь если у Вас в розетке появятся две фазы. Вы сможете легко определить и устранить подобную неисправность.
Удачи!

Понравилась статья — поделитесь с друзьями:

Виктор Филюк
22. Apr. 2016 в 21:11

В принципе написано просто, доступно и внятно.Кому интересно, то нужно вникнуть в суть. и все станет предельно ясно. Автору Спасибо. Статья получилась достаточно интересной, и. главное ,полезной. Хотелось, что-бы Вы сделали статью о том случае, где действительно при обрыве нуля на вводе. появляется две фазы в розетке. Такое случается в многоквартирных домах довольно часто. С таким описанием, какое делаете Вы, получится просто отличная статья.Буду ждать с нетерпением.СПАСИБО ВАМ — ТАК ДЕРЖАТЬ.

Сергей
23. Apr. 2016 в 09:07

Добрый день, Виктор!
Озадачили Вы меня своим комментарием.
Я считал, что в статье описал все основные варианты с проблемой нуля, которые можно устранить самостоятельно.
А какие варианты еще могут быть?
Спасибо.

Виктор Филюк
23. Apr. 2016 в 12:31

Сергей, Здравствуйте.Я имел в виду. тот вариант ,при котором появлятся напряжение 38о вольт в квартирах многоквартирного дома ( с трехфазним вводом в дом — то есть подключение происходит четырьмя проводами, а именно фаза А. фазаВ, фазаС, и ноль. Так вот, при обрыве нуля в соответствующем месте. в некоторых квартирах появляется напряжение на входе именно в 2 фазы, то-есть 380 вольт. Самому пришлось это видеть, и скажу ,что точно напряжение в розетке было 380в.Это была конечно авария.Паяльник нагрелся до рабочей температуры за 10 секунд.Хорошо. что не сгорел вовсе.А причиной всему был перегоревший нулевой провод. Так вот, я и хотел бы. что-бы Вы со своим умением очень просто, и доступно выкладывать материал ,(мне чесно очень понравилось) рассказали об таком случае.Думаю. это было-бы интересно не только мне, но другим читателям.Спасибо.

Сергей
23. Apr. 2016 в 20:56

Было такое недавно,решили вопрос подключив на другую линию.

Т.к. вы неавторизованы на сайте. Войти.

Т.к. тема является архивной.

наверное проводка без заземления.
кетайская отвертка фонит и часто действительное выдает за не настоящее.
для более точного определения фазы на проводнике используют более качественные пробники или же имеют достаточный опыт определения по свечению диода отвертки фаза или наводка.

если же есть имеется фаза на нулевом проводе, то неправильное расключение проводки или дом брежневка, там так сделано было. и по этому при отключеном рубильнике есть потенциал на нулевом проводнике. ¶

Что делать, если на нуле напряжение и как такое возможно — рассказываю простыми словами | Электрика для всех

Напряжение может появиться там, где его совсем не ожидаешь — например на нулевом проводе: отчего такое случается и как с этим бороться — я расскажу простыми словами — это полезно, так что читайте дальше!

Ноль или нейтраль — что это такое

Ноль или, говоря более правильно, «нейтраль» это провод, соединённый с нейтральной точкой обмоток трансформатора на подстанции. У этого трансформатора три обмотки, соединённых одним концом в общей точке — это и есть нейтраль.

По правилам, нейтраль заземляется, поэтому, если дотронуться до неё рукой находясь на подстанции, вы ничего не почувствуете — напряжение будет на противоположных концах обмоток трансформатора. Но увы — между заземлённой на подстанции нейтралью и нашими розетками находятся сотни метров и километры проводов, скруток и другого «непотребства», поэтому бывает так, что и ноль бьётся током.

Как понять, есть ли напряжение на нуле

Если вы хотите проверить, есть ли на вашем нулевом проводе, в квартире или доме, напряжение, можно просто взять индикаторную отвёртку и поочерёдно вставить её в оба отверстия розетки. При исправной электрике, отвёртка будет светиться в одном отверстии и не будет в другом — это другое и есть ноль.

Но если свечение возникает и там и там, значит проводка у вас или в подъезде дома, или на воздушной линии, если дом у вас частный — не в порядке. Как так получается?

Откуда напруга — от скруток, вестимо

Дело в том, что по нулевому проводу течёт ток — до того места, где этот ноль соединяется на шине с нулями от двух других фаз. Мы знаем, что ток, текущий по проводу вызывает падение напряжения, которое пропорционально сопротивлению провода: чем сопротивление выше, тем больше напряжение на «ноле» относительно земли. Давайте посчитаем.

Медный провод на полтора квадрата имеет сопротивление 0,015 Ом на один метр. Если между вашей розеткой и шиной в этажном щитке 20 метров, то сопротивление будет составлять 0,015 х 20 = 0,3 Ома, а падение напряжения при максимальной нагрузке 16 Ампер — 0,3 х 16 = 4,8 Вольта, вполне терпимо. Получается, нужно сделать хорошую медную проводку и на нуле не будет напряжения? Увы, тут в игру вступает проводка в подъезде.

Общий нулевой проводник в стояке в норме не содержит в себе ток — он уравнивается по фазам (это сложная тема, для отдельной статьи). Но если мощность на фазах неодинаковая, например одна квартира потребляет 5 кВт, а в двух других никого временно нет, то по нулю будет идти уравнивающий ток.

А теперь представьте, что нулевой провод в подвале присоединён к заземляющей шине ржавыми болтами, которых не касалась рука электрика уже лет 10. Сопротивление такого соединения может составлять, например 1-2 Ом. При токе на нуле в 50 Ампер (это общий уравнивающий ток со всех квартир), напряжение на нуле в этажном щитке получится 50-100 Вольт. Плюсуйте сюда падение напряжения в вашей проводке и получится цифра 70-150 Вольт, вполне способная огорошить вас электроударом.

Что делать с напряжением на нуле?

Увы, сами вы вряд ли сможете довести ситуацию до идеала. Это задача ЖЭКа и управляющей компании — нужно перетряхивать стояк, чинить электрику в подвале, а для частного дома — менять провода воздушной линии. Это серьёзные затраты, и хитрым бизнесменам бывает проще игнорировать ваши жалобы и даже платить штрафы, чем вкладываться в серьёзный и дорогой ремонт.

Поэтому, помимо жалоб и заявок в Добродел, можно временно принять, что «ноль» на самом деле не ноль, а такой же опасный провод, как фаза. Не расслабляйтесь при замене лампочек в светильниках, а при ремонте отключайте оба провода — и фазу и ноль, и всё будет хорошо.

Спасибо, что дочитали — ставьте лайк, делитесь статьёй с друзьями и оставайтесь на канале «Электрика для всех»!

Фаза на нулевом проводе — Всё о электрике

Сразу две фазы в розетке. Как такое может быть?

При нормальном состоянии электропроводки в розетке один контакт имеет 220 Вольт, а второй находится не под напряжением. Это в идеале. Иногда индикатор может показывать в розетке две фазы одновременно.

Начинающему электрику или любителю подобная ситуация может показаться абсурдной, но это реальность. При некоторых нарушениях наблюдается именно такая картина.

В жилые дома подается однофазный ток напряжением 230 вольт. По этой схеме получается, что две фазы в розетке появиться не могут. В старых строениях проводка выполнена из двухжильных кабелей. По одной линии (фаза) ток идет к потребителю, а по другой (ноль) – возвращается.

При подобной схеме причины появления двух фаз в штепсельном разъеме могут быть разными. В новых домах есть заземление, которое может стать причиной аварий только при неквалифицированном вмешательстве в электросхему жилища.

Обрыв ноля на входе

Если во входящем кабеле провод ноля отсоединится, в квартире погаснет свет, остановятся электроприборы. Проверка индикатором покажет на каждом контакте розетки присутствие фазы. Встает классический вопрос: «Кто виноват и что делать?».

При отсутствии ноля ток ищет свободную линию. Если лампа включена, она не горит, но фаза по нити накаливания проходит на нулевой провод, далее – на шину, а с нее на ноль линии розеток. Фаза может прийти и по прибору, подключенному к любому штепсельному разъему в квартире.
Теперь на каждом гнезде розетки есть фаза. Индикатор испускает световой сигнал при прикосновении к каждому контакту.

Легко прояснить ситуацию помогает мультиметр. Если замерить разность напряжения между двумя фазами, прибор покажет нулевое значение. Понятно, что это одна и та же фаза. Достаточно выключить светильники и отсоединить от розеток приборы и вторая фаза в розетке пропадет, ведь линии подачи напряжения и ноля не имеют иных точек соединения.

Нужно восстановить входящую линию ноля. Возможно, провод просто отсоединился от шины. С этой проблемой можно справиться даже в домашних условиях. Обесточьте квартиру, разомкнув вход фазы, проверьте отсутствие напряжения. Вставьте нулевой повод в клемму и затяните винт.

Обрыв нулевого провода в распределительной коробке или в стене

Иногда обрыв ноля происходит в распаечной коробке. В этом случае часть проводки квартиры функционирует в штатном режиме, а вот линия, подключенная к этой коробке неработоспособна. Достаточно найти, где обломился или отгорел ноль, и восстановить соединение.

Бывает, что две фазы в штепсельном разъеме появляются из-за повреждения нулевого провода внутри стены. Причина неисправности – халатность при сверлении отверстий. Если вы, пробив провод, нарушили изоляцию, нулевая жила сварится с фазной. В этом случае также будет наблюдаться две фазы в розетке. Требуется проложить новую линию или вскрыть место повреждения и отремонтировать проводку.

Автомат защиты на нулевой линии

В старых домах защитные устройства установлены и на фазе, и на ноле (сейчас подобная схема подключения запрещена). При возникновении перегрузки возможна ситуация, когда сработает автомат защиты только на нулевой линии. Последствия те же самые, как если бы ноль отломился или отгорел.

Наведенные токи

Все работает нормально, но индикатор обнаруживает напряжение на каждом контакте штепсельного разъема. Более того: прибор показывает две фазы в розетке при отключенном электропитании всей квартиры. Эта совсем нереальная ситуация может произойти, если рядом с вашим жильем проходит высоковольтная линия электропередач.

Информация, размещенная на этой странице, носит исключительно ознакомительный характер. Мы рекомендуем поручить проведение всех электромонтажных работ профессиональном электрикам.

Это так называемая наводка или, говоря более грамотно, наведенное напряжение. Здесь даже опытные электрики могут растеряться. Работы в этом случае сопряжены с большим риском поражения электротоком, поэтому выполнять их должны только профессионалы.

Как в обычной розетке может появиться две фазы?

Нештатная ситуация, при которой в обоих гнездах розетки индикатор напряжения показывает наличие фазы, на практике встречается довольно часто. При этом попытки измерить разность потенциалов между контактами штепсельного разъема не дадут результата, индикатор вольтметра покажет ноль. Соответственно, подключение электроприбора также будет бесполезным. Почему возникают две фазы в розетке и как устранить эту неисправность, Вы узнаете из материалов сегодняшней статьи.

Краткий экскурс в теорию

Сегодня мы не будем сильно углубляться в теоретические основы электротехники, а попытаемся кратко объяснить суть проблемы. Тем, кто желает более детально ознакомиться с данным вопросом, рекомендуем прочитать на нашем сайте серию статей по физике переменного электрического тока.

Штатная установка выключателя.

Приведем в качестве примера фрагмент бытовой электросети, где организовано подключение электролампы освещения и штепсельного разъема (розетки).

Фрагмент бытовой сети с подключением лампы и розетки

Обозначения:

Как известно, в однофазных цепях электрический ток (Ì) течет от фазы к нулю. В приведенном выше рисунке выключатель SW находится в разомкнутом положении, следовательно, лампа будет обесточена, в чем можно убедиться, измерив напряжение U2. При этом на штепсельном разъеме и части сети до выключателя (отмечено красным) будет оставаться рабочий потенциал U1, соответствующий фазному напряжению. Это штатный режим работы для данной схемы, где выключатель размыкает фазный провод.

Обратим внимание, если производить замеры индикатором напряжения, то он покажет наличие фазы на одном из контактов штепсельного разъема и ее отсутствие на обоих контактах патрона лампы.

Установка выключателя на ноль

Теперь посмотрим, что произойдет, если поменять фазу и ноль местами, или, что чаще встречается на практике, установить выключатель на ноль, а не фазный провод.

Выключатель установлен неправильно

Внешне такое изменение никак не проявит себя. Лампа будет так же, как и в предыдущем примере включаться и выключаться, а на контактах розетки присутствовать разность потенциалов. Но, возникают определенные нюансы, которые проявляются в виде наличия напряжения на контактах патрона и части нулевой линии между лампой и выключателем. В чем несложно убедиться, используя электрический пробник.

Такой вариант подключения несет в себе потенциальную угрозу поражения электротоком при попытке замены или ремонта светильника.

Характерно, что измерения вольтметром наличия напряжения между контактами патрона осветительного прибора не принесут результатов. Прибор покажет «0», поскольку на контактах будет один уровень потенциала фазы.

Резюмируя итоги главы можно констатировать, что неправильное подключение контактов выключателей в распределительной коробке не оказывает значимого влияния на работу электрических приборов, подключенных к розетке. Помимо этого мы выяснили о необходимости комбинированного применения измерительных приборов (вольтметра и пробника).

О наличии второй фазы в розетке

Индикация фазы на двух контактах штепсельной розетки в большинстве случаев не является показателем наличия двух фаз. Чтобы убедиться в этом, достаточно измерить напряжение между контактами мультиметром. Хотя нельзя полностью исключать возможность появления межфазного напряжения, это характерный признак обрыва магистрального нуля с последующим смещением фаз. Предлагаем рассмотреть все возможные варианты, для начала перечислим их:

  • Обрыв нуля на входе.
  • Нарушение электрического контакта одной из линий с нулевой шиной в распределительной коробке.
  • Обрыв нуля с последующим замыканием на фазу.
  • Повреждение магистральной нулевой жилы с последующим смещением фаз.

Характерно, что первых трех вариантах, если подключить прибор к проблемной розетке, то он просто не будет функционировать. Что касается последнего случая, то при смещении фаз велика вероятность выхода из строя всех подключенных к сети электроустройств. С чем это связано, будет рассказано далее.

Обрыв нуля на входе

Одна из характерных неисправностей старой электропроводки – отгорание нуля на нулевой шине (см. А на рис. 3) или пропадание электрического контакта на вводном автомате (В). В большинстве случаев причина кроется в применении алюминиевых проводов, пластичность которых вызывает ослабление контактных соединений. Нарушение качества электрического контакты приводит к повышению его переходного сопротивления, в результате происходит перегорание провода. Заметим, что проблемы могут возникнуть и с медным кабелем, если не обеспечить надежность соединения проводов.

Рисунок 3. Характерные проблемные места: нулевая шина (А) и вводный автомат (В)

При повреждении нулевого провода на вводном автоматическом выключателе в квартире не будет работать не один из бытовых потребителей. Но при этом, если к сети будет подключен хоть один электроприбор, на всех нулевых проводниках установится фазный потенциал (см. А на рис. 4).

Рисунок 4. Примеры обрывов нуля

Если в данной ситуации попробовать измерить напряжение пробником на контактах любой розетки, то покажет наличие фазы на каждом из них. Подключив вольтметр, вы убедитесь, что разность потенциалов между штепсельными разъемами равна нулю.

Чтобы убедиться, что имеет место описанная неисправность, следует отключить от бытовой электросети всех потребителей, включая осветительные и обогревательные приборы. Как только Вы это сделаете, в розетках будет индуцироваться только одна фаза.

Устранить неисправность можно восстановив электрический контакт на входе. Для этого проверьте зажимы АВ и надежность соединений с нулевой шиной.

Повреждение нуля на одной из линий

Пример такой неисправности продемонстрирован на рисунке 4 (В). Как видите, в данном случае наблюдается возникновение обрыва нуля на линии, соединяющей распределительные коробки. Это говорит о том, что на части розеток и других электроточек сохраняться фазные напряжения, а значит, подключенные к ним приборы будут нормально функционировать. Проблемы возникнут только в той линии, где нет контакта с нулевым проводом.

Поиск обрыва может вызвать немалые сложности. Мы рекомендуем для начала вскрыть распределительные коробки, между которыми произошел разрыв нуля и проверить качество электрического контакта соединения нулевых проводов. Проще всего это сделать, срезав старое соединение и организовав новое. Напоминаем, что соединение метод холодной скрутки недопустимо.

Если в результате этих манипуляций удалось восстановить соединение, считайте что Вам повезло, поскольку в противном случае потребуется вскрытие штробы или проложение новой трассы.

Ноль оборван и замкнут на фазу

Такая неисправность наиболее характерна для отдельно стоящей группы розеток, на практике такие случаи довольно редки, но, тем не менее, они встречаются. Речь идет о повреждении проводника нейтрали и последующем ее замыкании на фазу.

Обрыв и замыкание нуля с фазой

Чаще всего подобная неисправность проявляется после попытки просверлить стену или подготовить отверстие под «быстрый монтаж». Если при такой операции случайно попасть на трассу скрытой проводки, то велика вероятность ее повреждения. Чаще всего это заканчивается коротким замыканием, но может возникнуть и частичное КЗ, при котором происходит обрыв нейтрали с последующим электрическим контактом с фазой, так как это показано на рисунке 5.

В результате на контактах блока розеток лампочка индикатора начнет светиться, показывая наличие фазы. Попытки произвести замер напряжения между нулем и фазой ни к чему не приведут, поскольку на них будет одноименная фаза.

Чтобы восстановить работоспособность розетки, потребуется устранить неисправность проводки на данном участке.

Для предотвращения описанной ситуации следует отказать от сверления стен в местах, где проходят (или могут проходить) нулевые и фазные жилы проводов. Как правило трасса скрытой проводки направлена вертикально от того мест, где расположена розетка.

Смещение фаз

Данный случай самый тяжелый, поскольку в розетках будут присутствовать 2 фазы (вплоть до 380 вольт). Такая авария может быть вызвана проблемой с магистральным нулем на линии между объектом и трансформаторной подстанцией. Самостоятельно решить такую проблему не представляется возможным, необходимо сообщить об аварии поставщику электроэнергии.

Перенапряжение сети, вызванное перекосом фаз, может повредить бытовые приборы, поскольку они рассчитаны на питание от 220 вольт. Единственное решение для данного варианта – профилактическое, оно заключается в установке в щиток автоматов (перед электрическим счетчиком) специального устройства – реле напряжения.

Подведение итогов

При неисправностях проводки вызванных локальным исчезновением нуля в электрическом щите или на внутренних линиях проводки неисправность может быть устранена самостоятельно. Наличие напряжения на неисправной розетке следует проверять индикатором, если его лампочка горит на каждом контакте, то, скорее всего, пропал ноль. Чтобы убедиться в этом, достаточно измерить напряжение между нулем и фазой штепсельного разъема.

В старых системах TN-C, где для разводки используются только 2 провода, отсутствует заземление проводки, поэтому подобные аварии могут представлять серьезную угрозу для жизни.

Причины появления двух фаз в розетке и способы устранения проблемы

Неисправность, при которой обнаруживается сразу две фазы в розетке – нередкое явление в бытовой практике. Найти его причину по силам только опытному специалисту, разбирающемуся в электрике. Однако при грамотном подходе возможно самостоятельное решение возникшей проблемы. Для этого потребуется ознакомиться с принципами формирования питающего напряжения, которое по электрическим сетям поступает к каждому потребителю.

Нормальное распределение потенциалов в розетках

Прежде чем разобраться в том, почему в розетках сразу две фазы, следует знать, что в квартиру по линии электропроводки подводится пара питающих жил, одна из которых называется фазной, а вторая – нулевой. Потенциал 220 Вольт действует только на одной из клемм розеток, а на второй он равен нулю. Убедиться в этом можно, если воспользоваться обычной индикаторной отверткой.

Наличие двух потенциалов (фазного и нулевого) – обязательное условие работы любой системы электроснабжения.

Если в розетке нет одной фазы или по какой-то причине пропал ноль – не удастся получить и разности их значений (220-0=220 Вольт), называемой напряжением. Поэтому если пропал ноль в розетках, и как его найти неизвестно – перед началом поисков следует ознакомиться с принципом формирования потенциалов. Намного сложнее ситуация, когда вместо нуля на второй клемме появляется еще одна фаза. Для устранения этой неисправности потребуется разобраться в причинах ее возникновения.

Причины появления двух фаз

Появление фазы сразу на двух проводах может быть объяснено следующим стечением обстоятельств:

  • Обрыв нулевого провода во входном щитке дома или квартиры.
  • Его повреждение на вводе или внутри распределительной коробки.
  • Нарушение контакта в подсоединении «нуля» только в одной розетке.
  • Замыкание фазного провода на нулевую жилу из-за повреждения изоляции.

Чтобы разобраться, почему индикатор показывает фазу сразу на обоих проводах, причину, вызывавшую каждое из этих явлений, потребуется рассмотреть в отдельности.

Еслт нет нуля в розетке, прежде всего следует найти место его пропадания (обрыва). Возможный вариант – повреждение кабеля на вводе в дом или квартиру, в результате чего «ноль» пропадет во всех розетках, установленных внутри данного здания и в отдельных помещениях. Помимо этого, контакт может нарушиться в любом месте электрической цепи, в том числе – на вводе или внутри распределительной коробки, что приведет к неисправности лишь нескольких розеток.

Второй случай касается тех из них, что подключены в пределах комнаты именно к этому распределительному узлу (то есть примерно половины), а во всех остальных установочных изделиях нормально работающий «ноль» сохранится.

При наличии неисправности только на вводе в конкретную розетку исчезновение нуля и появление второй фазы будет наблюдаться лишь в ней. Чтобы рассматриваемая ситуация сформировалась окончательно – напряжение попало на оборванный нулевой контакт – потребуется, чтобы оголившийся фазный провод случайно замкнулся на него.

Разновидностью последнего случая является вариант, когда нулевая жила не оборвана, а фазный провод с поврежденной изоляцией замкнулся на земляной контакт. Это также приведет к появлению в данной розетке сразу двух высоких потенциалов.

Возможные последствия и опасность появления двух фаз

Когда в той или иной розетке сразу 2 фазы, необходимо в первую очередь побеспокоиться о том, чем это грозит пользующимся ей людям. Такое положение недопустимо по следующим причинам:

  • Разность потенциалов между клеммами розетки будет равна 220-220=0 Вольт.
  • Пропадет напряжение, подключенные бытовые приборы не будут работать.
  • Появляется опасность, объясняемая пропаданием цепи защитного заземления, которое в старых домах действует через земляную жилу (из-за отсутствия местного контура).

В данном случае о какой-либо защите говорить вообще не приходится, последствия могут оказаться неприемлемыми для людей. Несведущий электрик, считая, что касается нулевого провода (в изоляции синего цвета) может оказаться под высоким напряжением. Поэтому в нормативной документации предписывается при разборке установочных изделий обязательно проверять посредством индикатора отсутствие фазы на обеих клеммах.

В рассматриваемой ситуации также перестанут работать все или только подключенные к данной распредкоробке выключатели света. Объясняется это тем, что на подводимом к люстре нулевом проводе, связанном с соответствующим контактом розетки, появится фазный потенциал, а разность напряжений станет равной нулю.

Рекомендации по устранению неисправности

Если на клеммах розеток старого образца действуют два высоких потенциала (2 фазы и заземленный ноль – для новых установочных изделий с тремя контактами) – такая ситуация требует срочного вмешательства. Поскольку она связана с обрывом нулевой жилы, сначала нужно отыскать точное место повреждения, используя методы визуального контроля плюс необходимый инструмент. Для этого потребуется предпринять действия, зависящие от характера повреждения.

Когда проблема касается всех розеток жилых помещений подъезда или определенной квартиры, следует вызвать электрика, который имеет доступ к распределительному шкафу и вводному автомату. Если неисправность наблюдается только в квартире (на одной/нескольких распределительных коробках или в отдельной розетке), возможен вариант самостоятельного ее устранения. Для этого потребуется проделать следующие операции:

  1. Отключить вводный автомат, расположенный в общем коридоре и подающий напряжение на всю квартиру.
  2. Обследовать распредкоробку, на входе которой или внутри предположительно скрывается неисправность.

Чтобы из розеток исчезла вторая фаза и люстра снова начала гореть, потребуется также изолировать поврежденную фазную жилу от уже восстановленного «нуля».

Лишь при условии выполнения соответствующих инструкций можно устранить обнаруженную неисправность, наблюдаемую во всех, половине или только в одной розетке. Появление двух фаз, независимо от общего количества задействованных розеток, чаще всего возникает при нарушении правил пользования бытовыми электротехническими изделиями.

{SOURCE}

Фаза и ноль. работа и измерения. особенности

Виды повреждений

На стояке подъезда

Для начала в общих чертах рассмотрим, что собой представляет электросеть городского многоэтажного дома. Источником питания в данном случае является трансформаторная подстанция, от которой протянуты провода к главному распределительному щиту постройки. Напряжение в главном щитке трехфазное, то есть сеть 380 Вольт. Отсюда уже выводятся группы проводов на каждую квартиру. В самих квартирах сеть уже однофазная – 220 В. Если произойдет обрыв общего нуля на стояке подъезда, это может стать причиной выхода бытовой техники из строя. Приводит это к неравенству — в трехфазной схеме питания произойдет перекос фаз и вместо симметричной нагрузки образуется несимметричная, проходящая в четырехпроводной цепи.

Простыми словами можно это объяснить так: от главного щитка в подъезде к каждой отдельной квартире подается одинаковое напряжение – 220 В. Если произойдет обрыв нулевого провода, может получиться так, что к одной квартире поступит 300 Вольт, а к другой 170 (как пример). Результат – перенапряжение и «недонапряжение» станет причиной выхода электроприборов из строя. Обычно если происходит повреждение нуля, ломается техника, имеющая двигатель: стиральная машина, холодильник, кондиционер и т.д. Помимо этого может произойти пожар, что еще хуже.

Что собой представляет перекос фаз

Внутри жилого помещения

Совсем противоположная ситуация может произойти при обрыве нуля в однофазной сети 220 Вольт, то есть внутри Вашей квартиры, частного дома либо на даче. В этом случае последствием может стать поражение человека электрическим током. Происходит это потому, что в розетке у Вас появиться одноименная фаза на обоих зажимах. Сейчас мы расскажем, чем вызвано появление так называемой второй фазы.

От Вашего вводного щитка ток проходит по фазному проводу, а так как большинство потребителей электроэнергии постоянно подключены к сети (та же люстра), при обрыве напряжение перейдет от фазы к нулю. Результат – в двух отверстиях розетки будет присутствовать электрический ток. Но это еще не самое страшное, т.к. главная опасность заключается в том, что удар током может произойти от любой техники. Причина этому – неправильная система заземления сети в квартире либо доме. Если Вы подключите «землю» в распределительном щитке к нулевой шине (чего делать нельзя), при прикосновении к заземленному корпусу бытовой техники Вас сразу же ударит током. Последствия, как Вы понимаете, могут быть плачевными. Сразу же предоставляем к Вашему вниманию правильный вариант защиты от обрыва нуля в доме — сеть с системой заземления TN-S:

Подведя итог по поводу последствий обрыва нуля в трехфазной и однофазной сети, следует отметить следующее: при повреждении нулевого провода на стояке подъезда опасность распространиться на бытовую технику, а при повреждении рабочего нуля в самой квартире угроза распространится на Вас.

Увидеть, что может произойти, если оборвется нулевая жила, Вы можете на данном видео:

Наглядный обзор неисправности

Чем грозит обрыв фазного или нулевого провода

С течением времени в розетках, переходных коробках, выключателях можно наблюдать обрыв провода. Это может произойти вследствие некачественного соединения, когда нагрузка была больше допустимой. Когда пропадает ноль или фаза в квартире, электротехнические устройства и приборы прекращают работу.


Определение фазы на участке квартиры

Эта же ситуация будет ставить в известность потребителя, если произойдет обрыв провода на одном из участков питания до вводного или распределительного щита, тогда не только одна, но и все квартиры, питающиеся от оборванной фазы, останутся без электричества, но другие потребители, питающиеся от других фаз, будут его получать. Когда обрывается ноль, обесточиваются все квартиры в доме.

Определение фазы и нуля в помещении

Домашним инструментом для определения фазы служит отвертка-индикатор, которая в своем устройстве имеет:

  • токопроводящий наконечник по форме отвертки, который вставляют в одно из отверстий розетки для нахождения фазы;
  • резистор ограничения тока;
  • светодиод или неоновую лампочку, назначение которых — показать, что при их горении это и есть фаза;
  • с другой стороны пробника металлический контакт для пальца руки, которым создается цепь для протекания безопасного тока.


Определение фазы тока

Когда в проверяемом контакте есть свечение светодиода, то это и есть фаза. Значит, второй контакт — ноль. Можно также для определения использовать тестер или другой измерительный прибор напряжения, когда выполнено подключение защитного провода. В этом случае между фазой и рабочим нулем будет показываться 220 В, а между защитой и нулем стрелка не будет отклоняться.

Поиск неисправностей

Работоспособность схемы питания квартиры изображена простым определением. Наличие фазы или рабочего нуля — не совсем правильный подход, так как кроме этого надо соблюсти еще ряд мероприятий — учесть положение включающих устройств, наличие в розетках потребителей с нагревательными элементами, но выключенных кнопкой на приборе.


Нахождение электричества

По этой причине поиск обрыва сети надо проводить при пустых розетках и выключенных устройствах включения (выключателях), кроме тех случаев, когда обрыв может находиться на линии от выключателя до светильника. Типовая схема разводки электропитания в квартире — это когда на розетки приходит фаза и рабочий ноль, а на осветительный прибор через выключатель — фаза. Ноль на светильник обычно подается напрямую от распределительной коробки, что представлено на фото ниже:

Определение сопротивления петли «ноль/земля»

Замер величины сопротивления петли является залогом бесперебойной работы электрических приборов. Время от времени это следует проводить, поскольку основные причины поломки техники кроются в замыканиях и перегрузках электросетей. Замер сопротивления позволит исключить подобные неприятности.

Что представляет собой эта петля

Данная петля является контуром, возникающим в результате соединения «нуля» с заземленной нейтралью. Как раз именно замыкание этой цепи и будет образовывать данную петлю.

Главная задача по измерению сопротивления данной петли — надежная защита оборудования и кабелей от перегрузок во время эксплуатации. Высокое сопротивление станет причиной чрезмерного повышения температуры электролинии, и как следствие, возникновения пожара. Значительное влияние на качество электропроводки оказывает влажность воздуха, температура, время суток — все это сказывается на состоянии электросети.

Назначение фазы и нуля

Чтобы полностью понять, что же именно подразумевает словосочетание “фаза и ноль в электрике” обратимся к аналогии. Электрический ток наиболее удобно сравнивать с водой, а токонесущие провода – с трубами.

Итак, представим следующее. У нас имеется одна труба, по которой горячая вода из резервуара поступает в большую кастрюлю. Также имеется вторая труба, которая по мере наполнения кастрюли сбрасывает излишек поступающей горячей воды обратно в резервуар. Теперь расшифровка: первая труба – фаза, кастрюля – полезная нагрузка, вторая труба – ноль. Ток по фазе приходит к нагрузке, а по нулевому проводу уходит обратно. Вот и все.

Теперь представим что произойдет, если из-за неисправности второй трубы горячая вода из кастрюли не будет уходить обратно в резервуар. В этом случае кастрюля очень быстро наполнится, а кипяток начнет с нее выливаться и может нас ошпарить.

Чтобы этого избежать, подводим к кастрюле третью трубу. Эта труба будет играть роль аварийного выхода для поступающей воды. Тогда, если вторая труба, отводящая воду отказывается работать, то излишек воды будет уходить через третью трубу. А третья труба идет в землю в специально выкопанный для этого котлован. Вот именно этот пример нам наглядно демонстрирует заземление.

Выше мы описали работу тока в однофазной сети, а также назначение фазы и нуля. В трехфазной происходит то же самое, только ток течет одновременно по трем проводам, а возвращается по четвертому.

Из примера становится понятно, что нельзя путать фазу с нулем, а также нельзя их соединять между собой. Для удобства все кабеля имеют свою цветовую маркировку, благодаря которой можно без всяких приборов определить принадлежность провода к фазе или нулю.

Внимание! Для пущей уверенности лучше перед началом работы все-таки прозвонить кабель, несмотря на цветовую маркировку. Очень часто в силу собственного незнания, неопытные электрики вообще не заморачиваются по поводу цвета проводов, и именно из-за этого существует опасность

Тут хорошо работает правило: доверяй, но проверяй!

По поводу цветовой маркировки. В электричестве приняты следующие обозначения: фазный провод коричневого, черного либо белого цвета, нулевой – голубого или синего, а провод заземления имеет желто-зеленый цвет.

Имейте ввиду, цвета не всегда могут быть такими: не так давно мне в трехфазной сети попались три красных провода (фаза), а нулевой провод был черного цвета.

Про электричество. Что такое Фаза и Ноль

В электроэнергетике не так-то и много разновидностей подключённых проводов. Различают провода питания и защитные провода.

В этой небольшой статье мы не будем углубляться в дебри, трёхфазные и пятифазные сети. Всё рассмотрим буквально на пальцах, на том, что нас окружает и что есть в наличии во всех магазинах и в каждом электрифицированном жилище. Проще говоря, возьмём и вскроем обычную розетку.

Начнём с времён минувших и отдадим предпочтение той электрической розетке, которая была изготовлена и установлена лет так 10, а то и 15 назад. Мы видим, что розетка подключена всего к двум проводам.

Один из этих проводов обязательно должен иметь голубоватую или синюю окраску. Именно так определяется рабочий нулевой проводник. По нему не идёт ток от источника — он направляется от Вас к источнику. Он вполне безобидный, и если схватиться за него, не прикасаясь ко второму, то ничего страшного и ужасного не случится.

А вот второй провод, окраска которого может быть любой, за исключением синей, голубой, жёлто-зелёной в полоску и чёрной, более коварный и злостный. А что вы хотите, ведь он всегда под напряжением, так как именно к нему поступают свеженькие электроны и заряженные частицы от трансформаторов и генераторов электростанций и подстанций. Называется он фазный проводник.

Дотронувшись до этого провода, вы можете получить хорошенький разряд, вплоть до смертельного исхода. И это не шутки, так как любой ток, напряжение которого свыше 50 Вольт убивает человека за несколько секунд, а у нас в бытовых розетках не менее 220 Вольт переменного тока.

Наличие напряжения на фазных проводниках можно определить специальными индикаторами. Они выполнены в виде обыкновенных отвёрток с крестовиной или лопаткой.

Рукоятка такой отвёртки состоит из полупрозрачного пластика, внутри которой встроена лампочка — диод. Верхняя часть рукоятки — металлическая.

Дотроньтесь рабочей частью индикатора до проводника, а большим пальцем руки — до металлической части на рукоятке. Если встроенный диод загорелся, значит трогать этот провод не стоит — он сейчас под напряжением.

Заметьте, что нулевой проводник никогда не вызовет горение диода, так как на нём по определению нет напряжения при условии, что он не соприкасается с проводником, по которому протекает ток.

А что же мы увидим, если вскроем розетку современного производства, приобщённую к евро стандартам. В такой розетке три провода. Два нам уже знакомы. Фазный проводник, который всегда под напряжением и может иметь любую окраску. Рабочий нулевой проводник, как правило имеет синюю или голубоватую окраску. И третий проводник, состоящий из жёлтой и зелёной окраски вдоль всего провода, который принято называть защитным нулевым проводником. Причём обычно фазный проводник расположен справа в розетках или сверху в выключателях. А нулевой защитный проводник располагается слева в розетках или снизу в выключателях.

Если по фазному проводу поступает напряжение к розетки, а по нулевому уходит от розетки к источнику, то зачем же нужен защитный?

Если подключаемое в розетку оборудование полностью исправно и проводка в надлежащем состоянии, то защитный нулевой проводник не принимает никакого участия и попросту бездействует.

Но представим, что произошло короткое замыкание, перенапряжение или замыкание на части оборудования, нормально не находящиеся под напряжением. То есть ток попал на те части, которые обычно не находятся под его действием, и поэтому изначально не соединены с проводниками Фаза и Рабочий ноль. Вы попросту ощутите удар электрического того на себе, и в худшем случае — можете погибнуть в следствии остановки сердечной мышцы.

Тут и нужен тот самый защитный нулевой проводник. Он заберёт этот ток и перенаправит его к источнику или в землю, в зависимости от того, как выполнена проводка в конкретном помещении. И даже Если Вы случайно прикоснётесь к оборудованию, не нормально находящемуся под напряжением, вы не ощутите сильного удара, ведь ток тоже не дурак — он ищет лёгкие пути, то есть выбирает ту дорогу, где наименьшее сопротивление. Сопротивление человеческого тела составляет приблизительно 1000 Ом, в то время как сопротивление защитного нулевого проводника всего около 0,1-0,2 Ом.

Пользуйтесь современными технологиями и стандартами, чтобы быть в безопасности в любой момент при любых обстоятельствах. Помните, что Ваша безопасность зависит от принимаемых Вами действий и мероприятий по её обеспечению!

Цвета и обозначение проводов

Для того, чтобы без приборов найти фазный, нулевой и заземляющий провод электропроводки, они, в соответствии с правилам ПУЭ покрываются изоляцией разный цветов.

На фотографии представлена цветовая маркировка электрического кабеля для однофазной электропроводки напряжением переменного тока 220 В.

На этой фотографии представлена цветовая маркировка электрического кабеля для трехфазной электропроводки напряжением переменного тока 380 В.

По представленным схемам в России начали маркировать провода с 2011 года. В СССР цветовая маркировка была другая, что необходимо учитывать при поиске фазы и нуля при подключении установочных электроизделий к старой электропроводке.

Таблица цветовой маркировки проводов до и после 2011 года

Период действия ПУЭПервая фазаL1Вторая фазаL2Третья фазаL3Нулевойпровод, NЗаземляющийпровод, РЕ
До 1 января 2011 г.желтыйзеленыйкрасныйголубой желто — зеленый (черный)
После 1 января 2011 г.коричневыйчерныйсерыйсветло-синий желто — зеленый

В таблице представлена цветовая маркировка проводов электрической проводки, принятая в СССР и России.
В некоторых других странах цветовая маркировка отличается, за исключением желто — зеленого провода. Международного стандарта пока нет.

Обозначение L1, L2 и L3, обозначают не один и тот же фазный провод. Напряжение между этими проводами составляет 380 В. Между любым из фазных и нулевым проводом напряжение составляет 220 В, оно и подается в электропроводку дома или квартиры.

В чем отличие проводов N и PE в электропроводке

По современным требованиям ПУЭ в квартиру кроме фазного и нулевого проводов, должен подводиться еще и заземляющий провод желто — зеленого.

Нулевой N и заземляющий провода PE подключаются к одной заземленной шине щитка в подъезде дома. Но функцию выполняют разную. Нулевой провод предназначен работы электропроводки, а заземляющий – для защиты человека от поражения электрическим током и подсоединяется к корпусам электроприборов через третий контакт электрической вилки. Если произойдет пробой изоляции и фаза попадет на корпус электроприбора, то весь ток потечет через заземляющий провод, перегорят плавкие вставки предохранителей или сработает автомат защиты, и человек не пострадает.

В случае, если электропроводка проложена в помещении кабелем без цветовой маркировки то определить, где нулевой, а где заземляющий проводник приборами невозможно, так как сопротивление между проводами составляет сотые доли Ома. Единственной подсказкой может послужить тот факт, что нулевой провод заводится в электрический счетчик, а заземляющий проходит мимо счетчика.

Внимание! Прикосновение к оголенным участкам схемы подключенной к электрической сети может привести к поражению электрическим током

Что представляет собой фаза и ноль в трехфазной сети

Как мы знаем из школьного курса физики – электрический ток движется только в замкнутом контуре. То есть по одному проводу он должен прийти, а по другому уйти. Чтобы не морочить голову, сразу даем определение:

  • – Фаза – проводник, по которому к потребителю приходит ток;
  • – Ноль – проводник, по которому ток уходит от потребителя.

Для правильной работы электрическому току всегда необходим замкнутый контур. Ток течет в одном направлении

Фазный провод – провод, по которому ток приходит к любой нагрузке, будь-то электрочайник или холодильник, неважно. Ноль – провод, по которому ток возвращается

Кроме этого нулевой провод выполняет еще одну полезную функцию – выравнивает фазное напряжение. Заземление – провод, на котором нет напряжения. Он служит резервным проводом для того, чтобы в случае утечки тока защитить человека от удара.

Теперь возьмем трансформатор, который питает дом. Трансформатор – устройство, повышающее, либо понижающее напряжение в сети. Чтобы конечный потребитель получил питание, к обмоткам низкого напряжения подключаются четыре провода. К выводам трансформаторной обмотки подключаются три провода (это и есть наши фазы), а ноль (еще называют “общий”) берется из точки соединения трансформаторных обмоток.

Теперь рассмотрим еще два термина и сразу дадим им определения:

  1. 1. Линейное напряжение – напряжение, возникающее между фазными проводами в трехфазной электросети. Номинальное значение линейного напряжения – 380 вольт.
  2. 2. Фазное напряжение – напряжение между одним фазным проводом и нулем. Номинальное значение такого напряжения – 220 вольт.

Существуют системы, в которых заземление присоединяют именно к нулевому проводу. Такая система носит название “глухозаземленная нейтраль”.

Делается это так: обмотки в трансформаторе соединяются по типу “звезда” (есть еще и соединение “треугольник”, а такде различные сочетания этих соединений, но об этом в другой раз). После этого нейтраль заземляют. Тогда наш ноль одновременно служит и заземлением (совмещенный нейтральный проводник, PEN).

Такой тип заземления практиковали в советское время при постройке жилых домов. Проще говоря, в таких домах электрощиток зануляют. Однако такой метод достаточно опасен, поскольку в некоторых случаях ток может пройти через ноль, возникнет отличный от нуля потенциал, результат варьируется от удара током до небольшого опасного фейерверка.

В наше время к жилым домам также подводят три фазы, но помимо трех фазных проводов, между трансформатором и домом также присутствуют отдельно нулевой провод отдельно провод заземления. На каждой подстанции имеется контур заземления: в случае утечки тока в электросистеме жилого дома – ток возвращается к заземлению на подстанции.

При монтаже такой сети необходимо учитывать, что в электрощите должны присутствовать отдельные шины для фаз, отдельная шина для нуля, отдельная шина для заземления

Внимание, при монтаже заземления не забудьте о том, что шина заземления должна быть соединена металлически с корпусом электрощитка

На самом деле, аварийные ситуации, так или иначе связанные с отсутствием заземления или с совмещением нуля и заземления, в трехфазных сетях происходят периодически, поэтому заземление действительно необходимо. Немного отвлечемся и посмотрим, какие ситуации наиболее часто распространены.

Для правильной эксплуатации вся нагрузка должна быть равномерно распределена между фазами. Такое бывает редко, да и неизвестно, что именно будет подключать потребитель. Если возникает ситуация, при которой нагрузка на одну из фаз увеличивается, на другую – уменьшается, а к третьей – вообще непонятно что подключают, тогда происходит смещение нейтрали.

Из-за этого смещения между нулевым проводом и проводом заземления появляется разность потенциалов. Если же нулевой провод имеет сечение, которого недостаточно, то пресловутая разность потенциалов увеличивается.

А когда фазы теряют связь с нейтральным проводником, получаются две следующих ситуации:

  1. 1. Если фазы нагружены до предела, то напряжение падает до нуля;
  2. 2. Если фазы наоборот не нагружены, то напряжение растет до 380.

Как видите, такое напряжение явно уничтожит бытовую технику, рассчитанную на сети в 220 вольт. Помимо этого, в таких ситуациях металлические корпуса электрооборудования тоже будут под напряжением.

Отсюда следует, что использование раздельного варианта нуля и заземления более предпочтительно, так как позволяет обойтись без таких аварийных случаев.

Зануление в квартире

Электричество в современной жизни — источник создания комфортной жизни для человека. Вокруг нас постоянно работают электрические помощники бытового предназначения, это может быть кухонный комбайн или моющий пылесос, телевизор или ПК, по этой причине понимать, как получают питание эти приборы и устройства просто необходимо.

Важным аспектом безопасной эксплуатации бытовой техники является наличие в квартире рабочего нуля (N) и защитного провода (РЕ). Ноль нужен для создания нагрузки с использованием фазы, а защитный провод — зануления. В качестве защиты может применяться провод, имеющий соединение с ТП по изолированной схеме или глухо заземленной нейтралью — эффективный заземленный ноль.

Значение защитного провода можно рассмотреть на таком примере, как работа нагревательного устройства (бойлера). Вариант, который можно часто встретить, — это когда вследствие нагрузки и длительной работы элемент нагревания ТЭН делает пробой, иными словами, корпус лопается, и нить спирали касается воды. В этом случае вода — токопроводящая жидкость — касается корпуса обогревателя, но когда произойдет включение бойлера от терморегулятора, автомат защиты сработает от КЗ между корпусом и фазой, так как он был занулен защитным проводом, и человек не попадет под воздействие электротока. Не существует выражения «нулевая фаза», это противоположные понятия.

Нулевой проводник (нейтраль)

Для нулевого проводника или нейтрали традиционно используется синий цвет. Подключение в распределительном щитке осуществляется через специальную нулевую шину, обозначаемую символом N. К этой шине подключаются все провода, имеющие синий цвет.

Сама шина соединяется с вводом через счетчик электроэнергии. В некоторых случаях соединение может осуществляться напрямую, без каких-либо дополнительных автоматических устройств.

В распределительной коробке все нейтральные провода синего цвета соединяются вместе и не принимают участия в коммутации. Исключение составляет провод, идущий от выключателя. Подключение синих проводов к розеткам выполняется с помощью специального нулевого контакта, обозначаемого буквой N. Данная маркировка проставляется на оборотной стороне каждой розетки.

Принцип работы сети переменного тока

Сеть переменного тока делится на две составляющие: рабочая фаза и пустая фаза. Рабочую фазу иногда просто называют фазой. Пустую называют нулевой фазой или просто — ноль. Она служит для создания непрерывной электрической сети при подключении приборов, а также для заземления сети. А на фазу подается рабочее напряжение.

При включении электроприбора не важно, какая фаза рабочая, а какая пустая. Но при монтаже электропроводки и подключении ее в общедомовую сеть это нужно знать и учитывать

Дело в том, что установка электропроводки делается или с помощью двухжильного кабеля, или трехжильного. В двухжильном одна жила – рабочая фаза, вторая – ноль. В трехжильном рабочее напряжение делится на две жилы. Получается две рабочих фазы. Третья жила – пустая, ноль. Общедомовая сеть выполняется из трехжильного кабеля. Общая схема электропроводки в частном доме или квартире, в основном, тоже делается из трехжильного провода. Поэтому перед подключением квартирной проводки нужно определить рабочие и нулевую фазы.

Домашняя электропроводка: находим ноль и фазу

Установить в домашних условиях, где какой провод находится, можно разными способами. Мы разберем только самые распространенные и доступные практически любому человеку: с использованием обычной электрической лампочки, индикаторной отвертки и тестера (мультиметра).

Про цветовую маркировку фазных, нулевых и заземляющих проводов на видео:

Проверка с помощью электролампы

Перед тем, как приступить к такой проверке, нужно собрать с использованием лампочки устройство для проверки. Для этого ее следует вкрутить в подходящий по диаметру патрон, после чего закрепить на клемме провода, сняв изоляцию с их концов стриппером или обычным ножом. Затем проводники лампы нужно поочередно прикладывать к тестируемым жилам. Когда лампа загорится, это будет означать, что вы нашли фазный провод. Если проверяется кабель на две жилы, уже понятно, что вторая будет нулевой.

Проверка индикаторной отверткой

Хорошим помощником в работе, связанной с электрическим монтажом, является индикаторная отвертка. В основе работы этого недорогого инструмента лежит принцип протекания сквозь корпус индикатора емкостного тока. В ее состав входят следующие основные элементы:

  • Металлический наконечник, имеющий форму плоской отвертки, который прикладывается к проводам для проверки.
  • Неоновая лампочка, загорающаяся при прохождении сквозь нее тока и сигнализирующая таким образом о фазовом потенциале.
  • Резистор для ограничения величины электрического тока, который защищает устройство от сгорания под воздействием мощного потока электронов.
  • Контактная площадка, позволяющая при прикосновении к ней создать цепь.

Профессиональные электромонтеры используют в своей работе более дорогие светодиодные индикаторы с двумя встроенными элементами питания, но простенькое устройство китайского производства вполне доступно любому человеку и должно иметься у каждого хозяина дома.

Если вы проверяете наличие напряжения на проводе с помощью этого прибора при дневном свете, то придется приглядываться в ходе работы более внимательно, так как свечение сигнальной лампы будет плохо заметно.

При касании жалом отвертки фазного контакта сигнализатор загорается. При этом ни на защитном нуле, ни на заземлении светиться он не должен, в противном случае можно сделать вывод, что в схеме подключения имеются неполадки.

Пользуясь этим индикатором, будьте внимательны, чтобы нечаянно не коснуться рукой провода под напряжением.

Про определение фазы наглядно на видео:

Проверка мультиметром

Для определения фазы с помощью домашнего тестера прибор нужно поставить в режим вольтметра и измерить попарно величину напряжения между контактами. Между фазой и любым другим проводом этот показатель должен составлять 220 В, а прикладывание щупов к заземлению и защитному нулю должно показывать отсутствие напряжения.

ФАЗА, НОЛЬ, ЗАЗЕМЛЕНИЕ

Давайте для начала разберемся что такое фаза и что такое ноль, а потом посмотрим как их найти.

В промышленных масштабах у нас производится трехфазный переменный ток. а в быту мы используем, как правило, однофазный. Это достигается за счет подключения нашей проводки к одному из трех фазовых проводов (рисунок 1), причем, какая именно фаза приходит в квартиру нам, для дальнейшего рассмотрения материала, глубоко безразлично. Поскольку этот пример очень схематичен, следует кратко рассмотреть физический смысл такого подключения (рисунок 2).

Электрический ток возникает при наличии замкнутой электрической цепи, которая состоит из обмотки (Lт) трансформатора подстанции (1), соединительной линии (2), электропроводки нашей квартиры (3). (Здесь обозначение фазы L, нуля — N).

Еще момент — чтобы по этой цепи протекал ток, в квартире должен быть включен хотя бы один потребитель электроэнергии Rн. В противном случае тока не будет, но НАПРЯЖЕНИЕ на фазе останется.

Один из концов обмотки Lт на подстанции заземлен, то есть имеет электрический контакт с грунтом (Змл). Тот провод, который идет от этой точки является нулевым, другой — фазовым.

Отсюда следует еще один очевидный практический вывод: напряжение между «нулем» и «землей» будет близко к нулевому значению (определяется сопротивлением заземления), а «земля» — «фаза», в нашем случае 220 Вольт.

Кроме того, если гипотетически ( На практике так делать нельзя! ) заземлить нулевой провод в квартире, отключив его от подстанции (рис.3), напряжение «фаза» — «ноль» у нас будет те же 220 Вольт.

Что такое фаза и ноль разобрались. Давайте поговорим про заземление. Физический смысл его, думаю уже ясен, поэтому предлагаю взглянуть на это с практической точки зрения.

При возникновении по каким- либо причинам электрического контакта между фазой и токопроводящим (металлическим, например) корпусом электроприбора, на последнем появляется напряжение.

В описанной выше ситуации защиту от поражения электрическим током может также обеспечить устройство защитного отключения.

При касании этого корпуса может возникнуть, протекающий через тело электрический ток. Это обусловлено наличием электрического контакта между телом и «землей» (рис.4). Чем меньше сопротивление этого контакта (влажный или металлический пол, непосредственный контакт строительной конструкции с естественными заземлителями (батареи отопления, металлические водопроводные трубы) тем большая опасность Вам грозит.

Решение подобной проблемы состоит в заземлении корпуса (рисунок 5), при этом опасный ток «уйдет» по цепи заземления.

Конструктивно реализация этого способа защиты от поражения электрическим током для квартир, офисных помещений состоит в прокладке отдельного заземляющего проводника РЕ (рис.6), который впоследствии заземляется тем или иным образом.

Как это делается — тема для отдельного разговора, поскольку существуют различные варианты со своими достоинствами, недостатками, но для дальнейшего понимания этого материала они не принципиальны, поскольку предлагаю рассмотреть нескольку сугубо практических вопросов.

Выводы Правила заземления

Радикальные методы решения проблем заземления:

  1. Используйте модули ввода.вывода только с гальванической развязкой
  2. Не применяйте длинных проводов от аналоговых датчиков
  3. Располагайте модули ввода в непосредственной близости к датчику, а сигнал передавайте в цифровой форме
  4. Используйте датчики с цифровым интерфейсом
  5. На открытой местности и при больших дистанциях используйте оптический кабель вместо медного
  6. Используйте только дифференциальные (не одиночные) входы модулей аналогового ввода

Еще советы:

  1. Используйте в пределах вашей системы автоматизации отдельную землю из медной шины, соединив её с шиной защитного заземления здания только в одной точке
  2. Аналоговую, цифровую и силовую землю системы соединяйте только в одной точке. Если этого сделать невозможно, используйте медную шину с большой площадью поперечного сечения для уменьшения сопротивления между разными точками подключения земель
  3. Следите, чтобы при монтаже системы заземления случайно не образовался замкнутый контур
  4. Не используйте по возможности землю как уровень отсчёта напряжения при передаче сигнала
  5. Если провод заземления не может быть коротким или если по конструктивным соображениям необходимо заземлить две части гальванически связанной системы в разных точках, то эти системы нужно разделить с помощью гальванической развязки
  6. Цепи, изолированные гальванически, нужно заземлять, чтобы избежать накопления статических зарядов
  7. Экспериментируйте и пользуйтесь приборами для оценки качества заземления. Допущенные ошибки не видны сразу
  8. Пытайтесь идентифицировать источник и приёмник помех, затем нарисуйте эквивалентную схему цепи передачи помехи с учётом паразитных ёмкостей и индуктивностей
  9. Пытайтесь выделить самую мощную помеху и в первую очередь защищайтесь от неё
  10. Цепи с существенно различающейся мощностью следует заземлять группами, в каждой группе – блоки с примерно равной мощностью
  11. Заземляющие проводники с большим током должны проходить отдельно от чувствительных проводников с малым измерительным сигналом
  12. Провод заземления должен быть по возможности прямым и коротким
  13. Не делайте полосу пропускания приёмника сигнала шире, чем это надо из соображений точности измерений
  14. Используйте экранированные кабели, экран заземляйте в одной точке со стороны источника сигнала на частотах ниже 1 МГц и в нескольких точках – на более высоких частотах
  15. Для особо чувствительных измерений используйте «плавающий» батарейный источник питания
  16. Самая «грязная» земля – от сетевого блока питания. Не совмещайте её с аналоговой землёй.
  17. Экраны должны быть изолированными, чтобы не появилось случайных замкнутых контуров, а также электрического контакта между экраном и землёй

последствия и защита / Публикации / Элек.ру

В трехрисфазных электросетях, широко распространенных в России, чаще всего нагрузка подключается «звездой», то есть с применением нулевого провода. В такой цепи напряжение между фазой и «нулем» составляет около 220В, а между фазами — около 380В.

Плохой контакт, или ошибка электрика, могут привести к опасной ситуации, которую называют «обрыв нулевого провода». Надо понимать, что собственно обрыв провода не вызывает поломки нагрузки, но вызывает изменение напряжения в сети. Так, если на щитке, входящем в дом, пропал контакт на нулевом проводе, и подключена равномерная нагрузка (например, трехфазный двигатель) то все будет нормально работать. Но на практике, нагрузки на фазах отличаются по номиналу. И чем больше это отличие, тем больше перекос фаз.

Дело в том, что номинал нулевого провода в доме (подъезде, цеху, или другом участке сети) сместится от фактического нуля в сторону наибольшей нагрузки (наименьшего сопротивления). Если на фазе А лампочка 40Вт, на фазе В компьютер 200 Вт, а к фазе С подключается обогреватель 3000 Вт, то напряжение в локальной сети на фазе С приблизится к нулю, на фазе А будет почти 380 В, а на фазе В — поменьше, например, 350 В. Понятно, что и для лампочки, и для компьютера это приведет к поломке. Пониженное напряжение на фазе также может привести к плачевным последствиям для подключенной нагрузки. Трехфазная нагрузка (например, электродвигатель насоса) подключенная к сети с таким перекосом, также будет повреждена.

Если обрыв нулевого провода произошел на более раннем участке сети, например, в щитовой большого цеха или поселка, то номинал подключенных нагрузок будет отличаться не так сильно, и потенциал на «нуле» будет «плавать» до тех пор, пока не приведет к поломкам и аварийному отключению сети. Кроме выхода из строя подключенных приборов, есть еще опасные моменты. Повышенное напряжение может привести к пожару! Не пытайтесь проверять сеть подключением другой нагрузки. Работайте с электрооборудованием, соблюдая правила безопасности. Помните, что на нулевом проводе может быть опасное для жизни напряжение до 220 В!

Если вы живете в квартире и пользуетесь подключением к однофазной сети, то не следует считать, что обрыв нулевого провода вас не коснется. Ваша однофазная сеть — это всего лишь участок одной из фаз большой трехфазной сети. Например, в подъезд входит три фазы, а на этаже они распределяются по квартирам. Таким образом, при обрыве нулевого провода, в некоторых квартирах будет заниженное напряжение, а в других — завышенное, что приведет, как минимум, к массовым поломкам электроприборов.

Как защититься от последствий обрыва нулевого провода? Нам необходимо отключить нагрузку при повышении напряжения между фазой и нулевым проводом (а также при понижении ниже установленного минимума). Для защиты трехфазных потребителей электроэнергии применяют трехфазные реле напряжения. Например, RN-03-02 (рис.1) отключит трехфазную нагрузку при помощи внешнего пускателя. Схема подключения на рис.2.

Рис.1. Реле напряжения RN-03-02 Рис.2. Схема подключения RN-03-02

Реле напряжения RN-03-30(рис.3) позволяет подключить нагрузку без применения пускателя, так как имеет три встроенных исполнительных реле.

Рис.3. Реле напряжения RN-03-30

Если у вас однофазная сеть или вы подключаете к трехфазной сети только однофазные нагрузки, то можно применить однофазное реле RN-01-02, RN-01-30, RN-01-63 (см.рисунки ниже). Эти реле отличаются максимальной мощностью подключаемой нагрузки. В случае однофазных нагрузок, подключенных к трехфазной сети, понадобится три реле. Реле RN-01-02 рассчитано на ток нагрузки до 10А, более мощные нагрузки подключаются через пускатель (схема приведена на рис.7).

Рис.4. Реле напряжения RN-01-02 Рис.5. Реле напряжения RN-01-30
Рис.6. Реле напряжения RN-01-63 Рис.7. Схема подключения RN-01-02

Кроме повышенного или пониженного напряжения в сети, трехфазные нагрузки подвержены другим опасным аварийным факторам. Их необходимо защищать от склеивания фаз, нарушения порядка чередования фаз. От таких аварийных ситуаций защитят реле контроля фаз RKF-03-02, реле защиты электродвигателя RZD-03-02, RZD-03-30. Эти приборы обеспечит наиболее полную защиту трехфазных нагрузок. Подключаются к сети также, как и реле напряжения..

Релейные приборы защиты сети обеспечивают отключение потребителей электроэнергии при аварийном отклонении напряжения в сети и, тем самым, спасают подключенные электроприборы от поломки, а саму сеть от повреждения и возможного пожара. После устранения причины аварийного отключения, реле напряжения проверяет параметры напряжения в сети, и подключит нагрузки.

Источник: Ю. Н. Суша, ООО НПЦ «Истион-Здоровье»

electric — Почему я показываю 50 вольт между нейтралью и землей?

Если кто-то попытался обмануть старый GFI и устранил нейтраль и землю вместе от панели, то возвратный ток может активировать систему заземления и может даже отвести заземляющий провод в качестве более короткого пути. Кроме того, если кто-то сделал нейтральное заземление реверсом, система заземления забирает обратный ток, и все, что оголено, нагревается, я думаю, что какой-то ребенок погиб в реверсе заземления нейтрали в Австралии примерно на 230 В, когда он включил шланг и попал между двумя заземлениями. .

Склеивание всего (счетчиков воды, труб для смягчения воды, труб водонагревателя, соединение с газовой линией и в печи) выравнивает землю, вы получаете удар, когда есть разница. Также белый провод — ваш первый замыкающий и последний, который ломается, если вас ударили, нейтраль заберет ток обратно, и вы можете получить его только при ударе о землю (где нейтраль и земля встречаются на главной только панель), если есть ток, и вы попадаете между горячим проводом и землей или между двумя нейтральными проводами, возвращающими ток к панели, вы становитесь путем, и это намного хуже, чем просто получить удар от горячего провода, пока подключенные нейтрали забирают обратно большую часть возвращающегося тока, вы можете сильнее пострадать от белого, поскольку вы можете разделить нейтраль между двумя цепями на разных фазах, и если нет лампочек или чего-либо, принимающего ток в качестве нагрузки, вы получите все, 220 .440 поразит вас, 277 будет держать вас как магнит, 277 — это ножка 480, которая обычно используется в коммерческом освещении. У моего брата его застряли в коробке, а у 277-го он застрял, сжимая отвертку, ему пришлось выбросить лестницу, чтобы выбраться оттуда.

Также, если вам нужно повесить фонарь с неопознанными проводами, используйте тестер непрерывности к горячему в розетке, чтобы ваши провода оставались прямыми, вы же не хотите, чтобы большая резьбовая втулка патрона лампочки была подключена к горячему или если лампочка не горит, а переключатель включен, вы можете легко получить удар по земле, гораздо сложнее засунуть палец и ударить по горячему язычку (старые нелегальные калифорнийские 3 способа создают эту проблему, так как переключение меняет местами горячий и нейтральный провода вместо использования специально выделенных путешественников).Старая тканевая проводка может быть обманчива и должна быть проверена, иногда белая проволочная ткань грязная и выглядит черной, люди иногда меняют местами горячие и нейтральные провода, потому что белый тканевый провод более грязный, чем выцветший черный. Если вы подозреваете, что заземление нейтрали где-то еще, кроме самой главной панели, или нейтральное заземление наоборот, вы можете использовать зажимы усилителя вокруг металлических газовых и водяных линий, чтобы проверить, есть ли ток (.2a — это то, что они говорят, может быть смертельным, и может быть трудно определить, сколько фактически потребляет система, поскольку вода будет поглощать ток и действовать как нагрузка.Если есть показания силы тока с помощью зажимов вокруг водопроводных и газовых труб, это может быть от нейтрального заземления реверса (обнаружено такое, где на лампе с вытяжной цепью с розеткой они неправильно подключены к розетке) или текущее показание с помощью Амперные зажимы вокруг труб могут происходить из-за утечки напряжения, скажем, из-за подземной электропроводки, питания дома или плохой подземной проводки, питающей, скажем, уличный фонарь. Кроме того, нейтрали никогда не находятся на той же шине, что и провода заземления на вспомогательной панели, они должны располагаться на плавающей нейтральной перемычке, при использовании стандартной ванны панели в качестве вспомогательной панели вы должны удалить винт заземления с нейтральной шины.Таким образом, металлическая панель и основа нигде не соприкасаются с белыми, кроме основной панели.

Старые обманутые GFI — это проблема, которую нужно проверить в доме, если у вас есть показания напряжения на заземляющем проводе, когда можно было обмануть людей GFI без хорошего заземления, через перемычку от земли к нейтральной клемме на емкость.

electric — Почему я вижу напряжение на нейтральном проводе от моего трехфазного источника питания?

В трехфазных системах есть три «горячих» линии (L1, L2, L3).Часто также будет нейтраль (N) и земля (G). Нейтраль и земля должны быть соединены вместе на входе в сервисный центр). Все три линии расположены на расстоянии 120 градусов друг от друга. Нагрузки могут быть подключены по схеме звезды или треугольника. В жилых домах часто запитываются только две из трех фаз (и в разных домах будут разные пары фаз, чтобы сбалансировать их).

В конфигурации треугольником нагрузки подключаются между фазами (и нейтраль не требуется).Эта конфигурация характерна для больших двигателей и в промышленных установках. В некоторых конфигурациях треугольника клемма на вторичной обмотке трансформатора заземлена и обеспечивает нейтраль. Клемма заземления может быть либо одной из трех линий, либо центральным ответвлением на катушке между двумя линиями (создавая конфигурацию треугольника с высоким плечом, поскольку одна из линий имеет гораздо более высокий потенциал (относительно земли), чем две другие. ).

В конфигурации «звезда» нагрузки подключаются между линией и нейтралью.Основываясь на вопросе, я считаю, что это используемая конфигурация. Энергокомпания поставляет три фазы и нейтраль, а заказчик — землю. Обычно нейтраль соединяется с землей (которая прикреплена к металлическим стержням в земле, водопроводным трубам и т. Д.). Если нагрузка правильно сбалансирована (это означает, что по каждой фазе протекают равные токи), токи нейтрали будут уравновешиваться до нуля, и нейтраль не будет использоваться.

Однако редко бывает, что три линии будут точно сбалансированы, поэтому будет протекать нейтральный ток, основанный на разнице токов в трех фазах.

Моя гипотеза состоит в том, что нейтраль в здании неправильно подключена к трансформатору энергокомпании. Без хорошего соединения нейтрали напряжение нейтрали не удерживается на уровне потенциала земли (соединение заземления обычно имеет сопротивление 1-20 Ом относительно земли). Напряжение нейтрали будет смещаться в сторону той линии, которая наиболее нагружена (поскольку она образует делитель напряжения). Например, если L1 имеет большую нагрузку, а L2 / L3 слабо загружены, напряжение нейтрали будет тянуться к L1, в результате чего напряжения L2-N и L3-N станут намного больше, чем их номинальное напряжение.

Итак, исправление будет заключаться в ремонте нейтрального соединения между панелью выключателя здания и трансформатором энергокомпании. Это может быть плохое соединение нейтрали в панели выключателя или неисправный трансформатор. Ремонт может быть опасным, потому что проблема может быть в участке кабеля, который нельзя легко отключить (если разрыв находится перед главным выключателем здания). Скорее всего, потребуется работа с энергетической компанией, чтобы отключить вашу услугу или проверить их трансформатор.

У этой проблемы есть аналог в системе с расщепленной фазой, которая распространена в США, и на этом сайте есть вопросы по теме:

Диагностика проблем с питанием на розетке

Измеряя напряжение горячей нейтрали, напряжение нейтраль-земля и напряжение горячей земли, вы уже на пути к ответу на следующие вопросы:

  • Неправильно ли подключена розетка?
  • Ответвленная цепь слишком нагружена?
  • Имеют ли чувствительные электронные нагрузки необходимое напряжение?

Эти три измерения, выполненные быстро в одной розетке, дают вам четкое представление об электроснабжении здания.

Проверка трехслотовой розетки на полярность заземления

Неправильно подключенные розетки не редкость. Розетка с тремя гнездами имеет горячий гнездо (короткое), нейтральное гнездо (длинное) и гнездо заземления (U-образное). Перепутаны ли полярность горячего (черного) и нейтрального (белого) проводов? Нейтральный и заземляющий (зеленый) провода перепутаны местами или закорочены?

Эти условия могут долгое время оставаться незамеченными. Многие нагрузки не чувствительны к полярности — им все равно, поменяли ли местами горячую и нейтральную полярность.С другой стороны, чувствительные электронные нагрузки, такие как компьютерное оборудование и приборы, действительно заботятся о чистом заземлении (заземлении без напряжения и без токов холостого хода). Одна перевернутая нейтраль и земля могут поставить под угрозу всю систему заземления.

Итак, что вы нашли?

Горячая нейтраль — это напряжение нагрузки. Напряжение должно быть около 120 В (обычно от 115 до 125 В). Вы измеряете точно 118,5 В.

  • Нейтральное заземление — это падение напряжения (также называемое ИК-падением), вызванное током нагрузки, протекающим через полное сопротивление белого провода.Допустим, вы измеряете 1,5 В.
  • Горячую землю можно рассматривать как источник напряжения на розетке. Вы читаете 120,0 В. Вы заметили, что горячая земля выше, чем горячая нейтраль. Фактически, горячее заземление равно сумме напряжений между горячей нейтралью и нейтралью-землей.

Нормальные ли эти показания? Правильно ли подключена розетка?

Как обнаружить розетки с неправильным подключением

Наиболее частое неправильное подключение происходит, если переключаются горячая и нейтральная проводка или если нейтраль и земля переключаются или закорочены.Как вы определяете эти условия?

  1. Измерение горячей нейтрали само по себе не говорит вам, были ли они переключены. Вы должны измерить нейтраль-землю или горячую землю. Если напряжение между нейтралью и землей составляет около 120 В, а напряжение горячего заземления составляет несколько вольт или меньше, значит, переключение между фазой и нейтралью поменялось местами.
  2. В условиях нагрузки должно быть некоторое напряжение нейтраль-земля — ​​обычно 2 В или чуть меньше. Если напряжение нейтраль-земля равно 0 В — опять же при условии наличия нагрузки в цепи — проверьте, есть ли случайное или преднамеренное соединение нейтраль-земля в розетке.
  3. Чтобы проверить, переключены ли нейтраль и земля, измерьте горячую нейтраль и горячую землю под нагрузкой. Горячая земля должна быть больше, чем горячая нейтраль. Чем больше нагрузка, тем больше разница. Если напряжение горячей нейтрали, измеренное с нагрузкой в ​​цепи, больше, чем напряжение горячей земли, то нейтраль и земля переключаются. Это потенциальная угроза безопасности, и состояние следует немедленно устранить.

Показание горячего заземления должно быть наивысшим из трех. В цепи заземления в нормальных, нормальных условиях не должно быть тока и, следовательно, на ней не должно падать ИК-излучение.Вы можете думать о заземлении как о проводе, идущем обратно к источнику (главной панели или трансформатору), где он подключен к нейтрали. На конце цепи заземления, где производится измерение, заземление не подключено к какому-либо источнику напряжения (опять же, при условии, что неисправности нет). Таким образом, заземляющий провод похож на длинный тестовый провод, ведущий к источнику напряжения. Когда нагрузка подключена, напряжение источника розетки с горячей землей должно быть суммой напряжения горячей нейтрали (напряжения на нагрузке) и напряжения нейтрали-земли (падение напряжения на нейтрали на всем пути обратно к ее значению). подключение к цепи заземления).

Связанные ресурсы

Разница между нейтралью и заземляющими проводниками в электротехнике

Нейтральный и заземляющий провода часто путают вне электроснабжения, так как оба провода имеют нулевое напряжение. На самом деле, если вы по ошибке подключите заземляющий провод как нейтраль, большинство устройств будет работать правильно. Однако такое соединение противоречит нормам, поскольку каждый проводник выполняет свою функцию в электрической установке.

Национальный электротехнический кодекс (NFPA 70 NEC) устанавливает цвета изоляции для нейтрального и заземляющего проводов.Стандартные цвета упрощают электромонтаж , делая его более безопасным .

  • Цвета нейтрального провода: белый или серый
  • Цвета заземляющих проводов: зеленый, желто-зеленый или голый

Эти цвета изоляции разрешены только для нейтрального и заземляющего проводов, и их использование для любой из фаз под напряжением противоречит нормам. Электрики работают с предположением, что проводка этих цветов находится под нулевым напряжением, и использование белой или зеленой изоляции для проводника под напряжением было бы смертельной ловушкой (и в первую очередь против норм).


Получите профессиональный электрический дизайн для вашего следующего строительного проекта.


Роль нейтрального проводника в электрических цепях

Чтобы наглядно представить, как работает нейтральный проводник, представьте, что электроэнергия доставляется в виде тока через разность напряжений. Напряжение передается по токоведущему проводнику, но нейтральный провод также необходим для двух важных функций:

  • Служит точкой отсчета нулевого напряжения.
  • Завершает цепь, обеспечивая обратный путь для тока, подаваемого токоведущим проводом.

Если к электрическому устройству подключен только токоведущий провод, он не активируется, потому что ток не может циркулировать независимо от приложенного напряжения. Это похоже на то, как гидроэлектрической турбине требуется выход для движения: если выход турбины заблокирован, вода не может течь и турбина не может вращаться.

Когда в установке используется трехфазное питание , могут быть случаи, когда нейтральный проводник не требуется.

  • Трехфазная система с линейным напряжением 120 В обеспечивает 208 В между фазами, и вы можете подключить нагрузку 208 В между двумя фазами без использования нейтрального провода. Оба токоведущих проводника несут напряжение, но ток может течь, потому что они имеют 90–116 различных напряжений.
  • Трехфазные нагрузки, такие как электродвигатели, часто рассчитаны на работу с тремя токоведущими проводниками и без нейтрального проводника. Здесь действует тот же принцип: между токоведущими проводниками может протекать ток при разном напряжении.

Даже если некоторые нагрузки не используют нейтральный провод в трехфазной установке, он необходим для однофазных нагрузок, которые используют только одно из линейных напряжений. Теоретически, когда к трем фазам подключены одинаковые нагрузки, их токи нейтрализуются, и нейтральный проводник проводит нулевой ток. Однако это невозможно в реальных установках, и нейтральный провод несет дисбаланс тока между тремя фазами.

Роль заземляющего проводника в электрических цепях

Заземляющий провод имеет нулевое напряжение, как и нейтральный проводник, но выполняет другую функцию.Как следует из названия, этот проводник обеспечивает заземленное соединение для всех приборов и оборудования.

  • В нормальных условиях весь ток возвращается через нейтральный проводник, а заземляющий провод не имеет тока.
  • Когда происходит короткое замыкание в линии, заземляющий провод обеспечивает обратный путь для тока замыкания. Устройства электрической защиты могут обнаружить это состояние, и они немедленно отключают цепь от источника питания.

Без заземления приборы и оборудование будут находиться под напряжением, если к ним случайно прикоснется токоведущий провод.Неисправность не отключается, поскольку защитные устройства могут среагировать только при наличии тока короткого замыкания в заземляющем проводе. В этом случае любой, кто прикоснется к поверхности под напряжением, получит удар электрическим током.

Поскольку замыкание на землю может повлиять на любую цепь, заземляющий провод необходим даже при отсутствии нейтрального провода. Например, если в двигателе используются три токоведущих провода и нет нейтрали, заземление все равно требуется, потому что любой из токоведущих проводов может вызвать неисправность.

Правильный выбор размеров нейтрали и заземляющих проводов

Проводники под напряжением подбираются с учетом ожидаемого тока, и то же самое относится к нейтральным проводам в однофазных цепях (они пропускают тот же ток, что и провод под напряжением).Однако для трехфазных цепей применяются другие правила: обычно используется тот же размер провода, что и для фазных проводов, но в некоторых случаях требуется больший размер провода для нейтрального проводника.

  • Заземляющие проводники для параллельных цепей подбираются в зависимости от мощности устройства защиты от сверхтоков с использованием таблиц, приведенных в NEC.
  • С другой стороны, размеры заземляющих проводов для главного служебного входа рассчитываются в соответствии с емкостью служебных проводников.NEC предоставляет таблицы для обоих случаев.

Работая с квалифицированными инженерами-электриками с самого начала проекта, вы можете быть уверены, что все компоненты указаны в соответствии с NEC и местными нормами. Это не только обеспечивает безопасность, но и быстрое согласование проекта с местными властями. Инженеры-электрики также могут предложить меры по повышению энергоэффективности, чтобы сэкономить на счетах за электроэнергию.

Что такое нейтральный провод и почему он может понадобиться вашему интеллектуальному переключателю света.

При первом знакомстве с электропроводкой дома лучше не усложнять.

Но не слишком просто, вы не хотите убивать себя.

Шучу.

Вроде.

Что такое нейтральный провод?

Вы можете представить схему как гигантскую петлю. Электричество должно иметь возможность постоянно течь вокруг него, чтобы обеспечивать электроэнергию. Любые перерывы в этом шлейфе и подача электричества прекращаются. Нейтральный провод помогает замкнуть эту петлю, подводя ток (электричество) назад к источнику питания, замыкая цепь и сохраняя питание включенным.

Это основная цель нейтрального провода — служить каналом для возврата энергии обратно к первоначальному источнику.

Помимо нейтральных проводов, большинство схем в Северной Америке содержат два провода под напряжением и заземляющий провод .

Два горячих провода переносят электричество от источника питания (аккумулятора) к нагрузке (в данном случае к лампе). Затем нейтральный провод возвращает электричество к источнику питания, замыкая цепь. Земля используется только в целях безопасности.В случае аномального потока или выброса электричества заземляющий провод отправит заряд в землю.

Горячие провода

В то время как нейтральный провод передает электричество обратно к источнику питания от нагрузки , «горячие» провода переносят электричество от источника питания к нагрузке .

Нагрузка — это все, что использует электричество или потребляет энергию. Например, лампа, тостер или щипцы для завивки вашей жены.

В домах Северной Америки используется «ток 240 вольт с разделенной фазой».Это просто означает, что на каждый из горячих проводов подается 120 вольт, что в сумме составляет 240 вольт.

Когда нагрузки на двух горячих проводах неуравновешены (как это обычно бывает), нейтральный провод передает разницу обратно к источнику питания.

Например, если один из горячих проводов передает 12,5 А, а другой — 15 А, нейтральный провод будет передавать 2,5 А (15 А — 12,5 А) обратно к источнику питания, замыкая цепь.

Если, однако, только один из горячих проводов пропускает ток 15 ампер, нейтральный провод будет передавать 15 ампер обратно к источнику питания, замыкая цепь.

В случае, если оба горячих провода проводят одинаковый ток, нейтральный провод не будет передавать электричество обратно к источнику питания. В этом случае цепь замыкается электричеством, перемещающимся туда и обратно между двумя горячими проводами.

Таким образом, горячие провода посылают электричество от источника питания к вашему устройству (или нагрузки ), а нейтральные провода возвращают электричество обратно к источнику питания (, если ток между двумя горячими проводами несбалансирован, ). Но что произойдет, если в цепи возникнет неожиданный ток электричества?

Заземляющий провод

Заземляющий провод обеспечивает альтернативные пути прохождения электричества в случае пробоя в цепи горячего и нейтрального проводов, по которым обычно протекает ток. Этот альтернативный путь отводит электричество глубоко под землей за пределы вашего дома.

Следовательно, «заземляющие» провода, в отличие от нейтральных проводов или проводов под напряжением, не пропускают электрический ток при нормальных обстоятельствах . Они используются только в случае замыкания на землю .

Замыкания на землю — это аномальные потоки электричества.

Например, в ваш дом ударила молния. Это может вызвать замыкание на землю. В этом сценарии заземляющий провод принимает аномальный электрический ток, производимый молнией, и отправляет его в землю.Это также приведет к срабатыванию выключателя на вашей электрической панели, что приведет к прекращению подачи электричества в ваш дом.

Без заземляющего провода ваш телевизор, или холодильник, или не дай бог щипцы для завивки вашей жены, могут взорваться. И это было бы отстой.

У меня нейтральный провод?

Самый простой способ определить, есть ли у вас нейтральный провод в коробке переключателей света, — это посмотреть на , но вот несколько подсказок, если вам пока не хочется этого делать:

  • Если ваш дом был построен в середине 1980-х или позже есть очень большая вероятность, что в вашем доме повсюду будут нейтральные провода.
  • Если рядом с выключателем освещения есть розетка, вероятно, выключатель имеет нейтральный провод.
  • Выключатели света, собранные вместе (например, два или три рядом друг с другом), скорее всего, будут иметь нейтраль, независимо от года постройки дома.

Цвет нейтрального провода

В Северной Америке электротехнический кодекс требует, чтобы электрики следовали цветовому коду проводки, что упрощает идентификацию различных типов.

Предупреждение : Прежде чем продолжить и исследовать выключатель света, убедитесь, что у вас отключено питание! Подойдите к своей электрической панели и выключите выключатель, который приводит в действие выключатель света, на который вы работаете.

Как только вы это сделаете, вернитесь к выключателю и попробуйте включить свет. Если он не включается, продолжайте.

Затем отвинтите лицевую крышку переключателя света и снимите ее. Затем откручиваем выключатель света. После откручивания осторожно вытяните выключатель из стены, не снимая проводов.

Вы сможете довольно легко идентифицировать каждый провод. У меня не было опыта в этом раньше, и я обнаружил, что это прямолинейно.

Вы узнаете, что у вас нейтральный провод, если за переключателем света есть катушка из белых или серых проводов, не подключенная к переключателю.

Выключатель света с катушкой нейтрального провода, соединенной гайкой желтого провода

Если у вас нет катушки за выключателем света, у вас, вероятно, всего три провода — черный, белый и медный. В этом случае у вас нет нейтрального провода (хотя один из проводов белый!).

После идентификации лучший совет, который я когда-либо получил, — это использовать малярную ленту и промаркировать каждый провод, прежде чем снимать их с выключателя света . Вы даже можете сделать снимок на свой телефон на всякий случай, чтобы знать, как он был установлен.

Вы не хотите оказаться в ситуации, когда вам придется вызывать электрика, потому что вы даже не можете подключить оригинальный выключатель.

Зачем нужен нейтральный провод?

Некоторые схемы просто не могут работать без нейтрального провода, другим он не нужен. Например, стандартный выключатель света в вашем доме. Он не потребляет энергию, он только подключает питание к соответствующей лампе (ам).

В случае интеллектуальных выключателей света обычно требуется нейтральный провод, потому что на них необходимо постоянно подавать питание .Нейтральный провод позволяет замкнуть цепь и включить переключатель. Это верно даже тогда, когда умный выключатель света находится в положении «выключено».

Для большинства представленных на рынке интеллектуальных выключателей требуется нейтральный провод, но есть такие, в которых его нет. Обратной стороной этих коммутаторов является то, что для них требуется отдельный концентратор, который вам необходимо приобрести.

Что делать, если у меня нет нулевого провода?

Если у вас нет нейтрального провода, у вас есть три основных варианта:

  1. Проложить нейтральный провод
  2. Найдите умный выключатель света, для которого не нужен нейтральный провод
  3. Используйте умные лампочки вместо умных выключателей
Провести нейтраль

Вы можете нанять электрика, и он / она проведет нейтраль по всему дому.Но вы, вероятно, не собираетесь вмешиваться в это. Это может быть дорого и просто неудобно.

Интеллектуальный выключатель света, для которого не требуется нейтральный провод

Купить интеллектуальный выключатель света, не требующий нулевого провода, можно по более простому и доступному варианту . Есть несколько вариантов, но, по моему опыту, лучший — это диммерный переключатель Lutron Caseta Smart Home. Он получает отличные отзывы и его легко настроить самостоятельно.

Опять же, вам нужно будет купить соответствующий концентратор, чтобы эти умные переключатели света работали.В случае диммерного переключателя Lutron Caseta вам понадобится интеллектуальный беспроводной мост Lutron Caseta Wireless Smart Bridge.

Используйте умные лампочки

Наконец, вы можете просто использовать умные лампочки и все вместе избавиться от хлопот, связанных с умными выключателями света. Однако у умных лампочек есть и недостатки. Самая большая проблема в том, что они просто не будут работать, если ваш выключатель света когда-либо выключен. . Это означает, что вам нужно, чтобы выключатель света всегда оставался включенным.

Это может быть настоящей болью для вас и вашей семьи, и о ней трудно вспомнить.Я считаю, что домашняя автоматизация smart должна добавить функциональность к тому, что уже существует сегодня, а не устранить ее.

То, что вы не можете использовать выключатели в вашем доме, не кажется мне таким уж умным.

Не поймите меня неправильно, есть варианты использования умных лампочек, просто они не мой первый выбор.

Если вы все еще взвешиваете плюсы и минусы умных лампочек и умных переключателей, ознакомьтесь с публикацией Эрика Бланка «Умная лампочка против умного переключателя».

Почему на моем нейтральном проводе есть напряжение?

Ранее мы обсуждали, что основная задача нейтрального провода — служить каналом для возврата энергии к первоначальному источнику. А в случае интеллектуального переключателя света нейтральный провод также обеспечивает питание, поэтому переключатель всегда может находиться в положении «на ».

Следовательно, наличие напряжения на этом проводе означает, что он выполняет свою работу! Но будьте осторожны, это, очевидно, означает, что вы не отключили питание переключателя, над которым работаете.Подойдите к электрическому щитку и выключите прерыватель.

Если вы уже отключили прерыватель, а нейтраль все еще находится под напряжением, прежде чем продолжить работу, обратитесь к электрику. Скорее всего, есть проблема, для решения которой вам понадобится профессионал.

Можно ли заземлить нейтральный провод?

Я вижу этот вопрос, можно ли подключить нейтральный провод к земле , много всплывает на поисковых форумах. Ответ — НЕТ. Нейтральный и заземляющий провода не взаимозаменяемы!

Очень опасно пытаться использовать заземляющий или нейтральный провод для любых целей, отличных от их предполагаемого использования.

Как обсуждалось ранее, провода заземления не предназначены для пропускания тока при нормальных условиях . Они используются только в качестве меры предосторожности при возникновении аномального заряда.

Удаляя землю или вмешиваясь в нее, вы серьезно рискуете получить удар электрическим током.

Заключение

Работа с домашней электропроводкой может быть пугающей, и не зря. Ставки высоки.

Но, исходя из опыта, после того, как вы проведете свое исследование, легко заменить стандартные переключатели света на интеллектуальные переключатели света.

Теперь, когда вы знаете, что такое нейтральный, горячий и заземляющий провода и как их идентифицировать, у вас есть все, что вам нужно для начала работы.

Просто убедитесь, что на вашем электрическом щите выключен правильный выключатель.

Серьезно.

Еще раз проверьте это.

А теперь приступим!

Общие сведения об открытой или нагруженной нейтрали

Что такое нагруженная нейтраль и почему я получил от нее шок? Это просто одна из тех загадок, связанных с электричеством, или есть простое объяснение этой ситуации? Читайте дальше, чтобы узнать о ситуации, в которой я недавно столкнулся, когда друг столкнулся с обрывом или нагруженной нейтралью при выполнении разводки своими руками, и ему потребовалась некоторая помощь в понимании того, что вызвало ситуацию.

Время от времени возникают ситуации, которые не соответствуют обычному набору правил при работе с электричеством. По моему опыту за последние 35 лет, есть только одна загадка, которую, насколько мне известно, так и не удалось разгадать. Когда мы работали в нефтяной промышленности в провинции Альберта, Канада, у нас была ситуация, когда высоковольтный выключатель, питающий большой электродвигатель, произвольно срабатывал. Буквально тысячи долларов были потрачены Shell Canada, чтобы попытаться разгадать эту загадку. Мы поменяли местами двигатели, заменили выключатели на резервный резервный двигатель и, наконец, протянули новые провода через кабелепровод длиной в тысячи футов, но все безрезультатно.Этот конкретный нарушитель продолжал это загадочное поведение, и они, наконец, просто приняли его и разобрались с этими случайными сбоями. Было ли это привидение …… ..?

Помимо этой маленькой загадки, большинству электрических аномалий есть объяснение. Однажды мне позвонил друг, который был озадачен, почему его осветительная арматура не работает, несмотря на то, что у него было 120 вольт, показываемых на его счетчике, когда он снимал показания с провода на землю. Хотя сам он не электрик, он «мастер на все руки» и зарабатывает на жизнь разнорабочим.Он не новичок в ремонте, и когда он работает в собственном доме, он сам делает электропроводку с разрешения домовладельца. Так было и здесь.

С помощью телефона я попросил его провести несколько тестов для поиска и устранения неисправностей с его глюкометром. Ситуация была такая. У него было 120 вольт на обеих сторонах выключателя (включенного), питающего светильник, но свет не работал. Он снял гайку с нейтральных проводов в рамках своих испытаний, и именно тогда, к его удивлению, он получил удар от нейтрали! Как это может быть? Нейтраль — это заземленный провод? Итак, он проверил своим измерителем и, конечно же, 120 вольт на землю! Именно тогда я понял, что он имеет дело с открытой или заряженной нейтралью.

Когда кто-то обращается ко мне по поводу проблемы с электричеством, один из первых вопросов, который я люблю задавать, — «Что вы делали / над чем работали, когда возникла эта проблема». Вместе с Робом я узнал, что он добавляет несколько устройств в эту схему, а в другой распределительной коробке он разобрал соединения.

Я спросил, отключены ли нейтральные (белые) провода, и получил ответ, который искал, чтобы разгадать эту загадку. Да провода были отдельно! Без непрерывного пути обратно к панели и нейтральной шине, напряжению некуда идти, чтобы замкнуть цепь.Горячие (черные провода) все еще были подключены, и прерыватель снова был включен, но без нейтрального пути свет не будет работать, а нейтраль перед этим открытым сращиванием будет иметь питание, так же, как и горячий провод. При включенном переключателе мощность проходит через нагрузку (в данном случае через нить накаливания лампочки) и возвращается на нейтраль, но без подключения к заземленной шине, и именно так вы получаете электрический ток от нейтрали!

Вот диаграмма, которая поможет вам понять ситуацию и почему это происходит.

Это линейная диаграмма для дальнейшего упрощения. В нормальной ситуации с неповрежденным нейтральным трактом у вас будет 120 вольт, измеренное поперек лампочки или розетки. В этом случае обе стороны света (горячий и нейтральный) одинаковы, поэтому нет разницы потенциалов (напряжения), и лампочка не загорается. Но вы это сделаете, если вы заземлены, а затем коснетесь белого провода!

Еще одна загадка раскрыта и урок усвоен! Если вы работаете с электрической цепью, убедитесь, что питание отключено! Проверьте и еще раз проверьте, что все компоненты цепи вернулись на свои места, устройства и пластины установлены, соединения выполнены, а крышка распределительной коробки снова закрыта!

Посмотрите мое видео на YouTube, где я обсуждаю и демонстрирую именно эту ситуацию, описанную здесь.Пока вы там, ставьте лайки, делитесь и подписывайтесь на мой канал!

Если вы хотите больше узнать об электрической системе вашего дома, лучший инструмент, который вы можете добавить в свой инструментарий, — это DVD или электронная книга «Основы домашней электропроводки». Это 83 минуты из лучшего домашнего электрообучающего инструмента, доступного в любом месте , который можно приобрести через наш веб-сайт. Это исключительное учебное пособие охватывает большинство проектов домашней электропроводки и станет отличным дополнением к любому набору инструментов.Этот DVD поможет вам сделать это правильно, безопасно и сэкономить деньги.

Есть вопросы по этому или другому электрическому проекту? Задайте вопрос ниже, или вы можете прокомментировать видео на моем канале YouTube или на моей странице в Facebook.

Терри Петерман, Интернет-электрик®

Разомкнутая нейтраль — электрические 101

Разомкнутая проводка нейтрали

В электрической системе земля и нейтраль соединены вместе только в одном месте, в нейтральной точке.Это соединение осуществляется либо на трансформаторе энергокомпании, либо в главной электрической панели дома или рядом с ней (см. Электрические цепи).

Напряжение на нейтральном проводе обычно составляет 0 В (вольт) в цепи под напряжением. Однако, если нейтральный провод разомкнут, напряжение на линии этой разомкнутой нейтрали составляет 120 В.

Вы можете получить удар током из-за обрыва нейтрального провода.

Multi-

Схемы электрических соединений разветвленной цепи

Схема разомкнутой нейтрали

На схеме вверху справа нейтраль разомкнута.Нейтральный провод слева от разомкнутой цепи (идёт от панели) — 0В. Провод с правой стороны обрыв (идет на нагрузку) и 120В.

На схеме слева вверху выключатели и выключатели замкнуты.

На схеме вверху справа нейтраль разомкнута. Нейтральный провод слева от разомкнутой цепи (идёт от панели) — 0В. Провод с правой стороны обрыва (идет к нагрузке) — 240В на землю. Фаза 120 В A и фаза 120 В объединяются для получения 240 В на землю.

Выключатели фаз А и В разомкнуты

Выключатели фаз А и В замкнуты

Фазный выключатель разомкнут

На схеме вверху слева выключатель или переключатель фазы А разомкнут. Нейтральный провод слева от разомкнутой цепи (идёт от панели) — 0В. Провод с правой стороны обрыва (идет к нагрузке) — 120В на землю.

На схеме вверху справа выключатели или переключатели фазы A и B разомкнуты.Нейтральный провод слева от разомкнутой цепи (идёт от панели) — 0В. Провод справа от обрыва (идет на нагрузку) тоже 0В.

Дополнительные сведения см. В разделах «Многопроволочная цепь » и «Многопроволочная цепь с разомкнутой нейтралью».

.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *