Skip to content

Магнит неодимовый как сделать: Как сделать неодимовый магнит? — ответы в Мире Магнитов

Содержание

Как сделать магнит своими руками — блог Мира Магнитов


Есть несколько способов сделать магнит в домашних условиях. Первый и второй способ подойдут для простых домашних экспериментов и для показа детям. Третий и четвертый способы несколько сложнее и требуют внимательности и осторожности.

Варианты изготовления простейших магнитов своими руками

Способ 1

Для создания магнита потребуются самые простые материалы, имеющиеся под рукой:

  • Медная проволока.
  • Источник постоянного тока.
  • Металлическая заготовка — это и есть будущий магнит.
В качестве заготовки используются элементы из сплавов различных металлов. Проще и дешевле достать ферриты — они представляют собой смесь порошкового железа с различными добавками. Используют и закаленную сталь, поскольку в отличие от ферритов она дольше сохраняет магнитный заряд. Форма заготовок не имеет значения — круглая, прямоугольная или любая другая, так как это не повлияет на ее конечные магнитные свойства.


Самый простой электромагнит из проволоки, батарейки и гвоздя

Берем металлическую заготовку и обматываем ее медной проволокой. В общей сложности должно получиться 300 витков. Концы проволоки присоединяем к батарейке или аккумулятору. В результате металлическая заготовка намагнитится. Насколько сильным будет ее поле, зависит от мощности тока, поступающего из источника электропитания.

Способ 2

Сначала нужно сделать индукторную катушку. Внутрь нее и помещается будущий магнит, поэтому используется заготовка компактных размеров. Порядок действий точно такой же, за исключением того факта, что количество витков проволоки должны быть не 300, а 600. Этот метод хорош, если нужно сделать магнит повышенной мощности.


Медная проволока на ферритовом магните

Способ 3

Подразумевает использование сетевого электричества. Метод довольно сложен и опасен, поэтому манипуляции должны быть выверенными и осторожными. К стандартному набору приспособлений добавляется плавкий предохранитель, без которого создать магнит не получится. Он-то и подключается к индукторной катушке, внутри которой расположена металлическая заготовка. Предохранитель подключается в сеть. В результате он сгорает, но при этом успевает зарядить находящийся внутри катушки предмет до высоких показательный.

Будьте осторожны! Подобные эксперименты представляют опасность для жизни и нередко приводят к короткому замыканию в электросети! Выбирая подобный способ изготовления магнитных элементов, выполняйте необходимые меры предосторожности и подготовьте огнетушитель, который позволит оперативно погасить возможное возгорание.

Оценить результат работы поможет специальный магнитометр — он покажет, насколько сильно полученное изделие.

Как самому сделать самый мощный магнит

Самые мощные магниты в мире делают из редкоземельного металла неодима. Железо, неодим и бор приводят в порошкообразное состояние, смешивают, формуют и спекают в СВЧ-печах. Затем заготовки намагничивают и наносят защитное покрытие из цинка или никеля. Повторить этот процесс дома очень сложно. Но есть и другой способ.

Способ 4


Первый шаг на пути к реализации цели заключается в поиске сломанных жестких дисков от компьютера. При отсутствии в хозяйстве сломанного винчестера можно попробовать отыскать неработающие устройства на авито, дарударе или на других площадках объявлений.


Магнитная головка в открытом жестком диске

В дисках есть магнитная головка, используемая для управления записью и чтением данных. Второй шаг — полностью разобрать жесткий диск и получить доступ к этой головке. На ней и находятся пластины изогнутой формы из сплава неодима-железа-бора. Их могут приклеить к стальным элементам, но часто они закреплены благодаря собственной магнитной силе. Самые крупные неодимовые магниты попадаются в самых старых винчестерах.

Конечно, проще всего купить неодимовый магнит нужной формы и силы. С другой стороны, если у вас в наличии есть несколько неработающих винчестеров, то было бы крайне неосмотрительно их просто выбросить.

Интернет-магазин «Мир Магнитов» предлагает вам купить неодимовые магниты по самым привлекательным ценам. Выбирайте в представленном каталоге подходящие изделия и оформляйте заказ. Покупка готовых изделий с необходимыми параметрами – это всегда проще, быстрее и выгоднее, чем попытки сделать неодимовые магниты самостоятельно.

Как сделать неодимовый магнит в домашних условиях

У сотрудников сайта p-magnit.ru иногда спрашивают о том, как сделать неодимовый магнит своими руками. Попробуем разобраться, насколько это возможно, и что вообще представляет собой процесс производства подобной продукции.

Итак, продаваемые нами устройства состоят из сплава, который на 70% состоит из железа и практически на 30% – из бора. Только какие-то доли процентов в его составе приходятся на редкоземельный металл неодим, природные залежи которого крайне редки в природе. Большая часть их приходится на Китай, есть они еще всего в нескольких странах, в том числе, и в России.

Прежде чем сделать неодимовые магниты, производители создают формы для них из песка. Затем поднос с формами обдают газом и подвергают термической обработке, из-за чего песок твердеет и сохраняет на своей поверхности будущие очертания металлической заготовки. В эти формы позднее будет помещаться раскаленный металл, из которого, собственно и получится необходимая продукция.

Теперь непосредственно рассмотрим, как делают неодимовый магнит. В отличие от ферромагнитных изделий металл здесь не плавится, а спекается из порошковой смеси, помещенной в инертную или вакуумную среду. Затем полученный магнитопласт прессуется с одновременным воздействием на него электромагнитного поля определенной интенсивности. Как видим, даже на начальном этапе производства, заметно, что вопрос о том, как сделать неодимовые магниты в домашних условиях, звучит неуместно. Слишком сложны операции и используемое оборудование. Создание подобных условий на дому вряд ли возможно.

После того, как заготовки достают из форм, они подвергаются механической обработке – тщательно шлифуются, потом для улучшения коэрцитивной силы изделий выполняется их обжиг.

Наконец, мы подходим к последним этапам, которые помогут окончательно ответить на вопрос о том, как делают неодимовые магниты. Спеченный сплав NdFeB вновь подвергаются отделке на станке посредством специального инструмента. При работе применяют охлаждающую смазку, для исключения перегрева либо возгорания порошка.

На магниты наносится защитное покрытие. Это обусловлено, во-первых, тем что спеченные металлы достаточно хрупкие и их необходимо усилить, и, во-вторых, металл будет защищен от процессов коррозии и другого воздействия внешней среды. Так производители заблаговременно беспокоятся о том, как сделать неодимовый магнит более прочным и долговечным. Покрытие может быть медным, никелевым, цинковым. На последней фазе производственного процесса применяется намагничивание посредством сильного магнитного поля. Дальше – они направляются на склад, а оттуда покупателям.

Итак, после того, как мы более-менее подробно рассмотрели производственный процесс, стало ясно, что, наверное, не стоит всерьез задаваться вопросом «как сделать неодимовый магнит в домашних условиях». Ведь для этого требуется не только наличие определенных знаний, но множество сложнейших агрегатов.

Как сделать сильный магнит своими руками в домашних условиях?

25.07.2017


Для многих людей магнит до сих пор является загадкой, хотя с данным металлом и явлением в принципе, люди познакомилась очень давно. Уже тогда была разработана целая система по изготовлению различных магнитов. Сегодня же это далеко не редкость и даже мощные магниты можно сделать в домашних условиях.

Создание магнита с подручных средств

Конечно, для многих это покажется даже чем-то сверхъестественным и возможно даже будет шоком, но даже сейчас, сидя дома, большинство людей могут изготовить магнит своими руками. Ниже представлено четыре способа, в которых описано, как сделать мощный магнит в домашних условиях.

Способ №1

Первый и наверняка поэтому самый простой способ: для его осуществления нужно лишь взять любой предмет, который можно намагнитить (предмет должен быть металлическим) и провести им несколько раз вдоль постоянного магнита, причем делать это следует только в одном направлении. Но, к сожалению, такой магнит будет недолговечным и очень быстро потеряет свои магнитные свойства.

Способ №2

Данный метод намагничивания производится с помощью батарейки или аккумулятора на 5 или 12 вольт. Чаще всего он применятся для намагничивания отверток и выполняется следующим образом:

• Берется медная проволока определенной длины, которой будет достаточно для того, чтобы обмотать стержень отвертки 280 — 350 раз. Лучше всего подходит проволока из трансформаторов, или та, что предназначена для их производства.

• Изолируется предмет, в данном случае, при помощи изоленты выполняется обмотка всего стержня отвертки.
• Выполняется сама обмотка и подключение ее к батарее. Один конец — к плюсу, другой – к минусу. Обмотку следует проводить виток к витку, равномерно. Изоляция также должна быть плотной.

В результате данных манипуляций, с отверткой будет намного приятнее работать. Такой операцией можно превратить любые старые ненужные отвертки в действительно удобный инструмент.

Способ №3

Этот вариант описывает то, как сделать мощный магнит довольно простым способом. На самом деле он полностью уже был описан выше, но конкретно этот способ подразумевает под собой другой материал. В данном случае будет использоваться обычный металл, а точнее небольшой кусок из него, желательно кубической формы и более мощная катушка. Теперь количество витков нужно увеличить в 2-3 раза, чтобы намагничивание прошло успешно.

Способ №4

Этот метод очень опасен и категорически запрещен для исполнения людьми, не являющимися профессионалами в сфере электрики. Выполняется строго с соблюдением техники безопасности, главное помнить, что ответственность за жизнь и здоровье несете только Вы и никто больше.

Он рассказывает о том, как сделать сильный магнит в домашних условиях, при этом затратив небольшую сумму денег. В этом случае будет использоваться еще более мощная катушка, намотанная исключительно из меди, а также плавкий предохранитель для сети в 220 вольт.

Предохранитель нужен для того, чтобы катушку можно было вовремя отключить. Сразу же после подключения в сеть он сгорит, но при этом за такой промежуток времени успеет пройти процесс намагничивания. Сила тока в таком случае будет максимальной для сети и магнит будет достаточно мощным.

Мощный электромагнит своими руками

Во-первых, нужно разобраться с тем, что это такое. Электромагнит представляет из себя целое устройство, которое при подаче на него определенного тока, работает как обычный магнит. Сразу же после прекращения он теряет эти свойства. О том, как сделать мощный магнит из обычной катушки и железа было описано выше. Так вот, если вместо железа использовать магнитопровод, то как раз и получится тот самый электромагнит.

Для того, чтобы разобраться с тем, как сделать сильный магнит в домашних условиях, который будет работать от сети, нужно всего лишь вспомнить немного информации из курса школьной физики и понять, что при увеличении катушки, а также магнитопровода, возрастет и мощность магнита. Но при этом потребуется больше тока, для раскрытия полного потенциала магнита.

Но самыми мощными все же остаются именно неодимовые, они обладают всеми самыми желанными свойствами и при своей силе имеют небольшой размер и вес. О том, как делать неодимовые магниты собственными руками и возможно ли это вообще и пойдет речь дальше.

Изготовление неодимового магнита

Из-за сложного состава и специальной методики производства, вопрос о том, как сделать неодимовый магнит своими руками в домашних условиях отпадает сам собой. Но многих все же интересует, как делать неодимовые магниты, ведь, казалось бы, если можно сделать обычный магнит, то и неодимовый также вполне реально изготовить.

Но все не так просто, как кажется в действительности. Производством таких магнитов занимаются серьезные компании, они используют специальные технологии очень мощного намагничивания материала. И это помимо того, что используется достаточно сложный в добыче и производстве сплав. Поэтому на данный вопрос можно четко ответить – никак. Если у кого-то получится это сделать, то он с легкостью сможет открыть свое производство, так как необходимое оборудование у него уже будет.

Применение созданных магнитов

Применение в промышленно-хозяйственных целях

Применяются в различных электроприборах. Особенно часто встречаются в устройствах, оборудованных динамиками. Любая динамическая головка включает в себя магнит, ферритовый или неодимовый, в редких случаях используются и другие. Также используются магниты в мебельном производстве, игрушках. На производствах, при фильтрации сыпучих материалов.

Применение в домашних условиях

Магниты на холодильник – это одно из самых распространенных направлений применения магнитов. Также некоторые используют их для остановки счетчиков, для того чтобы снизить плату на коммунальные услуги, но делать так категорически запрещено, да и нецелесообразно.

Заключение

Исходя из этой статьи можно понять то, как сделать мощный магнит в домашних условиях, при этом не затратив на это каких-то особых усилий и материальных средств. Но не стоит экспериментировать с мощной сетью людям, которые не разбираются в электричестве и вообще не имеют представления о том, как это работает, потому как это серьезно и очень опасно для жизни человека.


Как разъединить неодимовые магниты в домашних условиях

Как разъединить магниты? Да, бывают такие ситуации, когда магниты резко соединяются между собой, и отсоединить их кажется нерешаемой проблемой. Мы сами неоднократно проходили через это, поэтому постараемся дать Вам пару советов.

Во-первых, мы надеемся, что при соединении магнитов Вы не пострадали, 

так как сила сцепления магнитов велика, и неосторожное использование магнитов может причинить вред.

  • Попытайтесь просунуть между магнитами какой-нибудь немагнитный клин (алюминий, медь, дюралюминий, титан), для того, чтобы увеличить зазор между магнитами. Не используйте молоток, так как его ударная часть может очень резко притянуться к магнитам, что приведет к получению травм!
  • В полученный зазор необходимо вставить лист (можно стальной), длина которого будет больше, чем самый большой размер соединенного магнита.
  • Затем, зафиксировав один магнит о неподвижный выступ (например, кромка стола, подоконник, ступень), верхний магнит необходимо сдвигать относительно нижнего до того момента, пока поля магнитов не перестанут пересекаться (вы почувствуете этот момент).
    Стальной лист в данной системе служит гарантом того, что нижний магнит вновь не «запрыгнет» на верхний магнит во время сдвига.

Еще один вариант разъединения магнитов — найти лист фанеры (не менее 10 мм), сделать в нем отверстие под магнит и повторить процесс сдвига одного магнита относительно другого. Фанера в данном случае будет тем самым неподвижным выступом, который будет препятствовать нижнему магниту следовать за верхним магнитом. 

Внимание! 

Нельзя разъединять магниты «надломом» относительно друг друга, так как в данном случае вероятно защемление пальцев в образовавшемся зазоре! Будьте аккуратны!

Если у Вас не получается сделать это самостоятельно, обратитесь к нашим менеджерам, чтобы получить от них помощь. 

Читайте также:

Что такое неодимовый магнит?

Характеристики неодимовых магнитов

Как рассчитать силу магнита?

Правила работы с магнитами

Как вернуть магниты?

 

Производство магнитов в России

Компания «Магнитные системы» занимается разработкой и производством высококачественной магнитной продукции более 10 лет. Для сложных проектов привлекаются консультанты из Германии и США, владеющие инновационными технологиями. Помимо собственного производства, мы предлагаем продукцию от наших партнеров из Китая.

Ассортимент

Компания не ограничивается стандартным производством товаров. Команда активно поддерживает сотрудничество со своими партнерами, находит новых клиентов. Постоянно проводятся следующие разработки:

  • поиск новых материалов и их применения;
  • исследование сырья;
  • изучение инструментов для производства;
  • разработка инновационного дизайна.

Наша организация оснащена высокотехнологичным оборудованием, имеется собственная лаборатория. Тестовый центр работает для проверки состава готовых магнитов на атомарном уровне. Проводятся исследования их микрокомпонентов, тестирование в заданной среде.

Ежегодно компания реализует около 50 тонн редкоземельных магнитов из металлических сплавов в модификациях:

  • неодим-железо-бор
  • самарий — кобальт;
  • ЮНДК (Альнико).

Каждый год мы производим от 100 тонн образцов, созданных из сплавов на ферритовой основе:

  • с барием BaO.6Fe2O3;
  • со стронцием SrO.6Fe2O3;
  • с кобальтом CoO.Fe2O3.

Изготовление магнитов из неодима

Самый популярный вид магнитов. Обладают отличными характеристиками при весьма малых размерах. Производятся путём спекания порошкообразной смеси Неодима, Железа и Бора. Доступны разные варианты форм: цилиндр, шар, плоская форма, параллелепипед, диск, блок.

Виниловые изделия

Магниты на виниловой основе также пользуются большим спросом. Они отличаются высокой гибкостью, подходят для применения в рекламной продукции. Бывают на клеевой основе или без нее, поставляются в разноразмерных рулонах. Это красочные наклейки на автомобили, холодильники.

«Магнитные системы» – это компания, которая помнит об экологии, поэтому мы стараемся делать наши изделия безопасными для природы и человека.

Мы сотрудничаем как с крупными оптовыми клиентами, так и с частными розничными покупателями и предлагем низкие цены, своевременную доставку, приятное обслуживание.

Контакты ООО «Магнитные Системы» в Москве (Россия), +7(499) 290-36-37 [email protected]

Как примененяют неодимовые магниты в автомобиле

Неодимовый магнит считается мощнейшим сплавом в мире и, причем самым популярным, так как его используют в различных предприятиях для производства изделий, которыми можно украшать дома, офисы и промышленности. Стоит отметить, что можно неодимы применять и самостоятельно, покупая их для домашних изделий. Независимо от того как он куплен его можно применить в:

  • изготовлении часов из акрила;
  • создании брелков;
  • разработке магнитов-сувениров;
  • для изготовления крючков;
  • автомобилях;
  • для того чтобы сделать особо сильные поисковики металла.

Помимо этого неодимовый магнит в автомобиле может быть применен для особых действий. Неодимовый магнит в автомобиле применяют те, кто может знать свою машину от и до. А именно, использовать различные приспособления стоит только в том случае если знать полностью инструкцию их применения и правильно их установить. Стоит отметить, что неодимовый магнит в автомобиле может быть полезен для того чтобы:

  • уменьшить расход бензина;
  • уменьшить выброс газов;
  • повысить мощность двигательного устройства;
  • уменьшить расход масла;
  • предотвратить нарастание сажи на клапанах;
  • улучшить работу смазочного состава.

Неодимовый магнит в автомобиле 21 века считается особым изделием, так как с его помощью можно провести столько полезных средств. А также не стоит забывать о том, что покупать такие изделия нужно исключительно в специализированных магазинах, чтобы не столкнуться с подделкой. Важно отметить, что найти такие магазины можно в сети интернета и там же оформить доставку на дом.

Как проводится установка неодимового магнита в автомобиль

Перед тем как установить неодимовый магнит в автомобиль нужно сделать правильный выбор на шланг, так как изделие производит снижение расхода топлива, а значит выбирать нужно ту трубку, в которой происходит подача жидкости. Также нужно помнить о том, что магнит должен быть максимально близко к карбюратору.

Лучше всего проводить такие глобальные установки посредством специалистов, которых можно найти в любом автосервисе. Именно там также проведут консультирование относительно того как правильно эксплуатировать такое изделие и как не нанести вред автомобилю.

Отличительные особенности неодимовых магнитов — неодимовые и поисковые магниты

Неодимовые магниты NdFeB самые сильные на сегодняшний день постоянные магниты. Изготавливаются они из сплава, содержащего редкоземельный материал неодим Nd, а также железо и бор. Неодимовые магниты имеют очень высокие показатели остаточной магнитной индукции и устойчивости к размагничиванию. По этим показателям они в разы превосходят обычные чёрные, ферритовые, магниты. Что делает их гораздо более привлекательными при использовании в изделиях и оборудовании, где требуются сильное магнитное поле. Единственный серьёзный недостаток этих магнитов — это довольно высокая цена. При чём, с течением времени, она имеет тенденцию к росту, так как потребности мировой промышленности в сильных магнитах так же постоянно растут. Технический прогресс ускорятся год от года, постоянно выходят новые модели смартфонов, телевизоров, компьютеров, навигаторов и тому подобных высокотехнологичных гаджетов, при производстве которых используются редкоземельные металлы. Основным же поставщиком, так сказать лидером глобального рынка, является Китайская Народная Республика, контролирующая до 95% поставок редкоземельных материалов, а соответственно и цены на них. Очередное резкое повышение цен было отмечено летом 2017 года, когда за 3 месяца цена на неодим выросла более чем на 50 процентов.

Технические характеристики неодимовых магнитов

Магнитные характеристики закладываются на стадии изготовления магнита и не могут быть изменены в последствии. Основные же параметры это остаточная магнитная индукция и устойчивость к размагничиванию (коэрцитивная сила). Магнитная индукция измеряется в Теслах (Тс) и Гауссах (Гс), 1 Тл = 10000 Гс. Неодимовые магниты имеют остаточную индукцию порядка 1,2-1,4 Тл (12000-14000 Гс). Следует учитывать, что подобные значения могут быть получены только при испытаниях магнитного материала в замкнутой цепи. При измерении же силы магнитного поля на поверхности магнита тесламетр обычно показывает от 200 до 500 мТл (2000-5000 Гс). К тому же показания остаточной магнитной индукции сильно зависят от формы и размера магнита — чем он больше, тем сильнее будет его магнитное поле. Потери магнитных свойств со временем обычно не превышают 2-3% за 10 лет эксплуатации (естественно, при условии соблюдения температурного режима). Отличительной особенностью неодимовых магнитов является довольно низкая рабочая температура. При сильном нагреве начинается размагничивание материала и чем горячее, тем быстрее протекает этот процесс. Значение температуры, при котором материал начинает терять свои магнитные свойства, называется «точкой Кюри». При этом происходит так называемый «фазовый переход» — быстрое разрушение магнитной структуры вещества. Магниты из обычных марок неодимового сплава, типа N38, N42 и т.п. выдерживают нагрев не выше 80 градусов Цельсия. Это очень ограничивает их применение в оборудовании подверженному сильному нагреву — для нормального функционирования в таких условиях, требуется обеспечить дополнительное охлаждение установки. Существуют и высокотемпературные марки сплавов, такие как N38H (120°С), N38UH (180°C). Если же требуются более высокие рабочие температуры, то следует рассматривать магниты из материала Альнико (ЮНДК) выдерживающие нагрев до 550°C. Неодимовые магниты чаще всего имеют антикоррозионное покрытие, никелевое или цинковое, реже эпоксидное. Магниты могут выпускаться и совсем совсем без покрытия, но так как они имеют свойство ржаветь во влажной среде, то пользуются они гораздо меньшим спросом. Направление магнитного поля может быть аксиальным (вдоль размера h), диаметральным (вдоль размера D) и радиальным (вдоль размера r).

 

Направление намагниченности:

Магнитные характеристики различных неодимовых сплавов

Марка
материала
Остаточная магнитная индукция Br Коэрцитивная сила
(по току) Hcj
Максимальное энергетическое произведение (BH) max. Рабочая температура t
Tl (Тесла) kG (кГаусс) kA/m kOe MGOe Kj/m3 С
N35 1,17-1,20 11,7-12,0 955 12 35 279 80
N35M 1,17-1,20 11.7-12,0 1115 14 35 279 100
N35H 1,15-1,17 11,5-11,7 1355 17 35 279 120
N35SH 1,17-1,20 11,7-12,0 1590 20 35 279 150
N35UH 1,17-1,20 11,7-12,0 1990 25 35 279 180
N38 1,17-1,20 12,2-12,6 955 12 38 303 80
N38M 1,22-1,26 12,2-12,6 1115 14 38 303 100
N38H 1,22-1,26 12,2-12,6 1355 17 38 303 120
N38SH 1,22-1,26 12,2-12,6 1590 20 38 303 160
N38UH 1,22-1,26 12,2-12,6 1990 25 38 303 180
N40 1,26-1,29 12,6-12,9 955 12 40 318 80
N40M 1,26-1,29 12,6-12,9 1115 14 40 318 100
N40H 1,26-1,29 12,6-12,9 1355 17 40 318 120
N40SH 1,26-1,29 12,6-12,9 1590 20 40 318 160
N40UH 1,26-1,29 12,6-12,9 1990 25 40 318 180
N42 1,30-1,33 13,0-13,3 955 12 42 334 80
N42M 1,30-1,33 13,0-13,3 1115 14 42 334 100
N42H 1,30-1,33 13,0-13,3 1355 17 40 318 120
N42SH 1,3-1,33 13,0-13,3 1590 20 42 334 160
N45 1,33-1,37 13,3-13,7 955 12 45 358 80
N45M 1,33-1,37 13,3-13,7 1115 14 45 358 100
N45H 1,33-1,37 13,3-13,7 1355 17 45 358 120
N48 1,36-1,42 13,6-14,2 955 12 48 382 80
N48M 1,36-1,42 13,6-14,2 1115 14 48 382 100
N48H 1,36-1,42 13,6-14,2 1355 17 48 382 120
N50 1,41-1,45 14,1-14,5 876 11 50 398 70

Применение неодимовых магнитов

Неодимовые магниты получили широкое распространение в различных сферах человеческой деятельности. Благодаря своим высоким эксплуатационным показателям они массово используются при производстве радиоаппаратуры, измерительных приборов, бытовой техники, медицинского оборудования, мобильных телефонов и прочих высокотехнологичных гаджетов. Высоким спросом пользуются эти магниты у производителей ветрогенераторов. Используется неодим и для производства поисковых магнитов, для справки — магнитная рыбалка это интересное, набирающее популярность, хобби. Для обеспечения потребностей потребителей, неодимовые магниты производятся самых различных форм и размеров и способны удовлетворить самый взыскательный спрос. Магниты могут быть изготовлены в форме диска, куба, стержня, цилиндра, призмы, бруска, кольца, сектора или шара. Кроме стандартных геометрических форм, возможно изготовление и более сложных и причудливых конфигураций — свойства материала это позволяют.

Техника безопасности про обращении с неодимовыми магнитами

Основное преимущество неодимовых магнитов это их колоссальная магнитная сила, она же представляет и наибольшую опасность в неумелых или неосторожных руках. Чем больше магнит, тем больший вред здоровью он может причинить. Большие неодимовые магниты при соударении друг о друга способны серьёзно травмировать конечности попавшие в этот момент между ними. Удар будет примерно соответствовать удару кувалды или большого молотка о наковальню. Нужно понимать, что магниты смыкаются со страшной силой и происходит это в одно мгновение. Даже опытный в обращении с магнитами человек не всегда успевает среагировать и отдёрнуть руку в нужный момент. Ещё одна неприятная особенность заключается в том, что если после удара молотком человек получает просто ушиб пальца, то в случае с магнитами, этот палец после удара остаётся зажат между ними как в тисках и вытащить его от туда довольно сложная задача. Если пытаться просто выдернуть палец из магнитов, то с большой долей вероятности они отщипнут кусок кожи с кончика пальца или же сорвут ноготь. Что бы избежать подобных последствий держите большие неодимовые магниты подальше друг от друга и от железных предметов, рекомендуемое расстояние не менее 1 метра. Если это всё же произошло и рука осталась зажата между магнитами, то в первую очередь нужно вставить между магнитами какие нибудь прокладки из немагнитных материалов — пластмассы или дерева, они предотвратят дальнейшее смыкание магнитов. После этого можно попытаться выдернуть руку самостоятельно или дожидаться приезда сотрудников МЧС. Небольшие магниты, размером 20-40 мм., тоже могут представлять опасность и при неаккуратном обращении оставляют на руках ушибы, порезы или гематомы. Очень важно обезопасить детей от контакта с неодимовыми магнитами. Даже маленькие магнитики могут представлять серьёзную угрозу здоровью ребёнка. Проглатывание маленьких магнитов может привести к крайне негативным последствиям, в этом случае нужно безотлагательно вызывать скорую помощь. Держите неодимовые магниты в недоступном для детей месте!
Большие неодимовые магниты создают вокруг себя сильное магнитное поле, во избежание поломок держите их подальше от чувствительной техники — компьютеров, внешних дисков, часов, смартфонов, кардиостимуляторов, навигационного оборудования, банковских карт и т.п. Кроме того неодимовые магниты довольно хрупкие и при сильных ударах могут раскалываться, что тоже неприятно и накладно в денежном отношении. Будьте всегда крайне внимательны и осторожны при обращении с мощными магнитами.

Как делают неодимовые магниты

Неодимовые магниты — это чудо техники, и процесс их создания сложен и тонок.

Тем не менее, наша политика на first4magnets.com заключается в том, чтобы объяснять вещи простым для понимания и применимым способом. Необязательно быть профессором химии, чтобы понять принципы, лежащие в основе создания наших магнитов.

Основными компонентами неодимового магнита являются сам неодим, железо и бор; химическое соединение, известное как NdFeb.Точные ингредиенты зависят от марки или силы производимого магнита. На first4magnets.com мы не идем на компромисс в отношении качества, большинство наших магнитов относятся к классу N42 или выше, что делает их на 20% более магнитными, чем у многих более дешевых магнитов класса N35, представленных на рынке. В отличие от многих других поставщиков магнитов мы также добавляем элемент под названием диспрозий, который заменяет часть неодима — диспрозий имеет самую высокую магнитную силу среди всех элементов и добавляется ко всем нашим неодимовым магнитам, повышая коэрцитивную силу материала и увеличивая их сопротивление размагничиванию и размагничиванию. коррозия.

Знаете ли вы? Состав неодимового магнита: неодим, железо и бор; соединение, известное как NdFeb.

ШАГ 1 — СМЕСЬ

Во-первых, все элементы, необходимые для изготовления магнита выбранной марки, помещаются в вакуумную индукционную печь, нагреваются и расплавляются для образования материала сплава. Затем эту смесь охлаждают, чтобы сформировать слитки, а затем измельчить в мельчайшие зерна в струйной мельнице. Каждое зерно обычно имеет размер всего три микрона, меньше эритроцита!

ШАГ 2 — НАЖИМ

Затем сверхмелкозернистый порошок прессуется в форме, и в то же время к форме прикладывается магнитная энергия.Магнетизм исходит от катушки с проволокой, которая действует как магнит, когда через нее проходит электрический ток. Когда смесь прессуется, направление магнетизма фиксируется! Когда структура частиц магнита совпадает с направлением магнетизма, это называется анизотропным магнитом.

ШАГ 3 — СПЕЧЕНИЕ

Это не конец процесса, напротив, на этом этапе намагниченный материал размагничивается и будет повторно намагничен позже в процессе. На этом этапе материал будет слишком мягким и рассыпчатым, чтобы его можно было использовать.Следующим шагом является нагрев материала почти до точки плавления в процессе, называемом спеканием, при котором частицы порошкового магнита сливаются вместе. Этот процесс происходит в бескислородной инертной среде.

ШАГ 4 — ОХЛАЖДЕНИЕ

Почти здесь нагретый материал быстро охлаждается с помощью техники, известной как закалка. Этот быстрый процесс охлаждения сводит к минимуму области плохого магнетизма и максимизирует производительность. Это этап, на котором необработанным магнитам придают желаемую форму, потому что они настолько твердые, что необходимы режущие инструменты с алмазным покрытием!

ШАГ 5 — ПАЛЬТО ДЛЯ ВСЕХ ПРИМЕНЕНИЙ

Последний этап перед повторным намагничиванием материала является жизненно важным.Поскольку неодимовые магниты очень твердые, что делает их склонными к поломке и сколам, их необходимо покрывать, очищать, сушить и покрывать гальваническим покрытием. Есть много различных типов покрытий, которые используются с неодимовыми магнитами, наиболее распространенным из которых является смесь никель-медь-никель, но они могут быть покрыты другими металлами и даже резиной или PTFE.

ШАГ 6 — РОЖДЕНИЕ МАГНИТА

После нанесения покрытия готовый материал повторно намагничивается, помещая его внутрь катушки, которая при прохождении электрического тока создает магнитное поле в три раза сильнее, чем требуемая сила магнита.Это настолько мощный процесс, что если магнит не удерживать на месте, он может вылететь из катушки, как пуля.

Знаете ли вы? Сверхмощные электромагниты используются для придания неодима магнетизма в процессе производства.

Наконец, каждый магнит, продаваемый first4magnets.com, проходит проверку качества перед отправкой клиенту для использования в сотнях различных приложений.

Дополнительная информация по неодимовым магнитам

Как купить неодимовые магниты

Как сделать редкоземельные магниты

Редкоземельные магниты сделаны из редкоземельных элементов, атомные номера которых находятся в диапазоне от 57 до 71.Эти элементы названы так потому, что они считались редкими, когда они были впервые обнаружены, хотя теперь известно, что они относительно распространены. Самый прочный и распространенный тип редкоземельного магнита изготовлен из сплава неодима, железа и бора. Эти магниты были очень дорогими, когда они были впервые разработаны в конце 1970-х — начале 1980-х годов, но сейчас они достаточно распространены, чтобы их можно было использовать в детских игрушках.

    Измельчить твердые слитки неодима и железа-бора в порошок.Эта операция состоит из трех отдельных этапов. Слитки механически измельчаются на крупные частицы, а затем механически измельчаются на более мелкие кусочки. На заключительном этапе эти частицы измельчаются в струйной мельнице до сферических частиц диаметром всего несколько микрон. В струйном измельчении используется газ под высоким давлением в инертной атмосфере для получения очень мелких частиц и обеспечивается высокая степень контроля над конкретным размером частиц.

    Упакуйте порошок в форму. Стальные формы будут обеспечивать окончательную форму магнита, а резиновые формы производят грубые кирпичи из неодимового сплава, которым позже будет придана форма.Сдавите резиновую форму сразу со всех сторон, этот процесс известен как изостатическое прессование.

    Приложите магнитное поле к редкоземельным магнитам во время операции прессования. Используйте магнитное поле в диапазоне 4 тесла от очень мощного электромагнита вдоль оси намагничивания магнита. Это значительно улучшит выравнивание магнитных частиц в сплаве и значительно улучшит магнитные свойства готового магнита.

    Спекание редкоземельных магнитов. Нагрейте магнит в вакууме в печи для спекания примерно до 1000 градусов Цельсия, что позволяет плавиться неодиму, но не железу или бору.Температуру необходимо очень тщательно контролировать, чтобы не увеличивать размер отдельных частиц в магните. Этот особый тип спекания известен как жидкофазное спекание и обеспечивает магнитам конечную магнитную силу.

    Формируйте кирпичи с помощью резиновых форм. Измельчите кирпичи до желаемой общей формы и нарежьте их до окончательной формы. Покройте магниты, чтобы защитить их от сколов, так как они очень хрупкие. В зависимости от конкретного применения существует множество вариантов обработки поверхности редкоземельных магнитов.Наиболее часто выбираемые металлы включают золото, никель, олово и цинк. Редкоземельные магниты также часто покрываются эпоксидной смолой.

Процесс производства магнита | Как делаются магниты

Есть несколько способов изготовления магнитов, но наиболее распространенный метод называется порошковой металлургией. В этом процессе подходящая композиция измельчается в мелкий порошок, уплотняется и нагревается, чтобы вызвать уплотнение посредством «жидкофазного спекания».Поэтому такие магниты чаще всего называют спеченными магнитами. Этим методом изготавливаются ферритовые, самариево-кобальтовые (SmCo) и неодим-железо-борные (нео) магниты. В отличие от феррита, который представляет собой керамический материал, все магниты из редкоземельных элементов представляют собой сплавы металлов.


Подходящее сырье плавится в вакууме или в инертном газе в индукционной плавильной печи. Расплавленный сплав заливается в форму на охлаждающую пластину или обрабатывается в машине для разливки ленты — устройстве, которое формирует тонкую непрерывную металлическую полосу.Эти затвердевшие металлические «куски» измельчаются и измельчаются до образования мелкого порошка диаметром от 3 до 7 микрон. Этот очень мелкий порошок химически активен, способен самовоспламеняться на воздухе и поэтому должен быть защищен от воздействия кислорода.

Существует несколько методов уплотнения порошка, и все они включают выравнивание частиц таким образом, чтобы в готовой детали все магнитные области были направлены в заданном направлении. Первый метод называется осевым или поперечным прессованием.Здесь порошок помещается в полость инструмента на прессе, а пуансоны входят в инструмент для сжатия порошка. Непосредственно перед уплотнением наносится выравнивающее поле. Уплотнение «вмерзает» в это выравнивание. При осевом (параллельном) прессовании выравнивающее поле параллельно направлению уплотнения. При поперечном (перпендикулярном) прессовании поле перпендикулярно давлению уплотнения. Поскольку мелкие частицы порошка вытянуты в направлении магнитного выравнивания, поперечное прессование обеспечивает лучшее выравнивание и, следовательно, более энергоемкий продукт.При прессовании порошка в гидравлических или механических прессах форма ограничивается простыми поперечными сечениями, которые можно вытолкнуть из полости матрицы.

Второй метод уплотнения называется изостатическим прессованием, при котором гибкий контейнер заполняется порошком, контейнер герметизируется, применяется выравнивающее поле и контейнер помещается в изостатический пресс. С помощью жидкости, будь то гидравлическая жидкость или вода, давление прикладывается к внешней стороне герметичного контейнера, равномерно уплотняя его со всех сторон.Основное преимущество изготовления магнитных блоков с помощью изостатического прессования заключается в том, что можно изготавливать блоки очень большого размера — часто до 100 x 100 x 250 мм, и поскольку давление прикладывается одинаково со всех сторон, порошок остается в хорошем выравнивании с получением максимально возможной энергии. .

Прессованные детали упаковываются в «лодочки» для загрузки в вакуумную печь для спекания. Конкретные температуры и наличие вакуума или инертного газа зависят от типа и марки производимого магнита.Оба редкоземельных материала нагревают до температуры спекания и дают возможность уплотняться. SmCo требует дополнительной обработки растворением после спекания. После достижения комнатной температуры оба материала подвергаются отпускной термообработке при более низкой температуре. Во время спекания магниты линейно сжимаются примерно на 15-20%. Готовые магниты имеют шероховатую поверхность и приблизительные размеры. У них также нет внешнего магнитного поля.


ОТДЕЛКА

Спеченные магниты подвергаются некоторой обработке, которая может варьироваться от гладкого и параллельного шлифования, шлифования по внешнему или внутреннему диаметру или нарезки магнитов блоков на более мелкие детали.Материал магнита является хрупким и очень твердым (Rockwell C 57–61) и требует алмазных кругов для резки и алмазных или специальных абразивных кругов для шлифования. Нарезка ломтиками может выполняться с превосходной точностью, часто устраняя необходимость в последующем шлифовании. Все эти процессы необходимо проводить очень осторожно, чтобы свести к минимуму выкрашивание и растрескивание.

В некоторых случаях окончательная форма магнита способствует обработке фигурным алмазным шлифовальным кругом, например, дуги и буханки хлеба.Продукт приблизительно окончательной формы пропускается через шлифовальный круг, который обеспечивает точные размеры. Для мелкосерийного производства этих сложных форм обычно используется электроэрозионная обработка. Простые двухмерные профили, EDM быстрее, а более сложные формы с использованием 3-5-осевых станков работают медленнее.

Цилиндрические детали могут быть запрессованы в форму, обычно в осевом направлении, или просверлены из блочного материала. Эти более длинные цилиндры, сплошные или с внутренним диаметром, позже могут быть разрезаны на тонкие магниты в форме шайб.

Для крупносерийного производства, обычно 5000 или более штук, обычно более экономично изготавливать оснастку и изготавливать по форме. Для небольших тиражей или для определенных свойств может быть предпочтительнее обрабатывать магниты из блока. При прессовании минимизируется отход материала, например, мелкой стружки. Количество заказа, форма, размер и сложность детали будут влиять на решение о том, какой метод производства предпочтительнее. Срок поставки также повлияет на решение, поскольку изготовление ограниченных партий из складских блоков, вероятно, происходит быстрее, чем заказ инструментов для штамповки деталей.Стоимость этих вариантов не всегда проста. Рекомендуем связаться с нами, чтобы обсудить варианты.

Хотя из этих сплавов можно изготавливать магниты сложной формы, эти материалы лучше всего подходят для изготовления более простых форм. Отверстия, большие фаски или щели обходятся дороже. Допуски труднее удерживать в более сложных формах, которые могут привести к вариациям поля магнитного потока и потенциальному физическому напряжению детали в сборке.

Обработанные магниты будут иметь острые края, которые склонны к сколам.Покрытие вокруг острого края также проблематично. Наиболее распространенный метод уменьшения резкости — это вибрационное хонингование, часто называемое вибрационным галтованием и выполняемое в абразивной среде. Указанное закругление кромки зависит от требований к последующей обработке и обращению, но чаще всего это радиус от 0,005 до 0,015 дюйма (от 0,127 до 0,38 мм).

Магниты

Neo, которые склонны к ржавлению или вступают в химические реакции, почти всегда имеют покрытие. Самарий-кобальт, естественно, более устойчив к коррозии, чем нео, но иногда может иметь покрытие.Наиболее распространенные защитные покрытия включают эпоксидное покрытие, нанесенное сухим напылением, электронное покрытие (эпоксидное покрытие), электролитический никель, алюминиевый IVD и комбинации этих покрытий. Магниты также могут быть покрыты конверсионными покрытиями, такими как фосфаты и хроматы цинка, железа или марганца. Конверсионные покрытия обычно подходят для временной защиты и могут образовывать нижний слой для эпоксидного покрытия или верхний слой для усиления защиты от алюминиевого IVD.


После завершения изготовления магниту требуется «зарядка» для создания внешнего магнитного поля.Это может быть выполнено в соленоиде — полом цилиндре, в который могут быть помещены магниты различных размеров и форм — или с помощью приспособлений, предназначенных для создания уникальных магнитных узоров. Также можно намагничивать большие сборки, чтобы избежать манипуляций с этими мощными магнитами и их сборки в их намагниченном состоянии. Требования к намагничивающему полю значительны. Этот, как и многие другие аспекты выбора магнита, следует обсудить с нашими инженерами и производителями.

В некоторых случаях магниты требуют стабилизации или калибровки.Стабилизация — это процесс предварительной обработки магнитов внутри или вне сборки, так что последующее использование не приведет к дополнительной потере выходного магнитного потока. Калибровка выполняется для сужения диапазона выходных характеристик группы магнитов. Эти процессы требуют обработки в печи при повышенной температуре или обратного импульса в намагничивателе в полях ниже полной мощности сбоя. Существует несколько факторов, влияющих на термостабилизацию, и важно очень тщательно контролировать этот процесс, чтобы гарантировать надлежащие характеристики конечного продукта.

Как изготавливаются неодимовые магниты? Одиннадцать (не очень) простых шагов

Дом / Блоги и видео / Изготовление неодимового магнита — одиннадцать (не очень) простых шагов

25 апреля 2018 г.

Изготовление неодимового магнита — одиннадцать (не очень) простых шагов

Автор: Майкл Брэнд, президент SM Magnetics, президент и главный операционный директор

Производство неодимовых магнитов требует строго контролируемого технологического процесса.Ниже приводится схема каждого этапа процесса без всех технических деталей. Если бы все технические детали были добавлены, этот краткий пошаговый обзор превратился бы в роман. Итак, наслаждайтесь кратким изложением и помните, что процесс чрезвычайно технический, требует огромных капиталовложений и не для слабонервных.

Шаг 1: Сырье: необходимо тщательно соблюдать рецепт

Неодимовые магниты выпускаются марок от Neodymium 28 до Neodymium 55.Для получения желаемых результатов Br, Hci, Hcb и BHmax очень важно начинать с правильной смеси исходных материалов. Это немного похоже на выпечку хлеба, но вместо муки, соли, дрожжей и т. Д. Вы измеряете точную комбинацию Nd, Fe, B, Dy и некоторых других элементов меньшего объема. И, используя аналогию с хлебом немного дальше, убедитесь, что вы добавили достаточно каждого ингредиента, чтобы приготовить около 500 буханок хлеба.

Шаг 2: Растапливание ингредиентов: это должно быть ОЧЕНЬ горячий горшок

После того, как правильная комбинация материалов взвешена и подтверждена, ожидается процесс плавления.Все материалы обрабатываются, поэтому все материалы плавятся вместе, чтобы превратить твердое сырье в расплавленную жидкость. После превращения в жидкость все материалы были объединены, чтобы сформировать жидкую форму магнитного материала.

Шаг 3: Литье на полоску: они выглядят как хлопья

После завершения процесса плавления и полного объединения материалов расплавленная жидкость будет быстро охлаждаться путем выливания ее на холодное вращающееся колесо.Этот процесс известен как «ленточное литье». Это быстро охлаждает расплавленную жидкость и превращает ее в «хлопья» (без глазури), напоминающие знаменитые хлопья для завтрака. Теперь каждая хлопья представляет собой комбинацию сырья, выбранного на этапе 1.

Шаг 4: Водородная декрепитация (HD): все, что использует водород, должно включать осторожность

Здесь начинается более технический. Водородная декрепитация (HD) — это метод подготовки полосовых литых материалов для струйного фрезерования.Этот процесс разбивает хлопья на части, чтобы они были больше похожи на порошок размером примерно 250-300 микрон. Во время водородной декрепитации отлитые из ленты «хлопья» неодимового материала помещаются в камеру и подвергаются вливанию водорода, который разрушает чешуйки, не повреждая материалы.

Шаг 5: Струйное фрезерование: смертельный опыт

Для изготовления неодимового магнита требуется, чтобы размер порошка был очень маленьким, обычно около 5 микрон.В процессе струйного измельчения «хлопья» из процесса HD помещаются в систему струйной мельницы, где они вращаются в торнадоическом процессе. Когда «хлопья» сталкиваются, они мягко распадаются и уменьшаются в размерах, не повреждая материал. Когда размер частиц составляет около 5 микрон, они могут проходить через экран в сосуд, который выглядит как капсула времени, лишенная кислорода, так что порошок не окисляется. Теперь эти 5-микронные частицы готовы к следующему этапу — прессованию. Чтобы попытаться изобразить эти частицы, снова используя аналогию с выпечкой, они будут эквивалентны «муке», если бы вы выпекали хлеб.ПРИМЕЧАНИЕ. Поскольку кислород является врагом неодимовых магнитов, очень важно держать этот порошок («муку») вдали от любых форм кислорода. Воздействие кислорода поставит под угрозу желаемый результат и, возможно, сделает непригодным для использования партию материала.

Шаг 6: Прессование и ориентация материала: требуется магнитное поле

После завершения струйного измельчения получается емкость, полная «мукообразного» порошка, который готов к прессованию. Этот шаг фактически представляет собой 2 процесса в одном: прессование и Ориентация материала.Вот где есть неправильное представление о магнитах. Принято считать, что магнит будет прижиматься к точному размеру и форме, определенным на чертеже клиента. Реальность такова, что прессование производит блоки или цилиндры, достаточно большие, чтобы их можно было обработать на станки меньшего размера. Так, например, размер одного из прессованных блоков может составлять примерно 3 x 3 x 2,5 дюйма. Затем этот размер можно обработать (как описано в шаге 8) до нужного размера и формы, как указано на чертеже. При нажатии на блок или цилиндр во время прессования прикладывается магнитное поле.Назначение этого магнитного поля — определить направление ориентации внутри материала. Таким образом, если блок сжимается размером 3 x 3 x 2,5 дюйма, и магнитное поле, прикладываемое во время прессования, ориентирует частицы внутри блока так, чтобы его направление ориентации проходило через размер 2,5 дюйма, то после прессования После завершения, этот материал закреплен, и единственный способ намагничивания материала — это измерение через 2,5 дюйма. Хотя этот блок материала теперь является магнитным, на самом деле он не намагничен.Этот процесс произойдет после того, как шаги 7-10 будут завершены и готовый магнит прибудет на шаг 11. Перед тем, как этот прессованный блок вынут из пресса, его оборачивают в бумагу, похожую на вощеную бумагу, и герметизируют вакуумом, чтобы не допустить воздействия на него кислород. Защита от кислорода имеет решающее значение на каждом этапе производства магнитов.

Щелкните здесь, чтобы просмотреть / купить магниты в Интернете на SuperMagnetMan

Шаг 7: Изостатическое прессование: готово!

На самом деле процесс прессования состоит из 2 этапов…..первый указан в шаге 6 выше, второй — изостатический пресс, чтобы сделать блок материала более плотным и компактным. Этот процесс занимает всего пару минут и требует помещения обернутых блоков материала в масляный пресс. Оказавшись внутри изостатического пресса, создается давление, чтобы сжать материал вместе, чтобы обеспечить наилучшие магнитные свойства.

Шаг 8: Спекание: теперь становится действительно жарко

После прессования материал разворачивают в контролируемой среде и помещают в печь для спекания, чтобы превратить блок из прессованного порошка в твердый блок материала.Во время этого процесса очень точно программируются время, температура и цикл нарастания. Кроме того, эта часть процесса гарантирует, что внутренняя структура материала задана. После завершения цикла спекания будет взят образец из нескольких блоков партии и протестирован для подтверждения происхождения материала.

Шаг 9: Обработка: давайте определим необходимую форму и размер

Отправной точкой любого проекта является рисунок, и магнит не исключение.После завершения процесса спекания и подтверждения происхождения материала самое время использовать чертеж для определения размера и формы детали. Этот этап включает в себя резку, шлифование, электроэрозионную обработку и, возможно, другое оборудование для изготовления детали в соответствии с чертежом. Размер, форма и допуски будут определять наилучшие необходимые процессы обработки, необходимые инструменты и подходящее оборудование. После того, как весь процесс обработки определен и настроен, пришло время изготовить деталь. Небольшое примечание об обработке магнитов….обработка магнита требует времени. Магниты, как правило, хрупкие. Это означает, что обработка магнита до конечного размера из блока материала требует более длительных скоростей подачи и циклов, которые не такие быстрые, как резка стали, дерева или пластика.

Шаг 10: Покрытие / покрытие: Какое правильное покрытие?

Список и характеристики покрытий обширны и изложены в одном из наших предыдущих постов на https://supermagnetman.com/blogs/news/the-characteristics-of-magnet-coatings.Большинство магнитов имеют покрытие Ni-Cu-Ni, однако выбор подходящего покрытия должен определяться областью применения. Начните с определения окружающей среды, температуры и любых других факторов, которые могут повлиять на магнит, и тогда можно будет выбрать подходящее покрытие.

Шаг 11: Намагничивание: последний выстрел (электрического тока) и у нас есть магнит!

Материал был выбран и скомбинирован при ленточном литье. При прессовании был сформирован блок, и изготовлен магнит правильной формы и размера.Покрытие нанесено, и магнит готов. Ну почти полный. Последний шаг — намагничивание. Намагничивание происходит, когда материал помещается в намагничивающую катушку, и намагничиватель подает большое количество напряжения через намагничивающую катушку. Эта энергия передается в магнит, и домены внутри магнита выстраиваются в одном направлении, создавая северный и южный полюсы. Звучит просто, правда? Что ж, этот процесс включает в себя рассчитанное количество напряжения, правильную катушку, правильное размещение магнитов в катушке, правильную настройку частоты импульсов намагничивающего устройства и постоянное охлаждение намагничивающей катушки, чтобы обеспечить насыщение магнита.Таким образом, намагничивание магнита — это наука сама по себе, и без надлежащего оборудования и опыта ваш магнит останется простым куском металла вместо магнита.

О SM Magnetics: SM Magnetics — это частная компания, предоставляющая помощь с постоянными магнитами, магнитным дизайном и оптимизацией, инженерной поддержкой и производством. SuperMagnetMan — это онлайн-подразделение SM Magnetics, предлагающее неодимовые магниты и другие материалы.


Делиться:

Как делают неодимовые магниты

Неодим, железо, бор — это сплав, состоящий в основном из комбинации неодима, железа, бора, кобальта и различных уровней диспрозия и празеодима.

Точный химический состав NdFeB зависит от марки NdFeB. Диспрозий и празеодим добавляются в качестве замены некоторого количества неодима для улучшения коррозионной стойкости и улучшения Hci (внутренней коэрцитивной силы) Neo.Пример композиции приведен ниже.

Типовой состав сплава NdFeB

Основные элементы в NdFeB Массовые проценты
Неодим (Nd) 29% — 32%
Железо (Fe) 64,2% — 68,5%
Бор (B) 1,0% — 1,2%
Алюминий (Al) 0,2% — 0,4%
Ниобий (Nb) 0.5% -1%
Диспрозий (Dy) 0,8% -1,2%

Магниты из неодима, железа и бора производятся следующим образом:

Металлический элемент неодим первоначально отделяется от очищенных оксидов редкоземельных элементов в электролитической печи. «Редкоземельные» элементы — это лантаноиды (также называемые лантаноидами), и этот термин происходит от необычных оксидных минералов, используемых для выделения элементов. Хотя используется термин «редкая земля», это не означает, что химических элементов мало.Редкоземельные элементы в изобилии, например, Неодимовый элемент встречается чаще, чем золото. Неодим, железо и бор измеряются и помещаются в вакуумную индукционную печь для образования сплава. Также добавляются другие элементы, необходимые для определенных классов, например, Кобальт, медь, гадолиний и диспрозий (например, для повышения устойчивости к коррозии). Смесь плавится за счет высокочастотного нагрева и плавления смеси.

Говоря упрощенно, сплав «Neo» похож на смесь для лепешек, причем каждая фабрика имеет свой собственный рецепт для каждой марки.Затем полученный расплавленный сплав охлаждают с образованием слитков сплава. Затем слитки сплава разбиваются путем декрепитации водорода (HD) или гидрогенизационной диспропорционирующей десорбции и рекомбинации (HDDR) и измельчаются в струйной мельнице в атмосфере азота и аргона до порошка микронного размера (размером около 3 микрон или меньше). Этот неодимовый порошок затем загружается в бункер, чтобы произошло сжатие магнитов.

Существует три основных метода прессования порошка — осевое и поперечное прессование.Для штамповки требуется инструмент, чтобы сделать полость немного больше требуемой формы (поскольку спекание вызывает усадку магнита). Порошок неодима поступает в полость матрицы из бункера и затем уплотняется в присутствии внешнего магнитного поля. Внешнее поле прикладывается либо параллельно силе уплотнения (такое осевое прессование не так часто встречается), либо перпендикулярно направлению уплотнения (это называется поперечным прессованием). Поперечное прессование дает NdFeB более высокие магнитные свойства.

Третий способ прессования — изостатическое прессование. Порошок NdFeB помещается в резиновую форму и помещается в большой заполненный жидкостью контейнер, в котором затем повышается давление жидкости. Снова присутствует внешнее намагничивающее поле, но порошок NdFeB спрессован со всех сторон. Изостатическое прессование обеспечивает наилучшие магнитные характеристики неодима, железа и бора. Используемые методы различаются в зависимости от требуемой степени «Neo» и определяются производителем.

Внешнее намагничивающее поле создается соленоидной катушкой, установленной по обе стороны от уплотняющего порошка.Магнитные домены порошка NdFeB совпадают с приложенным намагничивающим полем — чем однороднее приложенное поле, тем однороднее магнитные характеристики неодимового магнита. Когда неодимовый порошок прижимается матрицей, направление намагничивания фиксируется — неодимовый магнит получает предпочтительное направление намагничивания и называется анизотропным (если бы не было приложено внешнее поле, можно было бы намагнитить магнит в любое направление, которое называется изотропным, но магнитные характеристики будут намного ниже, чем у анизотропного магнита, и обычно ограничиваются связанными магнитами).

Редкоземельные магниты обладают одноосной магнитокристаллической анизотропией, то есть имеют уникальную осевую кристаллическую структуру, соответствующую легкой оси намагничивания. В случае Nd2Fe14B легкая ось намагничивания является осью c сложной тетрагональной структуры. В присутствии внешнего намагничивающего поля он выравнивается по оси c, становясь способным быть полностью намагниченным до насыщения с очень высокой коэрцитивной силой.

Перед тем, как нажатый магнит NdFeB будет отпущен, ему дается размагничивающий импульс, чтобы он оставался ненамагниченным.Спрессованный магнит называется «зеленым» магнитом — его легко заставить рассыпаться на части, и его магнитные характеристики не очень хороши. Затем «зеленый» неодимовый магнит спекается для придания ему окончательных магнитных свойств. Процесс спекания тщательно контролируется (необходимо соблюдать строгий температурный и временной профиль) и происходит в инертной (бескислородной) атмосфере (например, аргоне). Если присутствует кислород, образующиеся оксиды нарушают магнитные характеристики NdFeB. Процесс спекания также вызывает усадку магнита, поскольку порошок плавится.Усадка придает магниту форму, близкую к требуемой, но усадка обычно бывает неравномерной (например, кольцо может сжиматься и становиться овалом). В конце процесса спекания применяется заключительная быстрая закалка для быстрого охлаждения магнита. Это сделано для минимизации нежелательного образования «фаз» (упрощенно, вариантов сплава с плохими магнитными свойствами), которое происходит при температурах ниже температуры спекания. Быстрая закалка максимизирует магнитные характеристики NdFeB. Поскольку процесс спекания вызывает неравномерную усадку, форма неодимового магнита не будет соответствовать требуемым размерам.

Следующий этап — обработка магнитов с требуемыми допусками. Поскольку требуется механическая обработка, неодимовые магниты при нажатии становятся немного больше, например больший внешний диаметр, меньший внутренний диаметр и более высокий для кольцевого магнита. Стандартные допуски на размеры магнита составляют +/- 0,1 мм, хотя +/- 0,05 мм можно получить за дополнительную плату. Возможность более жестких допусков зависит от формы и размера магнита и может быть недостижимой. Отметим, что неодимовый магнит очень жесткий.Попытка вырезать отверстия в NdFeB стандартным сверлом или твердосплавным наконечником приведет к притуплению сверла. Необходимо использовать алмазные режущие инструменты (алмазные шлифовальные круги с ЧПУ, алмазные сверла и т. Д.) И станки для резки проволоки (EDM). Порошок стружки NdFeB, образующийся во время механической обработки, необходимо охлаждать жидкостью, иначе он может спонтанно воспламениться. Для неодимовых блочных магнитов можно сэкономить на использовании гораздо более крупных магнитных блоков, изготовленных изостатическим прессованием, и разрезания их на более мелкие неодимовые блоки желаемого размера.Это делается для скорости и для массового производства (при наличии достаточного количества отрезных и шлифовальных машин) и известно как «ломтики и кубики». После получения окончательных размеров магнита путем механической обработки на неодимовый магнит наносится защитное покрытие. Обычно это покрытие Ni-Cu-Ni.

Магнит необходимо очистить, чтобы удалить стружку / порошок после обработки. Затем его тщательно просушивают перед нанесением покрытия. Крайне важно, чтобы сушка была тщательной, иначе вода заблокируется на неодимовом магните, и магнит будет корродировать изнутри.Покрытие очень тонкое, например. 15-35 микрон для Ni-Cu-Ni (1 микрон составляет 1/1000 мм). В настоящее время доступны следующие покрытия: — Никель-Медно-Никель (Ni-Cu-Ni) [стандарт], Эпоксидная смола, Цинк (Zn), Золото (Au), Серебро (Ag), Олово (Sn), Титан. (Ti), нитрид титана (TiN), парилен C, Everlube, хром, PTFE («тефлон»; белый, черный, серый, серебристый), Ni-Cu-Ni плюс эпоксид, Ni-Cu-Ni плюс резина, Zn плюс Резина, Ni-Cu-Ni плюс парилен C, Ni-Cu-Ni плюс PTFE, олово (Sn) плюс парилен C, хромат цинка, фосфатная пассивация и без покрытия (т.е.е. голый — не рекомендуется, но иногда требуется заказчиком). Возможны другие покрытия. Не рекомендуется использовать магнит без защитного слоя.

Краткое описание производства магнитов NdFeB:

Как безопасно разделить большой неодимовый магнит:

неодимовых магнитов (NdFeB) | Eclipse Magnetics

Какие классы и формы доступны для неодимовых магнитов?

Есть разные марки неодимовых магнитов, например N35, N38, N42, N38SH.. и т.д. Каждый тип неодимового магнита оценивается в соответствии с его материалом. Магнитная сила увеличивается с классом магнита (число после буквы «N»). Современные высококачественные неодимовые магниты — N52. Любая буква, следующая за классом, указывает номинальную температуру магнита. Магниты без букв, следующих за маркой, являются неодимовыми магнитами стандартной температуры. Таким образом, никакая буква на стандартном неодимовом магните не указывает его максимальную рабочую температуру, 80 ° C.

Все наши неодимовые магниты соответствуют требованиям REACH и ROHS.Они не содержат SVHC, а неодим производится в соответствии со стандартами контроля качества ISO9001 и ISO14001. Неодимовые магниты NdFeB обычно поставляются в виде блоков, дисков, колец, дуг, сфер, треугольников, трапеций и многих других форм в качестве стандартных и нестандартных изделий. Мы также производим магнитные сборки NdFeB.

Наиболее подходящая температура для неодимовых магнитов

На характеристики неодимового магнита влияет температура. С понижением температуры неодимовые магниты становятся сильнее и даже лучше работают при более низких температурах.Утверждается, что неодимовые магниты могут хорошо работать при температурах до -130 ° C. Некоторые марки неодимовых магнитов также могут подвергаться воздействию очень высоких температур, прежде чем они начнут изменять свои свойства, и временно или навсегда. , теряют свой магнетизм.

Неодимовые магниты уменьшают магнитную силу на 0,11% на каждый градус Цельсия повышения температуры. Если максимальная рабочая температура не превышена, эта небольшая потеря может быть полностью возмещена при охлаждении.В случае его превышения небольшие потери не будут восстановлены при охлаждении. Выходное магнитное поле неодимовых магнитов увеличивается с температурой до 80 ° C, и после этого они начинают терять свою эффективность. Существуют различные уровни температурного рейтинга неодима 35 (M, H, SH, UH, EH или AH). Версии для более высоких температур (NxxM, NxxH, NxxSH, NxxUH, NxxEH, NxxVH / AH) рассчитаны на температуру от + 100 ° C до максимум +230 ° C. Магнитные характеристики будут продолжать снижаться после последовательных циклов горячего-холодного .Без тщательной разработки магнитной цепи вы не должны использовать эти магниты при температурах выше 130 ° C (240 ° F).

Постоянные поля размагничивания и излучение также могут влиять на неодимовые магниты, поэтому всегда необходимо полностью понимать магнит в соответствии с окружающей средой, в которой он будет использоваться.

Неодимовые магниты требуют обработки поверхности

Во влажных условиях магниты без покрытия поверхности (например, гальванического покрытия) могут ржаветь. Следовательно, все неодимовые магниты или магниты из редкоземельных элементов должны иметь защитное покрытие в той или иной форме, чтобы минимизировать и в идеале предотвратить коррозию.Не рекомендуется использовать без покрытия. Защитное покрытие по умолчанию / стандартное покрытие Ni-Cu-Ni. Существуют и другие покрытия / отделки (в настоящее время доступно более 40 видов отделки). Если для NdFeB требуется максимальная коррозионная стойкость, рассмотрите возможность использования увеличенного диапазона коррозионной стойкости сплавов NdFeB.

Что такое магнит из редкоземельных элементов

Магниты из редкоземельных элементов являются жизненно важным компонентом, который используется во многих современных технологиях и промышленных приложениях, но не менее популярны для использования в хобби, ремеслах и дома из-за их производительности и доступности.

Когда пространство ограничено, а сила превыше всего, лучше всего подходят редкоземельные магниты.

Что такое редкоземельные магниты?

Термин «редкоземельные элементы» может вводить в заблуждение, поскольку редкоземельные металлы относительно многочисленны в земной коре. Однако они редко встречаются в крупных концентрированных отложениях, а вместо этого рассредоточены среди других элементов. Магниты из редкоземельных металлов являются самыми сильными постоянными магнитами из имеющихся и имеют значительно более высокие характеристики, чем ферритовые (керамические) и алнико-магниты.

Существует два типа материалов для редкоземельных магнитов — неодим (Nd-Fe-B) и самарий-кобальт (SmCo). Оба материала бывают разных классов (прочности) и обладают разными магнитными и физическими свойствами.

Неодимовые магниты , более сильный из двух, состоят из сплавов, в основном из неодима, железа и бора. Эти магниты имеют тенденцию быть хрупкими и подвержены коррозии. Производители обычно покрывают этот материал никелем, чтобы защитить его от окисления.

Атрибуты редкоземельного неодима

Общие области применения редкоземельного неодима

  • Магнитные сепараторы
  • Линейные приводы
  • Микрофонные сборки
  • Серводвигатели
  • Двигатели постоянного тока (автомобильные стартеры)
  • Компьютерные жесткие диски, принтеры и динамики
  • Медицинское оборудование

Самарий Кобальтовые магниты изготавливаются в основном из сплавов самария, кобальта и железа.Самариево-кобальтовые магниты, как правило, трудно поддающиеся размагничиванию, имеют умеренно высокие рабочие температуры и высокую устойчивость к коррозии. На эти магниты также можно наносить покрытие.

Атрибуты редкоземельного самария-кобальта

Общие области применения редкоземельного самария-кобальта

  • Компьютерные дисководы и датчики
  • Трубки бегущей волны
  • Линейные приводы и спутниковые системы
  • Двигатели, в которых стабильность температуры жизненно важна

Master Magnetics посвящен тому, чтобы помочь вам выбрать правильный магнит для вашего приложения.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *