Skip to content

Коэффициент уплотнения грунтов: Определение коэффициента уплотнения грунта в «Гектар Групп»

Содержание

Определение коэффициента уплотнения грунта | Геологические изыскания

Результаты работ

Коэффициент уплотнения, полученный в ходе исследований, является основной для выявления несущей способности почвы. Таким образом, с помощью данного показателя производится оценка пригодности участка для возведения проектируемого сооружения. Полученный результат сравнивают с допустимыми нормативами и требованиями проекта.

Важно знать!

Для масштабных проектов, которые оказывают существенную нагрузку на грунт, наряду с определением несущей способности, обязательно осуществляют расчет значений по предельным деформациям.

Норма коэффициента уплотнения

Норма коэффициента уплотнения задается проектировщиками, в соответствии с задачами, целями и особенностями конкретного проекта. Задача изыскателей — определить, соответствуют ли фактические показатели заявленным требованиям.

Допустимые коэффициенты уплотнения почвы определяет нормативная база СНиП (пункты 3.02.01-87 и СП 45.13330.2012), обновленная в 2013-2014 гг.

Здесь можно найти конкретные данные касательно допустимого уплотнения для определенных видов грунта и грунтовых подушек, которые используются при строительстве разных видов фундамента и строений, в том числе и подземных.

Коэффициент уплотнения варьируется в пределах от 0 до 1. Фактически он отражает уровень уплотненности почвы.

Для закладки основания бетонного ленточного фундамента нормой считается параметр уплотненности в >0,95 балла.

Стоимость работ

Наши эксперты проведут необходимые исследования и предоставят достоверные данные, которые исключат необходимость переделок на этапах проектирования и строительства.

Стоимость определения коэффициента уплотнения грунтового покрытия рассчитывается индивидуально в каждом конкретном случае.

Оставьте заявку на сайте или свяжитесь с нами любым удобным способом, чтобы получить бесплатную консультацию инженера-геолога. Мы оперативно рассчитаем стоимость проверки уплотнения почвы на вашем объекте.

Коэффициент уплотнения грунта

Коэффициент уплотнения грунта – это отношение фактической плотности грунта (скелета грунта) в насыпи, к максимальной плотности грунта (скелета грунта).

Например:

Что значит коэффициент уплотнения 0,95?

Коэффициент уплотнения грунта 0,95 означает, что фактическая плотность грунта составляет 95% от максимально возможной плотности грунта (определяется в грунтовой лаборатории).

Нормативные коэффициенты уплотнения приведены в таблице в конце страницы.

Данный коэффициент определяют следующими методами:

1. Метод режущего кольца — отбирают пробы грунта из уплотняемого слоя и производят испытание в грунтовой лаборатории в соответствии с ГОСТ 5180-2015 «Грунты. Методы лабораторного определения физических  характеристик». Главный недостаток метода: длительные испытания (транспортирование и испытание в лаборатории)

Режущие кольца для определения коэффициента уплотнения грунта

2. Динамическим плотномером грунта (ДПГ) — принцип действия основан на методе падающего груза, при котором измеряется сила удара и деформация грунта. Применяется совместно с методом режущего кольца с целью ускорения определения коэффициента уплотнения грунта.

  • На начальном этапе ДПГ калибруется в нескольких местах отбора проб по данным испытаний по методу режущего кольца (ГОСТ 5180-2015)
  • Затем по данным калибровки определяют коэффициент уплотнения в остальных точках, что позволяет получить результаты сразу на площадке.

Требуемый коэффициент уплотнения грунта (согласно СНиП 3.02.01-87) обратной засыпки или насыпи представлен в таблице 1.

Таблица 1. Коэффициент уплотнения грунта

Тип грунтаКонтрольные значения коэффициентов уплотнения kcom
при нагрузке на поверхность уплотненного грунта, МПа (кг/см2)
0
0,05 – 0,2 (0,5 – 2)
св. 0,2 (2)
при общей толщине отсыпки, м
до 22,01-44,01-6св. 6до 22,01-44,01-6св. 6до 22,01-44,01-6св. 6
Глинистые0,920,930,940,950,940,950,960,970,950,960,970,98
Песчаные0,910,920,930,94
0,930,940,950,960,940,950,960,97

 

 

 

 

 

 

Таким образом, например, коэффициент уплотнения грунта обратной засыпки выполненной из песка, мощностью отсыпки 2,5 м и нагрузкой на насыпь 0,3МПа составляет 0,95

Как достичь требуемого коэффициента уплотнения?

Удельный вес грунта в соответствии с ГОСТ

Коэффициент первоначального разрыхления грунта

Коэффициенты уплотнения сыпучих материалов для строительства

Сущность определения коэффициента уплотнения гравия, песка, щебня и керамзита можно кратко охарактеризовать следующим образом. Это величина, равная отношению плотности сыпучего стройматериала к его максимальной плотности.

Данный коэффициент для всех сыпучих тел различается. Его средняя величина для удобства пользования закреплена в нормативных актах, соблюдение которых обязательно для всех строительных работ. Поэтому, если потребуется, например, узнать, какой коэффициент уплотнения песка, достаточно будет просто заглянуть в ГОСТ и найти требуемое значение. Важное замечание: все величины, приведенные в нормативных актах, являются усредненными и могут изменяться в зависимости от условий транспортировки и хранения материала.

Необходимость учета коэффициента уплотнения обусловлена простым физическим явлением, знакомым практически каждому из нас. Для того чтобы понять сущность этого явления, достаточно вспомнить, как ведет себя вскопанная земля. Поначалу она рыхлая и достаточно объемная. Но если на эту землю взглянуть через несколько дней, то уже станет заметно, что грунт «осел» и уплотнился.

То же самое происходит и со строительными материалами. Сначала они лежат у поставщика в утрамбованном собственным весом состоянии, затем при погрузке происходит «взрыхление» и увеличение объема, а потом, после выгрузки на объекте, снова происходит естественная трамбовка собственным весом. Помимо массы, на материал будет воздействовать атмосфера, а точнее, ее влажность. Все эти факторы учтены в соответствующих ГОСТах.

Строительные материалы при длительном хранении уплотняются под собственным весом

Щебень, доставляемый автомобильным или железнодорожным транспортом, взвешивают на весах. При поставке водными видами транспорта вес высчитывается по осадке судна.

 

Как правильно пользоваться коэффициентом

Важным этапом любых строительных работ становится составление всех смет с обязательным учетом коэффициентов уплотнения сыпучих материалов. Это необходимо делать для того, чтобы заложить в проект правильное и необходимое количество стройматериалов и избежать их переизбытка или нехватки.

Как же правильно воспользоваться коэффициентом? Нет ничего проще. Например, для того, чтобы узнать, какой объем материала получится после утряски в кузове самосвала или в вагоне, необходимо найти в таблице требуемый коэффициент уплотнения грунта, песка или щебня и разделить на него закупленный объем продукции. А если требуется узнать объем материалов до перевозки, то надо будет произвести не деление, а умножение на соответствующий коэффициент. Допустим, если куплено у поставщика 40 кубометров щебня, то, значит, в процессе транспортировки это количество превратится в следующее: 40 / 1,15 = 34,4 кубометра.

Таблица коэффициентов уплотнения сыпучих строительных материалов
Вид материалаКупл (коэффициент уплотнения)
ПГС (песчано-гравийная смесь)1.2 (ГОСТ 7394-85)
Песок для строительных работ1.15 (ГОСТ 7394-85)
Керамзит1.15 (ГОСТ 9757-90)
Щебень (гравий)1.1 (ГОСТ 8267-93)
Грунт1.1-1.4 (по СНИП)
Все значения, приведенные в таблице, являются среднестатистическими и могут варьироваться в зависимости от конкретных условий доставки, хранения и состава материала.

 

Работы, связанные с полной цепочкой перемещения песчаных масс со дна карьера до строительной площадки, должны производиться с учетом относительного коэффициента запаса песка и грунта на уплотнение. Это величина, показывающая отношение весовой плотности твердой структуры песка к его весовой плотности на участке отгрузки поставщика. Чтобы определить необходимое количество песка, обеспечивающее запланированный объем, нужно этот объем умножить на коэффициент относительного уплотнения.

Помимо знания относительного коэффициента, приведенного в таблице, правильное использование ГОСТа подразумевает обязательный учет следующих факторов доставки песка на строительную площадку:

  • физические свойства и химический состав материала, присущие определенной местности;
  • условия перевозки;
  • учет климатических факторов в период доставки;
  • получение в лабораторных условиях величин максимальной плотности и оптимальной влажности.

Уплотнение песчаных оснований

Данный вид работ необходим при обратной засыпке. Например, это нужно после того, как установлен фундамент и теперь требуется заполнить грунтом или песком образовавшийся промежуток между внешним контуром конструкции и стенками котлована. Процесс производится с помощью специальных трамбовочных устройств. Коэффициент уплотнения песчаного основания равняется примерно 0,98.

Процесс уплотнения грунта трамбовочным устройством

Коэффициент для бетонных смесей

Бетонная смесь, как и любой другой строительный материал, монтируемый методом засыпания или заливки, требует дальнейшего уплотнения для получения необходимой плотности, а значит, и надежности конструкции. Бетон уплотняют вибраторами. Коэффициент уплотнения бетонной смеси при этом берется в пределах от 0,98 до 1.

Коэффициент уплотнения грунта

В проекте имеет место большой объем обратной засыпки котлована и насыпи при вертикальной планировке из привозных материалов. Коэффициент уплотнения грунта, щебня и песка КУПЛ— 0,98. Можно ли применять коэффициент перерасхода материалов в связи с уплотнением?

При устройстве насыпи, какой объем материала (грунта, песка, щебня) в плотном теле, или в рыхлом состоянии учитывать в единичной расценке?

Заказчик не принимает коэффициент перерасхода материала, ссылаясь на техническую часть к Сборнику № 1 «Земляные работы», в которой говорится о разработке грунта в плотном теле. В нашем случае насыпь.

Материалы завезены с нарушенной естественной плотностью.

Ответ:

Если для устройства вертикальной планировки и обратной засыпки котлованов подрядной организацией разрабатывается карьер (грунта, песка) с природной плотностью, то при устройстве насыпи следует принимать тот же объем, что и разработан в карьере с добавлением потерь грунта при перевозке в размере 0,5 — 1,5% в зависимости от вида транспорта, группы грунта и расстояния транспортирования. Коэффициент на уплотнение не применяется.

Коэффициент на уплотнение может быть применен только в тех случаях, если необходимая по проекту плотность грунта в насыпи превышает природную плотность грунта в карьере.

Если для устройства вертикальной планировки и обратной засыпки котлованов используется песок (дренирующий грунт) из промышленных карьеров, где цена и объемы устанавливаются, исходя из разрыхленного состояния песка, то необходимое количество песка для устройства насыпи определяется с применением соответствующего коэффициента на уплотнение в зависимости от требуемой проектом плотности песка.

Статья «Смета на строительство дома» — основные этапы строительства частного дома и составление сметы, учитывая каждый этап.Скачать готовую смету.

Определение коэффициента уплотнения грунтов ускоренным методом

Определение коэффициента уплотнения грунтов ускоренным (экспресс) методом.

Коэффициент уплотнения грунта — это безразмерный показатель, исчисляющийся как отношение фактической плотности грунта к его максимальной. При устройстве слоя основания из песка, песчаных подушек под фундамент, оснований фундамента или при обратной засыпке грунт необходимо уплотнять, иначе, со временем, он будет самоуплотняться, тесть слеживаться под собственным весом и весом здания, появится просадка.

Плотность грунта – один из основных показателей физических характеристик, поэтому ее исчисление будет считаться залогом качественного возведения объекта. Изучению подлежит вычисление сопротивления, плотности и максимальное удельное давление, которое он силе выдержать. Результатом лабораторных исследований станет выявление плотности. Получение таких данных поможет определить, пригоден ли грунт для строительства на нем того или иного здания.

Оптимальный коэффициент уплотнения колеблется в районе 0,94 – 0,98. Нормативы по обозначенному коэффициенту предусмотрены ГОСТом, строительными нормами и правилами. Отклонения от требуемого значения коэффициента уплотнения в сторону уменьшения допускаются не более чем в 10% определений от их общего числа и не более чем на 0,04.

Для определения точных показателей на месте, где будет строиться объект, прибегают к использованию приборов в виде плотномеров, типа статического действия модель В-1.

Коэффициент уплотнения грунта оценивается по усилию, прилагаемому к рукояткам плотномера при заглублении наконечника в грунт на длину его рабочей части. Коэффициент уплотнения грунта определяется максимальным отклонением стрелки индикатора, возникающим при деформации динамометрического кольца.

Прибор имеет 4 съемных наконечника, различающиеся диаметром основания и предназначенным для различных типов грунта.

Порядок действия работ.

1) Первым делом необходимо подготовить прибор: собрать все комплектующие, присоединить к штанге наконечник №3, установить индикатор в кронштейн и произвести его настройки, проверить прибор при помощи деревянного бруска.

2) Затем на контролируемом участке подготавливают 3-5 площадок размером 20х20 см, снимают верхний слой грунта толщиной 3-5 см для глинистых и 8-10 см для песчаных грунтов (при уплотнении катками до 10 тонн), 10-20 см (при уплотнении катками от 10 до 20 тонн)

3) Устанавливают вертикально плотномер, поворотом шкалы совмещают большую стрелку индикатора с нулевым делением и, прикладывают усилие к рукоятке, заглубляя наконечник на всю его длину с постоянной скоростью. Время погружения должно составлять 10-12 секунд, в процессе заглубления необходимо зафиксировать максимальное отклонение стрелки.

4) На одной площадке выполняют 3 замера, с расстоянием между соседними точками более 7см. Разница между показаниями не должна превышать 5 делений шкалы.

5) В случае, когда лаборант не в состоянии создать усилие необходимое для погружений наконечника №3 на всю его рабочую длину, его меняют на наконечник №2 при этом показания индикатора увеличивают в 2 раза. Если при проведении испытания показания индикатора составляют менее 20 делений, то наконечник № 3 меняют на №4, и значения показаний уменьшают в 1,5 раза.

6) Результаты испытаний заносят в журнал операционного контроля и вычисляют по ним среднеарифметическое значение показателей, по которым затем при помощи таблицы получают значения фактического коэффициента уплотнения.

7) После анализа всех данных оформляется протокол определения коэффициента уплотнения.

    

13.1.2. Исходные данные для проектирования

Исходными данными для проектирования уплотнения грунтов, а также для проектирования оснований и фундаментов на уплотненных грунтах являются: необходимая степень уплотнения грунтов, деформационные и прочностные характеристики уплотненных грунтов, расчетные их сопротивления.

Необходимая степень уплотнения грунтов устанавливается в зависимости: от назначения уплотненных грунтов и нагрузок, передаваемых на них от фундаментов и других конструкций; от возможностей изменения температурно-влажностного режима уплотненного грунта; от диапазона изменения природной влажности грунтов, используемых для возведения обратных засыпок; от принятых и возможных технологических схем производства работ по отсыпке уплотняемого грунта и применяемого грунтоуплотняющего оборудования; от климатических условий производства работ; от производственных возможностей строительных организаций и пр. [7].

Для определения необходимой степени уплотнения грунтов с учетом приведенных выше факторов выполняется комплекс лабораторных исследований, включающий изучение уплотняемости грунтов (стандартное уплотнение), а также прочностных и деформационных характеристик уплотненных до различной степени плотности грунтов. По результатам стандартного уплотнения (см. рис. 13.2) определяются максимальная плотность ρd.max, оптимальная влажность ω0, а также плотность сухого грунта при уплотнении его до различного коэффициента уплотнения и соответствующие диапазоны допускаемого изменения влажности.

По данным сдвиговых и компрессионных испытаний уплотненных до различной степени плотности грунтов строятся графики зависимости сцепления, угла внутреннего трения и модуля деформации от плотности грунта или от коэффициента уплотнения грунтов (рис. 13.3). На основе этих графиков в соответствии с необходимыми значениями сцепления, угла внутреннего трения и модуля деформации уплотненных грунтов назначается требуемая степень уплотнения грунтов.

Рис. 13.3. Зависимости с, φ (а) и E (б) от коэффициента уплотнения и плотности сухого уплотненного грунта

При отсутствии данных описанных выше исследований необходимые значения степени уплотнения грунтов принимаются по табл. 13.2.

ТАБЛИЦА 13.2. НЕОБХОДИМАЯ СТЕПЕНЬ УПЛОТНЕНИЯ ГРУНТОВ
Назначение уплотненного грунтаКоэффициент уплотнения kcom
Для оснований фундаментов зданий, сооружений и тяжелого технологического оборудования, а также полов с равномерной нагрузкой более 0,15 МПа0,98—0,95
То же, среднего оборудования, внутренних конструкций, полов с нагрузкой 0,05—0,15 МПа0,95—0,92
То же, легкого оборудования, полов с нагрузкой менее 0,05 МПа, отмостки у зданий0,92—0,9
Незастраиваемые участки0,9—0,88

При возможном изменении температурно-влажностного режима уплотненных грунтов за счет их периодического промерзания и оттаивания приведенные в табл. 13.2 значения kcom целесообразно повышать на 0,01—0,02.

Модули деформации грунтов, уплотненных до различной степени плотности, должны приниматься, как правило, по результатам испытания их штампами. При отсутствии данных непосредственных испытаний значения модулей деформации допускается принимать по табл. 13.3.

Коэффициент изменчивости сжимаемости уплотненных грунтов αcom, обусловливаемый различной степенью уплотнения, переменной влажностью, неоднородностью состава грунта и представляющий собой отношение максимального значения модуля деформации к его возможному минимальному значению, допускается принимать: αcom = 1,2 при kcom = 0,92, αcom = 1,35 при kcom = 0,95 и αcom = 1,5 при kcom = 0,98.

ТАБЛИЦА 13.3. НОРМАТИВНЫЕ ЗНАЧЕНИЯ МОДУЛЕЙ ДЕФОРМАЦИИ НЕКОТОРЫХ ВИДОВ УПЛОТНЕННЫХ ГРУНТОВ
ГрунтыЕ, МПа
при влажности уплотнения равнойв водонасыщенном состоянии
kcom = 0,92kcom = 0,95kcom = 0,92kcom = 0,95
Лессовидные супеси20251520
Лессовидные суглинки и глина25302025
Крупные пески3040
Средние пески2530
Мелкие пески1520

Прочностные характеристики уплотненных до различной степени плотности грунтов определяются путем испытания их на срез в условиях завершенной консолидации с получением зависимости сцепления с и угла внутреннего трения φ от коэффициента уплотнения. Для предварительных расчетов нормативные значения прочностных характеристик уплотненных лессовых грунтов рекомендуется принимать по табл. 10.4.

Расчетные сопротивления уплотненных грунтов определяются с учетом прочностных характеристик грунтов и размеров фундаментов. При отсутствии прочностных характеристик, а также для предварительного назначения размеров фундаментов допускается пользоваться условными значениями расчетных сопротивлений R0 уплотненных насыпных грунтов (табл. 13.4).

ТАБЛИЦА 13.4. РАСЧЕТНЫЕ СОПРОТИВЛЕНИЯ ОСНОВАНИЯ ИЗ УПЛОТНЕННЫХ ГРУНТОВ
ГрунтыR0, МПа, при коэффициенте уплотнения kcom
0,920,950,97
Супеси
Суглинки
Глина
Крупные пески
Средние пески
Мелкие пески
0,2
0,25
0,3
0,3
0,25
0,2
0,25
0,3
0,35
0,4
0,3
0,25
0,28
0,32
0,4
0,5
0,4
0,3

Руководство по устройству обратных засыпок котлованов с подготовкой оснований под технологическое оборудование и полы на просадочных грунтах

Определение коэффициента уплотнения грунта

Неотделимой частью исследований, которые предоставляет инженерная геология, являются изыскания для фундамента, включающие в себя обследование котлованов. В процессе проведения этих работ выполняется определение коэффициента уплотнения грунта, при помощи которого проверяется соответствие реальной плотности почвы запланированной. Это необходимо для оценки риска проседания подстилающих слоев грунта. При слишком рыхлом составе почва может дать осадку, что приведет к неизбежным трещинам и повреждениям основания. Во избежание этого процесса необходима засыпка щебневой подушки и ее последующая трамбовка. Нередки случаи с многослойностью исследуемого земельного участка.

Так верхний слой может состоять из тяжелых видов почв, а уже на глубине от 3 метров наблюдается песок или даже протекают грунтовые воды. Бывает, что строительство начинается в середине лета, а на следующий год начинается весеннее половодье и подвальные помещения оказываются частично или полностью в воде. Подобная неприятность нередка и многим известна, почему так случается понятно. Поэтому лучше заранее свети все риски к минимуму.

Для того чтобы определить необходимость проведения этих работ, и расчета высоты щебневого слоя и определяют коэффициент уплотнения грунта.

Как определить коэффициент уплотнения?

Есть два основных метода, позволяющих провести определение коэффициента уплотнения грунта. При этом точность полученных результатов, затраченное время и стоимость работ по выполнению исследований имеют некоторые отличия:

  • Проведение измерений непосредственно на месте строительства с помощью приборов, которые предоставляет инженерная геология. В основном используют плотномеры разного типа, имеющие определенную погрешность при замерах. Это приводит к искажению реальных данных и не совсем верным результатам. По итогам измерений составляется смета и отчет с описанием выполненных исследований. Этот способ относится к экспресс-анализу, поэтому итоги готовы уже через 1-2 дня.

  • Вторым методом является выполнение необходимых анализов в условиях лаборатории. Для этого проводят определение коэффициента уплотнения грунта при оптимальной влажности. Такой способ предоставляет возможность получить уточненные данные, но и цена выполненных работ оказывается выше. На получение результатов требуется, как правило, около 4-5 дней, что компенсируется более точными и не искаженными показателями измерений.

Заказать подобное исследование имеет смысл в рамках общих изысканий, которые предлагает геология для проекта. На основании коэффициента уплотнения грунта можно определить дополнительные свойства почвы физико-механического характера, что, бесспорно, будет полезным для качественного проведения строительства. На основании полученных результатов специалисты могут дать рекомендации по изменению уплотнения грунта в необходимую сторону.

Мы работаем в данной сфере деятельности уже более 10 лет и хорошо знаем, что надежность здания, прежде всего, зависит от прочности его основания. Чтобы предупредить даже малейшую погрешность при формировании фундамента здания требуется откинуть ненужную экономия, тем более что каждый сведущий строитель в данной сфере осознает, что подобные изыскания обойдутся в копейки в сравнении с тем, что грозит в будущем – обрушение частичное или полное, судебные разбирательства, человеческие жертвы и т.п.

Мы готовы уже сегодня подготовить точный расчет по представленному вами техническому заданию. Компания ООО «ГеоЭкоСтройАнализ» ждет ваших обращений по контактному телефону: 8 (495) 201-22-08.

Коэффициент уплотнения грунта (значения)

Коэффициент уплотнения грунта — отношение фактической плотности грунта (каркаса грунта) в насыпи к максимальной плотности грунта (каркаса грунта).

Пример:

Что означает коэффициент уплотнения почвы 95%?

Коэффициент уплотнения почвы 95% означает, что фактическая плотность почвы составляет 95% от максимально возможной плотности почвы (почва определяется в лаборатории).

Этот коэффициент определяется следующими методами:

1. Метод врезного кольца — образцы грунта отбираются из уплотненного слоя и испытываются в грунтовой лаборатории в соответствии с ГОСТ 5180-2015 «Грунты. Методы лабораторного определения физических характеристик ». Основной недостаток метода: длительные испытания (транспортировка и лабораторные испытания) [Российский стандарт]

.

2. Динамический плотномер грунта (DPG) — принцип действия основан на методе падающей нагрузки, при котором измеряются сила удара и деформация грунта.Он используется вместе с методом врезного кольца для ускорения определения коэффициента уплотнения почвы.

На начальном этапе ДПГ калибруется на нескольких участках отбора проб по данным испытаний методом врезного кольца (ГОСТ 5180-2015) [Российский стандарт]

Затем по данным калибровки определяется коэффициент уплотнения в оставшихся точках, что позволяет получить результат сразу на месте.

Требуемый коэффициент уплотнения грунта (согласно СНиП 3.02.01-87) для засыпки или насыпи представлена ​​в таблице 1.

Таблица 1. Коэффициент уплотнения грунта

Тип почвы Факторы уплотнения грунта к ком ,%
при нагрузке на поверхность уплотненного грунта, МПа (кг / см 2 )
0 0,05 — 0,2 (0,5 — 2) св. 0,2 (2)
с общей мощностью насыпного грунта, м
до 2 2,01-4 4,01-6 св.6 до 2 2,01-4 4,01-6 св. 6 до 2 2,01-4 4,01-6 св. 6
Глина 92 93 94 95 94 95 96 97 95 96 97 98
Песок 91 92 93 94 93 94 95 96 94 95 96 97

Например, значение коэффициента уплотнения грунта обратной засыпки из песка, вместимость засыпки 2.5 м и нагрузка на насыпь 0,3 МПа 95%

Коэффициент уплотнения почвы | Civil4M

Коэффициент уплотнения в разных случаях может достигать более 100% и иметь разные значения.

, прежде чем перейти к коэффициенту уплотнения, давайте посмотрим, как он выглядит.

Мы действительно рассчитываем уровень уплотнения на основе испытаний, которые мы провели на фактически уплотненной земле, и сравниваем его с тем, который мы отправили на тестирование в стороннюю лабораторию для получения значений MDD и OMC.

Когда мы отправляем образец почвы / земли / муррума в стороннюю лабораторию.
они проводят испытание на уплотнение при разном содержании в нем влаги.

Данные результата теста затем наносятся на график.

, как мы знаем, плотность уплотнения может увеличиваться с увеличением содержания в нем воды до некоторой степени, при превышении которой плотность почвы начинает снижаться.

это создает кривую на миллиметровой бумаге, где мы ищем наивысшую достигнутую плотность и соответствующее ей содержание влаги.

Наибольший охват на графике — это максимальная плотность материала в сухом состоянии, обозначенная как MDD

, для достижения того, что было содержанием воды в нем Оптимальное содержание влаги, обозначенное как OMC. выше и ниже OMC значение плотности будет падать.

Теперь мы знаем свойства материала, который мы используем для заполнения конструкции.

Если материал, который мы используем для заполнения, отличается от материала, который мы тестировали ранее на его свойства, будет разница в плюсовой или минусовой стороне коэффициента уплотнения.

Коэффициент уплотнения

— это достигнутый нами уровень уплотнения по сравнению со стандартным значением, которое мы получили при лабораторных испытаниях.

Расчет содержания влаги в образце также является важным параметром. Если вычисленное значение окажется неверным, это также повлияет на расчет коэффициента уплотнения.

Когда мы обнаруживаем, что во время тестирования произошла ошибка, мы должны повторно протестировать это, выполнив выборку в другом месте в том же патче.

Факторы, которые могут повлиять на результат коэффициента уплотнения
1.Материал, используемый для наполнения, отличается от материала, который мы тестировали в сторонней лаборатории или в собственной лаборатории для MDD и OMC.
2. При проведении испытания на замену песка необходимо проверять плотность стандартного песка перед каждым испытанием, а также повторно проверять значение массы песка в конусе.
3. Содержание влаги в материале следует рассчитывать правильно, так как это оказывает прямое влияние на сухую плотность почвы.
4. Ошибка на весах также может повлиять на результаты.
5.Если происходит некоторое перемешивание или, скажем, в материал, взятый из испытательной ямы, попали камни, это также повлияет на результат с положительной стороны (когда мы работаем практически на строительной стороне, есть вероятность смешивания другого материала с материалом. который мы используем для заполнения. это не мелкомасштабная работа, где мы можем быть уверены, что в ней не будет никакого загрязнения другим материалом) — в таких случаях мы можем проверить, исследуя образец, взятый из пробной ямы, только в случае уплотнения Фактор положительный.

Прежде чем использовать какой-либо материал для заполнения, важно проверить его свойства, такие как MDD и OMC.

При отсутствии этих значений или относящихся к ним значений, которые не относятся к этому материалу, вы получаете результаты либо на гнойной, либо на отрицательной стороне, и разница может быть реальной разницей в тех свойствах материала, которые могут быть меньшими или очень большими.

Факторы, влияющие на уплотнение почвы | Типы почвы

Уплотнение почвы — это процесс увеличения сухой плотности почвы за счет уменьшения содержания воздуха или воздушных пустот в почве.Этот процесс является неотъемлемой частью строительства любого сооружения, так как он укрепляет почву. На степень уплотнения почвы влияют многие факторы. На уплотнение почвы влияют следующие факторы:

Влагосодержание

Для достижения желаемой плотности почвы необходимо надлежащим образом контролировать ее влажность. Если содержание воды низкое, это приводит к тому, что почва становится жесткой, которая сопротивляется уплотнению. Когда содержание воды увеличивается, между частицами почвы происходит смазка, и почва становится более пригодной для обработки.

Сухая плотность почвы увеличивается с увеличением содержания воды до достижения оптимального содержания воды. Добавление большего количества воды на этом этапе уменьшит сухую плотность. Количество воды, добавляемой в почву до достижения ее максимальной плотности в сухом состоянии, называется содержанием влаги в почве.

Эффект уплотнения

Типы грунта

Тип грунта в значительной степени влияет на уплотнение этого грунта. Крупнозернистые грунты можно уплотнять до более высокой сухой плотности, чем мелкозернистые грунты.Максимальная сухая плотность уменьшается, если количество мелких частиц увеличивается до количества, превышающего количество, необходимое для заполнения пустот в крупнозернистых почвах. Следовательно, можно с уверенностью сказать, что хорошо отсортированная почва имеет гораздо более высокую плотность в сухом состоянии, чем плохо отсортированная почва.

Виброуплотнение в действии

Связные грунты, такие как тяжелые глины, глины и илы, обеспечивают более высокое сопротивление уплотнению, поскольку они достигают более низкой максимальной плотности в сухом состоянии. Несвязные почвы, такие как песчаные почвы, крупнозернистые или гравийные почвы, легко уплотняются.

Максимальная сухая плотность и оптимальное содержание воды для различных почв

Степень уплотнения

Оптимальное содержание воды, необходимое для уплотнения, уменьшается с увеличением усилия уплотнения. Этот эффект увеличения уплотнения значим только до тех пор, пока содержание воды не достигнет оптимального уровня. После этого уровня объем воздушных пустот становится почти постоянным, и эффект повышенного уплотнения незначителен. Следует отметить, что максимальная плотность в сухом состоянии не увеличивается с увеличением усилия уплотнения.

Слово «уплотняющее усилие» означает усилие, прилагаемое оборудованием, используемым для уплотнения почвы. Ниже приведены типы оборудования, используемого для различных типов почвы:

  • Щебень, гравийный песок: Каток с гладким колесом
  • Гравий, песок: Каток с резиновыми шинами
  • Песок, гравий, илистая почва, глинистые почвы: Каток с пневматическими шинами
  • Илистый грунт, Глинистый грунт: каток с опорой на барабан
  • Грунт в ограниченной зоне: трамбовщик
  • Пески: вибрационный каток

Контактное давление

Контактное давление — это давление между грунтом и колесами оборудования, используемого для уплотнения .Это давление зависит от веса роликового колеса и площади контакта. Более высокое контактное давление увеличивает сухую плотность и снижает оптимальное содержание влаги.

Скорость прикатывания

Скорость прикатывания — это скорость, с которой почва уплотняется, является важным фактором. Следует учитывать два важных момента. Во-первых, чем выше скорость прокатки, тем большую протяженность насыпи можно утрамбовать за сутки. Во-вторых, при более высокой скорости прокатки существует вероятность недостаточного времени, необходимого для того, чтобы произошли деформации, и, следовательно, может потребоваться больше проходов для достижения желаемого уплотнения.

Укладка грунта поверх армирующего материала.

Чем ниже скорость движения, тем больше вибраций в данной точке и меньше количество проходов требуется для достижения заданной плотности.

Уплотнение

Уплотнение

Уплотнение — это процесс, который приводит к увеличению на грунта. плотность или удельный вес , сопровождающееся уменьшением на объема воздуха. Обычно содержание воды не меняется. Степень уплотнения измеряется по массе сухой единицы и зависит от содержания воды и усилия уплотнения (вес молота, количество ударов, вес катка, количество проходов). Для данного уплотняющего усилия максимальный вес сухой единицы достигается при оптимальном содержании воды .

Уплотнение

Назначение и способы уплотнения

Уплотнение — это процесс увеличения плотности почвы и удаления воздуха, обычно с помощью механических средств.Размер отдельных частиц почвы не меняется, вода не удаляется.

Целенаправленное уплотнение предназначено для повышения прочности и жесткости почва. Может произойти последовательное (или случайное) уплотнение и, следовательно, оседание. из-за вибрации (сваи, движение и т. д.) или собственного веса сыпучей засыпки.


Цели уплотнения и обрабатывает

Уплотнение как строительный процесс

Уплотнение применяется при строительстве дорожных оснований, взлетно-посадочных полос, земляных дамб, насыпи и армированные земляные стены.В некоторых случаях для подготовки уровня может использоваться уплотнение. поверхность для строительства.

Грунт укладывается слоями, обычно толщиной от 75 до 450 мм. Каждый слой уплотняется до указанного стандарта с использованием катков, вибраторов или трамбовок.

См. Также Типы уплотнительных установок и Технические условия и контроль качества


Цели уплотнения и обрабатывает

Объекты уплотнения

Уплотнение может применяться для улучшения свойств существующий грунт или в процессе укладки насыпи.Основные цели:

  • увеличивает прочность на сдвиг и, следовательно, подшипник емкость
  • увеличить жесткость и, следовательно, уменьшить будущее поселок
  • уменьшить коэффициент пустотности и, соответственно, проницаемость, тем самым уменьшая возможное морозное пучение


Цели уплотнения и обрабатывает

Факторы, влияющие на уплотнение

На достижимую степень уплотнения влияет ряд факторов:

  • Характер и тип почвы, т.е.е. песок или глина, градуировка, пластичность
  • Содержание воды во время уплотнения
  • Условия площадки, например погода, тип участка, толщина слоя
  • Компактное усилие: тип установки (вес, вибрация, количество проходов)


Цели уплотнения и обрабатывает

Типы уплотнительных установок

Строительный транспорт, особенно на гусеничном ходу транспортных средств, также используется.

В Великобритании. дополнительную информацию можно получить в Министерстве транспорта и в справочниках по методы гражданского строительства.


Типы уплотнительных установок

Каток гладкий

  • Самоходные или буксируемые стальные катки массой от 2 до 20 тонн
  • Подходит для: песчаников и гравия с хорошей фракцией.
    илов и глин с низкой пластичностью.
  • Непригодно для: однородных песков; илистые пески; мягкие глины


Типы уплотнительных установок

Сетчатый ролик

  • Буксируемые агрегаты с рулонами стержней 30-50 мм, с промежутками 90-100 мм
  • Диапазон масс 5-12 тонн
  • Подходит для: мелкодисперсных песков; мягкие породы; каменистые почвы с мелкой фракцией
  • Непригодно для: однородных песков; илистые пески; очень мягкие глины


Типы уплотнительных установок

Ролик овчинный

  • Также известен как «трамбующий ролик»
  • Самоходные или буксируемые агрегаты с полым барабаном с выступающими булавовидными ножками
  • Диапазон масс от 5 до 8 тонн
  • Подходит для: мелкозернистых почв; песок и гравий с мелкими частицами> 20%
  • Непригоден для: очень крупных почв; равномерный гравий

Типы уплотнительных установок

Каток с пневмошинами

  • Обычно контейнер на двух осях с колесами с резиновыми шинами.
  • Колеса выровнены для создания катящейся колеи на всю ширину.
  • Добавлены статические нагрузки для получения массы 12-40 тонн.
  • Подходит для: самых крупных и мелких почв.
  • Непригодно для: очень мягкой глины; сильно изменчивый почвы.

Типы уплотнительных установок

Виброплита

  • Диапазон от машин с ручным управлением до более крупных комбинаций катков
  • Подходит для: большинства почв с низким и средним содержанием мелочи
  • Непригоден для: больших объемов работ; мокрый глинистый почвы

Типы уплотнительных установок

Трамбовка силовая

  • Также называется «траншейный тампер»
  • Пневматический трамбовщик с ручным управлением
  • Подходит для: засыпки траншей; работать в закрытых помещениях
  • Не подходит для: больших объемов работ

Уплотнение

Лабораторные испытания на уплотнение

Изменения уплотнения в зависимости от содержания воды и усилия уплотнения сначала устанавливаются в лаборатории.Затем указываются целевые значения для сухой плотности и / или содержания воздушных пустот, которые должны быть достигнуты на месте.


Лабораторные испытания на уплотнение

Соотношение сухой плотности / влажности

Целью испытания является определение максимальной сухой плотность, которая может быть достигнута для данной почвы стандартным количеством уплотняющее усилие. Когда серия образцов грунта уплотняется при разных График содержания воды обычно показывает отчетливый пик.

  • Максимальная плотность в сухом состоянии достигается при оптимальном содержании воды
  • Кривая построена с осями сухой плотности и содержания воды, а контрольные значения — это значения, считанные:
    r d (макс.) = максимальная плотность в сухом состоянии
    w opt = оптимальное содержание воды
  • Получены разные кривые для разных уплотняющие усилия

Плотность в сухом состоянии / содержание воды отношение

Пояснение к форме кривой

Для глин
Недавно выкопанные и обычно насыщенные куски глинистой почвы имеют относительно высокую прочность на сдвиг без дренажа при низком содержании воды и их трудно уплотнять.В качестве увеличивается содержание воды, комки ослабевают и размягчаются и, возможно, легче уплотняются.

Для грубых почв
материал ненасыщен и получает прочность за счет всасывания поровой воды, которая собирает при контактах зерна. По мере увеличения содержания воды всасывание и, следовательно, эффективные напряжения уменьшаются. Почвы слабеют, и поэтому легче уплотняется.

Для обоих
При относительно высокое содержание воды, уплотненный грунт почти насыщен (почти все воздуха был удален), и поэтому уплотняющее усилие действует на недренированную нагрузку. и поэтому объем пустот не уменьшается; по мере увеличения содержания воды уплотняемая плотность достигнутое будет уменьшаться, а содержание воздуха останется почти постоянным.


Плотность в сухом состоянии / содержание воды отношение

Выражения для расчета плотности

Уплотненный образец взвешивают для определения его массы: м (граммы)
Объем формы составляет: V (мл)
Подвыборки взяты в определить содержание воды: Вт
Расчеты:

Рабочий пример

Образец уплотненного грунта был взвешен со следующими результатами:
Масса = 1821 г Объем = 950 мл Содержание воды = 9.2%
Определите насыпную и сухую плотность.

Насыпная плотность r = 1821/950 = 1,917 г / мл или

мг / м

Плотность в сухом состоянии r d = 1,917 / (1 + 0,092) = 1,754 мг / м


Лабораторные испытания на уплотнение

Плотность в сухом состоянии и воздушные пустоты


Полностью насыщенная почва не содержит воздуха. На практике даже довольно влажная почва будет иметь небольшое содержание воздуха.

Максимальная плотность в сухом состоянии определяется как содержанием воды, так и содержанием воздушных пустот.Кривые для различного содержания воздушных пустот могут быть добавлены к графику r d / w, используя следующее выражение:

Содержание воздушных пустот, соответствующее максимальной плотности в сухом состоянии и оптимальному содержанию воды, можно считать по графику r d / w или рассчитать по выражению (см. Рабочий пример).

Рабочий пример

Определите плотность сухого образца уплотненного грунта при содержании воды 12%, с нулевым содержанием воздушных пустот, 5% и 10%.(G s = 2,68).


Лабораторные испытания на уплотнение

Эффект повышенного уплотняющего усилия

Усилие уплотнения будет больше при использовании на стройплощадке более тяжелого катка. или более тяжелая трамбовка в лаборатории. С большим усилием уплотнения:

  • максимальное увеличение сухой плотности
  • оптимальное содержание воды уменьшается
  • содержание воздушных пустот практически не изменилось.


Лабораторные испытания на уплотнение

Влияние типа почвы

  • Хорошо гранулированный зернистый грунт можно уплотнять до более высокой плотности, чем однородные или илистые почвы.
  • Глины с высокой пластичностью могут иметь содержание воды более 30% и достигать аналогичные плотности (и, следовательно, прочности), с более низкой пластичностью с содержание воды ниже 20%.
  • По мере увеличения процента мелких частиц и пластичности почвы уплотнение кривая становится более пологой и, следовательно, менее чувствительной к содержанию влаги.Точно так же максимальная плотность в сухом состоянии будет относительно низкой.


Лабораторные испытания на уплотнение

Интерпретация лабораторных данных

Во время теста собираются данные:
  1. Объем формы (В)
  2. Масса формы (M o )
  3. Удельный вес зерна почвы (G s )
  4. Масса плесени + уплотненный грунт — на каждый образец (M)
  5. Содержание воды в каждом образце (мас.)

Сначала рассчитываются плотности (r d ) для образцов с разные значения содержания воды, тогда кривая r d / w построены вместе с кривыми воздушных пустот.

Максимальная плотность в сухом состоянии и оптимальное содержание воды считываются с графика.

Содержание воздуха при оптимальном содержании воды либо считывается, либо рассчитано.


Интерпретация лаборатории данные

Пример данных, собранных во время теста

При типичном испытании на уплотнение могли быть собраны следующие данные:
Масса формы, M o = 1082 г
Объем формы, V = 950 мл
Удельный вес зерен почвы, G s = 2.70

Масса плесени + грунт (г) 2833 2979 3080 3092 3064 3027
Содержание воды (%) 8,41 10,62 12,88 14,41 16,59 18,62

Метод определения содержания воды см. В описании и классификации почв

.


Интерпретация лабораторных данных

Расчетная плотность и кривая плотности

Используемые выражения:

Насыпная плотность, r (Мг / м) 1.84 2,00 2,10 2,12 2,09 2,05
Содержание воды, w 0,084 0,106 0,129 0,144 0,166 0,186

Плотность в сухом состоянии, r d (Мг / м)

1,70 1,81 1,86 1.851 1,79 1,73


Интерпретация лаборатории данные

Кривые воздушных пустот

Используемое выражение:

Содержание воды (%) 10 12 14 16 18 20
r d когда A v = 0% 2.13 2,04 1,96 1,89 1,82 1,75
r d когда A v = 5% 2,02 1,94 1,86 1,79 1,73 1,67
r d когда A v = 10% 1,91 1,84 1,76 1.70 1,64 1,58

Оптимальное содержание воздушных пустот для — это значение, соответствующее максимальной плотности в сухом состоянии (1,86 мг / м3) и оптимальному содержанию воды (12,9%).


Уплотнение

Технические условия и контроль качества

Достигаемая на строительной площадке степень уплотнения в основном зависит от:

  • Компактное усилие: тип установки + количество проходов
  • Содержание воды: можно увеличить, если сухо, и наоборот
  • Тип почвы: повышенная плотность с хорошо структурированными почвами; мелкие почвы имеют более высокое содержание воды
    Конечный результат спецификации требуют предсказуемых условий
    Спецификации метода являются предпочтительными в Великобритании.

    Спецификация и контроль качества

    Технические характеристики конечного результата

    Целевые параметры указаны на основании результатов лабораторных испытаний:

    Оптимальный рабочий диапазон содержания воды, т. Е. 2%
    Оптимальный допуск по содержанию воздушных пустот, т. Е. 1,5%

    Для почв более влажных, чем w opt , можно использовать цель A v , например
    10% для насыпных земляных работ
    5% за важную работу

    Метод конечного результата не подходит для очень влажных или изменчивых условий.


    Спецификация и качество контроль

    Технические характеристики метода

    Уточнена процедура участка с указанием:

    • вид растения и его масса
    • максимальная толщина слоя и количество проходов.
      Этот тип спецификации больше подходит для почв более влажных, чем w opt , или для условий на площадке. переменные — это часто бывает в Великобритании. Департамент транспорта публикует широко используемую спецификацию метода для использования в Великобритании.

    Уплотнение

    Значение влажности

    Это процедура, разработанная Исследовательской лабораторией дорог с использованием только одного образца, что позволяет ускорить и упростить лабораторные испытания на уплотнение. Определяется минимальное усилие уплотнения для почти полного уплотнения. Грунт, помещенный в форму, уплотняется ударами трамбовки высотой 250 мм; проникающая способность после каждого удара измеряется.


    Значение состояния влажности

    Аппарат и размеры

    Цилиндрическая форма с проницаемой опорной плитой:
    внутренний диаметр = 100 мм, внутренняя высота не менее 200 мм
    Трамбовка плоская:
    диаметр торца = 97 мм, масса = 7.5 кг, высота свободного падения = 250 мм
    Грунт:
    1,5 кг через сито 20 мм

    Значение состояния влажности

    Методика испытаний и график

    • Сначала опускают трамбовку на поверхность почвы. и позволял проникать под собственным весом
    • Затем трамбовку устанавливают на высоту 250 мм и упал на землю
    • Глубина проникновения измеряется до 0.1 мм
    • Высота трамбовки сбрасывается на 250 мм, а падение повторяется до тех пор, пока не прекратится дальнейшее проникновение, или пока не произойдет 256 капель
    • Изменение проникновения ( Dp ) регистрируется между данное количество ударов ( n ) и что для 4n ударов
    • Построен график Dp / n и линия, проведенная через самый крутой участок.
    • Значение влажности (MCV) определяется по формуле пересечение этой линии и специальная шкала


    Значение состояния влажности

    Пример графика и определение MCV

    После нанесения Dp на количество ударов n, проводится линия через самый крутой участок.

    Пересечение этой линии и линия проникновения 5 мм дают MCV

    Определяющее уравнение: MCV = 10 log B
    (где B = количество ударов, соответствующих 5 мм пробитию)

    На примере графика здесь указано MCV, равное 13.


    Значение состояния влажности

    Значение MCV в земляных работах

    Тест MCV является быстрым и дает воспроизводимые результаты, которые хорошо коррелируют с техническими характеристиками.В связь между MCV и содержанием воды в почве близка к прямой, за исключением сильных переуплотненные глины. желаемое значение недренированной прочности или сжимаемости может быть связано с ограничение содержания воды, и поэтому MCV можно использовать в качестве контрольного значения после калибровки MCV по сравнению с w для почвы. An приблизительная корреляция между MCV и недренированной прочностью на сдвиг была предложена Парсонс (1981).

    Лог с u = 0,75 + 0,11 (MCV)

  • Испытание на уплотнение почвы | Геоинженер.org

    Введение

    Уплотнение грунта — это процедура, при которой грунт подвергается механическому воздействию и уплотняется. Почва состоит из твердых частиц и пустот, заполненных водой и / или воздухом. Более подробное объяснение трехфазной природы почв дается в Почва как трехфазная система . Под воздействием нагрузки частицы почвы перераспределяются в массе почвы, и объем пустот уменьшается, что приводит к уплотнению. Механическое напряжение может быть приложено замешиванием, динамическими или статическими методами.Степень уплотнения определяется количественно путем измерения изменения удельного веса сухой почвы γ d .

    В рамках инженерных приложений уплотнение особенно полезно, так как оно приводит к:

    • увеличению прочности грунтов
    • A снижению сжимаемости грунтов
    • A снижению проницаемости грунтов

    Эти факторы имеют решающее значение для конструкций и инженерных сооружений, таких как земляные плотины, насыпи, опоры тротуаров или опоры фундаментов.

    Степень уплотнения зависит от свойств почвы, типа и количества энергии, обеспечиваемой процессом уплотнения, а также от влажности почвы. Для каждой почвы существует оптимальное количество влаги, при котором она может испытывать максимальное сжатие. Другими словами, для данного уплотняющего усилия грунт достигает своего максимального веса сухой единицы ( γ d, max ) при оптимальном уровне содержания воды ( w opt ).

    Сжимаемость относительно сухой почвы увеличивается по мере добавления к ней воды. То есть для уровней содержания воды в сухом состоянии или оптиму м (w opt ) вода действует как смазка, позволяя частицам почвы скользить относительно друг друга, что приводит к более плотной конфигурации. За пределами определенного уровня содержания воды ( влажный из оптимального , w> w opt ) избыток воды в почве приводит к увеличению порового давления воды, которое раздвигает частицы почвы.Типичная корреляция между сухой единицей веса и содержанием воды представлена ​​на Рис. 1 . Кроме того, стоит отметить, что, как видно из , рис. 2, , для данного грунта наивысшая прочность достигается только в сухом или оптимальном состоянии (, рис. 2а, ), в то время как самая низкая гидравлическая проводимость достигается только во влажном состоянии. оптимума ( Рисунок 2b ). Влияние уплотняющего усилия на максимальный вес сухой единицы (γ d, max ) и оптимальный уровень содержания воды (w opt ) можно наблюдать на , рис. 4, .С увеличением уплотняющего усилия γ d, max увеличивается, а w opt уменьшается. То есть меньшего содержания воды достаточно для насыщения более плотного образца.

    Рисунок 1 : Влияние содержания воды на массу сухой единицы во время уплотнения почвы

    Рисунок 2 : Влияние содержания воды на почву а) прочность и б) гидропроводность

    Проктор Испытание на уплотнение

    Наиболее распространенным лабораторным испытанием на уплотнение почвы является испытание на уплотнение Проктора.

    Тест Проктора был изобретен в 1930-х годах Р. Р. Проктором, полевым инженером Бюро водоснабжения и водоснабжения в Лос-Анджелесе, Калифорния. Процесс, имитирующий процессы уплотнения на месте, обычно выполняемые при строительстве земляных дамб или насыпей, является наиболее распространенным лабораторным испытанием, проводимым для определения сжимаемости грунтов.

    Тип уплотнения и энергия, обеспечиваемая для данного объема почвы, являются стандартными, и, таким образом, испытание фокусируется на изменении содержания влаги в образце для определения оптимального содержания влаги (w opt ).

    Стандартный тест Проктора включает цилиндрическую форму объемом 0,95 литра, в которую грунт помещается и уплотняется в 3 слоя. Каждый слой сжимается путем 25-кратного падения груза весом 2,5 кг с высоты 30 сантиметров.

    Модифицированная версия теста была представлена ​​после Второй мировой войны, в 1950-х годах, когда тяжелая техника могла приводить к более высокому уплотнению. В новом подходе цилиндрическая форма осталась прежней, однако падающий вес увеличен до 4,5 кг, а высота падения — до 45 сантиметров.Кроме того, грунт уплотняется в 5 слоев по 25 ударов в каждом слое.

    Испытание проводится для 5 значений влажности, чтобы получить оптимальное содержание воды (w opt ), для которого значение веса сухой единицы является максимальным (γ d, max ).

    Испытательное оборудование

    Оборудование, используемое для проведения испытания, включает:

    • Цилиндрическая пресс-форма диаметром 10 сантиметров, снабженная основанием и воротником
    • Трамбовка Proctor весом 2,5 кг или 4,5 кг в зависимости от того, стандарт модифицированного теста проведен
    • No.4 Сито
    • Стальная линейка
    • Контейнеры для влаги
    • Градуированный цилиндр
    • Смеситель
    • Контролируемая печь
    • Металлический поддон и совок

    Типичные цилиндрические формы для уплотнения и трамбовки показаны на рис.

    Рисунок 3 : Формы Проктора и трамбовки (ASTM / AASHTO) от Контрольная группа (для получения дополнительной информации нажмите здесь )

    Процедура испытания

    Процедура испытания на уплотнение Проктора состоит из выполните следующие действия:

    1. Получите около 3 кг почвы.
    2. Пропустите почву через сито № 4.
    3. Взвесьте массу грунта и форму без манжеты (ширина м ).
    4. Поместите почву в миксер и постепенно добавляйте воду, чтобы достичь желаемого содержания влаги (w).
    5. Нанесите смазку на воротник.
    6. Удалите почву из миксера и поместите ее в форму в 3 или 5 слоев в зависимости от используемого метода (Стандартный Проктор или Модифицированный Проктор). Для каждого слоя запустите процесс уплотнения с 25 ударами на слой.Капли наносятся вручную или механически с постоянной скоростью. Грунтовая масса должна заполнять форму и доходить до воротника, но не более чем на 1 сантиметр.
    7. Осторожно снимите воротник и срежьте почву, выступающую над формой, заостренной прямой кромкой.
    8. Взвесьте плесень и содержащий почву (W).
    9. Выдавите почву из формы с помощью металлического экструдера, убедившись, что экструдер и форма находятся на одной линии.
    10. Измерьте содержание воды в верхней, средней и нижней части образца.
    11. Снова поместите почву в миксер и добавьте воды для достижения более высокого содержания воды w.

    Расчеты

    Во-первых, содержание воды при уплотнении ( w ) образца почвы рассчитывается с использованием среднего значения трех полученных измерений (верхняя, средняя и нижняя часть массы почвы).

    Затем вес сухой единицы ( γ d ) рассчитывается следующим образом:

    где: W = вес формы и масса почвы (кг)

    W м = вес формы (кг)

    w = содержание воды в почве (%)

    V = объем формы (м 3 , обычно 0.033m 3 )

    Эту процедуру следует повторить еще 4 раза, учитывая, что выбранное содержание воды будет как ниже, так и выше оптимального. В идеале выбранные точки должны быть хорошо распределены, причем 1-2 из них близки к оптимальной влажности.

    Производные веса сухой единицы вместе с соответствующим содержанием воды нанесены на диаграмму вместе с кривой нулевых пустот, линией, показывающей корреляцию веса сухой единицы с содержанием воды при условии, что почва насыщена на 100%.Независимо от того, сколько энергии подводится к образцу, уплотнить его за пределами этой кривой невозможно. Кривая нулевых пустот рассчитывается следующим образом:

    где: G S = удельный вес частиц почвы (обычно G S ~ 2,70)

    γ W = удельный вес насыщенного грунта (кН / м 3 )

    Типичные кривые, полученные на основе стандартных и модифицированных тестов Проктора, а также кривая нулевых воздушных пустот представлены на Рис. 4 .

    Рис. 4 : Типичные кривые, полученные с помощью стандартного и модифицированного тестов Проктора. Также показана кривая нулевых воздушных пустот

    Уплотнение почвы | UMN внутренний номер

    Рисунок 24: Тракторы с гусеницами (фон) и шинами.

    Любое оборудование, будь то гусеницы или шины, может создавать уплотнение. Выбор оборудования, обеспечивающего наименьшее уплотнение, зависит от нескольких факторов.

    Тракторы

    Припаркованный гусеничный трактор оказывает давление на почву приблизительно от 4 до 8 фунтов на квадратный дюйм в зависимости от ширины, длины и веса трактора.Этот фунт на квадратный дюйм изменяется в зависимости от расположения роликов промежуточных колес, жесткости пружины в точках крепления, жесткости гусеницы, динамической передачи веса при нагрузке на дышло и т. Д. (Рисунок 24).

    Радиальные шины создают давление на 1-2 фунта выше, чем их надлежащее давление в шинах. Например, если радиальная шина накачана до 6 фунтов на квадратный дюйм, шина оказывает давление на почву от 7 до 8 фунтов на квадратный дюйм. Это давление также зависит от размера проушины, жесткости шины и нагрузки на дышло.

    Шины с диагональным кордом старого образца, накачанные только до 6–8 фунтов на квадратный дюйм, не могут эффективно работать и легко изнашиваются при таком низком давлении в шинах.Следовательно, они должны быть накачаны до 20-25 фунтов на квадратный дюйм.

    Как управлять уплотнением почвы

    Чтобы сохранить уплотнение почвы в зоне плуга, поддерживайте радиальное давление в шинах около 10 фунтов на квадратный дюйм. В зависимости от размера шин вам, возможно, придется добавить сдвоенные шины для достижения этой цели. Проконсультируйтесь с вашим местным дилером по шинам, чтобы определить надлежащее давление в шинах.

    Исследование: Тракторное уплотнение
    Рисунок 25: Уплотнение почвы полноприводными и гусеничными тракторами при различных тяговых нагрузках.Исследование

    Iowa показало, что небольшие тракторы, оборудованные гусеницами или радиальными шинами, создают уплотнение в верхних слоях на 5-8 дюймов. Однако ниже этой глубины эффект уплотнения был незначительным.

    На рис. 25 показана корреляция между давлением в шинах и уплотнением почвы по результатам исследования, проведенного Университетом штата Огайо. Эффект уплотнения измерялся на глубине 20 дюймов на илистом суглинке (ширина шин составляла примерно 28 дюймов) для четырех различных сценариев.Они сравнили

    • Трактор John Deere 8870 с сдвоенными баками 710 / 70R38, правильно накачанный до 6 и 7 фунтов на квадратный дюйм (спереди и сзади)
    • Тот же трактор John Deere с шинами, накачанными до 24 фунтов на кв. Дюйм
    • Cat Challenger 65 с резиновыми гусеницами 24 дюйма
    • Cat Challenger 75 с резиновыми гусеницами 36 дюймов

    По физическим свойствам почвы трактор с правильно накачанными шинами был признан лучшим, за ним следуют 36-дюймовые и 24-дюймовые гусеницы.Наибольшее уплотнение вызвал трактор с чрезмерно накачанными шинами. Относительный рейтинг был одинаковым для автомобилей без груза и с буксируемым грузом (40-футовый культиватор).

    Объединяет
    Рисунок 26: Уменьшение пористости почвы по глубине при разном давлении почвы.

    Общая нагрузка на ось тяжелого полевого оборудования, такого как зерновозы или комбайны, практически одинакова независимо от того, используются ли в оборудовании гусеницы или шины. Гусеницы улучшают тягу и управляемость в поле, но зерновоз 25 тонн на ось по-прежнему создает уплотнение под поверхностью, независимо от того, есть ли у него гусеницы или шины.

    Исследование: уплотнение комбайна

    Другой исследовательский проект в Огайо тестировал зерновоз на 1200 бушелей в сравнении с комбайном John Deere 9600 с другим расположением гусениц. Сдвоенные шины зернового прицепа, безусловно, вызывали наихудшее уплотнение. Результаты (Рисунок 26), от худшего до наименьшего уплотнения:

    .
    1. Зерновоз с двойными шинами.

    2. Комбайн с одинарными шинами 30,5L32 при давлении 34 фунта на квадратный дюйм.

    3. Комбайн с полугусеничной системой со средним давлением 10 фунтов на квадратный дюйм.

    4. Комбайн со сдвоенными шинами 18.4R38 при давлении 26 фунтов на квадратный дюйм.

    5. Комбайн с широкими шинами 68×50.0-32 с избыточным давлением 24 фунта на квадратный дюйм.

    6. Комбайн с такими же широкими шинами при правильном давлении 15 фунтов на квадратный дюйм.

    Обратите внимание, что среднее расчетное давление полугусеницы на почву составляет около 10 фунтов на квадратный дюйм, но результаты, по-видимому, делают его равным шине с давлением от 26 до 30 фунтов на квадратный дюйм. В основном это происходит из-за направленного вниз давления со стороны направляющих колес.Исследователи предположили, что чем ниже давление накачки, тем лучше для пористости почвы.

    Уплотнение почвы: методы, значение и эффекты

    Что такое уплотнение грунта?

    Уплотнение почвы — это практика приложения механического уплотняющего усилия для уплотнения почвы за счет уменьшения пустот между частицами почвы. Уплотнение происходит, когда частицы прижимаются друг к другу, чтобы уменьшить пространство между ними. Сильно уплотненные почвы содержат очень мало места, что приводит к увеличению удельного веса почвы.Максимальная плотность достигается при оптимальном содержании влаги, сокращенно OMC.

    Процесс уплотнения снижает вероятность оседания после строительства здания, проезжей части, взлетно-посадочной полосы или автостоянки. Заселение может привести к преждевременному разрушению покрытия, дорогостоящему техническому обслуживанию или ремонту.

    Почему необходимо уплотнение почвы?

    Уплотнение грунта необходимо для увеличения несущей способности и жесткости естественных (естественное состояние) или химически модифицированных грунтов.Уплотнение увеличивает прочность грунта на сдвиг за счет увеличения трения от сцепления частиц. Дальнейшее оседание грунта уменьшается за счет увеличения жесткости и устранения пустот, создающих уплотненный грунт. Удаление пустот снижает вероятность оседания, усадки или расширения почвы и уменьшает просачивание воды, что может привести к ухудшению свойств усадки и набухания почвы. Свойства усадки / набухания ухудшают структуру дорожного покрытия, что приводит к преждевременному разрушению конструкции дорожного покрытия.

    Какие факторы влияют на уплотнение почвы?

    Тип почвы

    Различные типы грунта по-разному реагируют на уплотнение. Почвы классифицируются по размеру частиц и, в некоторых категориях почв, по их критическим значениям содержания воды или предельным значениям Аттерберга. Хорошо сортированные гранулированные грунты, содержащие широкий спектр частиц, предпочтительны в строительстве, потому что их можно легко уплотнить, тем самым устраняя пустоты за счет сцепления частиц и сопротивления влагопоглощению, тем самым позволяя почве выдерживать более тяжелые нагрузки как очень плотный грунт.Плохо сортированный грунт содержит узкий диапазон размеров частиц и менее подходит для строительных целей из-за того, что грунту не хватает прочности на сдвиг, не связанной с несвязанными частицами из-за их одинакового размера.


    Возвращайтесь к работе с меньшим временем простоя.


    Получите цитату.

    Влагосодержание

    Содержание воды играет очень важную роль в уплотнении почвы. Максимальная плотность в сухом состоянии достигается только при идеальном уровне содержания воды.Эта точка известна как оптимальное содержание влаги или OMC. Оптимальное содержание влаги и максимальная плотность в сухом состоянии определяются в лаборатории и затем используются в качестве целевых показателей для операций на объекте. Если почва слишком сухая, можно использовать автоцистерны для распределения воды, чтобы поднять ее содержание в приемлемом диапазоне оптимального содержания влаги. И наоборот, чрезмерно влажные почвы создают свой собственный набор проблем. Недавние дожди, весеннее таяние или почва, которая удерживает влагу, можно обработать разными способами.

    • Ожидание в теплой и сухой погоде — это естественный способ высушить почву, но он может занять много времени и часто неэффективен из-за (дополнительных) ненастных погодных условий.
    • Дисковое оборудование для аэрации почвы может уменьшить количество влаги, но этот метод также открывает почву для поглощения еще большего количества влаги в случае дополнительных дождей. Более того, дискование обычно снижает влажность только до 5% и только на относительно небольших глубинах.
    • Вырезать и заполнить, также известное как удаление и замена, — популярный вариант, но он дорог и требует много времени.Карьеры становятся все более редкими, а затраты на утилизацию продолжают расти.
    • Самый эффективный вариант — химическая сушка. Портландцемент можно использовать для сушки почвы, но реагенты на основе извести — самый эффективный химический выбор. Реагенты на основе извести содержат большое количество доступного оксида кальция, достигающее 94-96 процентов. Оксид кальция химически соединяется с водой, образуя гидроксид кальция. Проще говоря, когда известь находится рядом с водой, она поглощает ее. Это экзотермическая реакция, при которой дополнительная влага высыхает в виде пара.Портландцемент, в принципе, почти не будет содержать свободной извести, поскольку CaO будет объединяться с образованием других минеральных фаз.

    Типы уплотнителей

    Катки для уплотнения почвы

    бывают разных стилей с различными опциями, такими как одинарные или сдвоенные барабаны, вибрационные механизмы или бульдозерные отвалы.

    • Гладкие катки используют статическое давление, иногда в сочетании с вибрацией и ударами, для уплотнения почвы. Гладкие катки — не единственный используемый тип уплотнителя, но, скорее всего, они используются на заключительном этапе уплотнения, чтобы обеспечить гладкую поверхность для строительства.

    • Ролики с подушечками и трамбовкой используют управляющую силу для разрыва естественных связей между частицами для лучшего уплотнения, особенно в связных грунтах. У них конические ножки, поэтому они не взлохмачивают почву, уменьшая способность почвы впитывать дополнительную влагу в случае дождя.

    • На малых и средних работах по уплотнению почвы пневматические катки используют шахматные резиновые шины с переменным давлением там, где необходимо уплотнить поверхность гранулированного основного материала с лопастями.

    • В закрытых зонах можно использовать трамбовку для уплотнения почвы.

    Толщина подъема

    Уплотнение почвы иногда включает уплотнение нескольких подъемов или слоев почвы до достижения общей желаемой толщины. Стабильность каждого подъемника зависит от того, который находится под ним, поэтому уплотнение каждого слоя имеет решающее значение и должно контролироваться. Определение правильной толщины подъема важно, чтобы найти баланс между слишком маленькими или слишком большими слоями.Слишком большой подъем может привести к плохому уплотнению и ухудшению устойчивости, тогда как слишком маленький подъем может привести к чрезмерным затратам и времени. Толщина подъемника обычно составляет от 8 до 14 дюймов в зависимости от технических характеристик.

    Контактное давление

    Контактное давление между почвой и оборудованием, используемым для уплотнения, также важно понимать. Контактное давление зависит от общего веса уплотнительного оборудования и площади почвы, с которой оно контактирует.Чем выше контактное давление, тем большее уплотнение достигается.

    Скорость прокатки

    При обсуждении скорости уплотнения почвы следует учитывать дихотомию. Более высокая скорость уплотнения позволит уплотнить большую площадь. Однако, если уплотнение проводится слишком быстро, может не хватить времени для необходимых деформаций. В этом случае для завершения процесса уплотнения потребуются дополнительные проходы. Часто считается, что необходима более низкая скорость движения оборудования, особенно при использовании вибрационного оборудования.Более низкие скорости вибрационного оборудования дают больше времени для дополнительных вибраций в данной точке, что приводит к лучшему уплотнению. Машины для уплотнения обычно имеют скорость движения от 5 до 15 миль в час. Гладкие барабанные катки обычно перемещаются от 5 до 7 миль в час, а ролики с подушечным стопором — от 5 до 15 миль в час. Пневматические катки могут работать со скоростью почти 15 миль в час.

    Количество роликовых проходов

    На высоком уровне количество проходов, необходимое для достижения желаемого уплотнения, зависит от контактного давления и скорости оборудования.Также важны такие факторы, как тип почвы, уровень влажности, толщина подъема и тип уплотнителя. Как правило, более легкому оборудованию, имеющему меньший контакт с почвой, потребуется большее количество проходов по той же почве для достижения желаемой плотности по сравнению с более тяжелым оборудованием с большей площадью контакта. Однако есть момент, когда больший вес и / или более низкая скорость движения будут иметь меньшую отдачу. Очень медленная эксплуатация тяжелого катка — не всегда самый эффективный вариант.Как правило, тестовая часть может использоваться для определения шаблона роликов, который работает для указанной выше переменной.

    Как классификация почв влияет на уплотнение почвы?

    Размер частиц и критические значения воды играют большую роль в уплотнении почвы. Различные типы грунта по-разному реагируют на усилия по уплотнению. Типы почв классифицируются по размеру частиц, а в мелкозернистых почвах — по предельным значениям Аттерберга. Размер частиц определяется в лаборатории путем разделения репрезентативной пробы на серии сит или сит, начиная от 4.От 75 мм (4 ячейки) до 0,075 мм (200 меш). Распределение частиц почвы либо хорошее, либо плохое, либо неравномерное. Грунты с хорошей сортировкой, содержащие широкий спектр частиц, предпочтительны в строительстве, потому что они легко уплотняются, устраняя пустоты, сцепляя частицы и сопротивляясь поглощению влаги, позволяя почве выдерживать более тяжелые нагрузки как очень плотный грунт. Плохо сортированные грунты содержат узкий диапазон размеров частиц и менее подходят для строительных целей, поскольку прочность на сдвиг не связана с несвязанными частицами из-за их одинакового размера.Щелевые почвы содержат разрыв в общем распределении размеров зерен.

    Почвы делятся на два основных подразделения: крупнозернистые и мелкозернистые.

    • Крупнозернистые почвы на 50% или более имеют размер более 0,075 мм (200 меш),
      • Крупнозернистые почвы можно разделить на две части: гравий или песок.
      • Если 50% образца больше 4,75 мм, почва классифицируется как гравий.
      • Если 50% образца находится в диапазоне от 4,75 мм до 0,075 мм, он классифицируется как песок.
    • Мелкозернистые почвы на 50% или более имеют размер менее 0,075 мм.
      • Мелкозернистые почвы также можно разделить на два подразделения: илы и глины. Частицы ила больше, чем частицы глины, которые имеют размер менее 2 микрон.
      • Однако формальное различие связано с содержанием воды и определяется пределами почвы Аттербергом.
      • Пределы Аттерберга — это критические значения содержания воды в почве, которые представляют собой пределы жидкости и пластичности.
      • Предел жидкости — это содержание воды, при котором мелкозернистый грунт начинает проявлять жидкие свойства, то есть способность течь как жидкость.
      • Точно так же предел пластичности — это содержание воды, при котором грунт начинает проявлять пластические свойства, то есть способность переформоваться без образования трещин.
      • Эти пределы используются для определения индекса пластичности почвы или диапазона содержания воды, в котором почва проявляет пластические свойства, что является ценным геотехническим показателем.

    Какие методы используются для уплотнения почвы?

    Есть несколько методов уплотнения почвы. Все методы включают статическое и / или динамическое воздействие наряду с манипуляциями с почвой. Статическая сила использует давление груза на физически и непрерывно уплотняющую почву. Манипуляции, такие как замешивание или попеременное измельчение почвы, могут уплотнять почву на большей глубине. В сочетании с давлением и манипуляциями можно применить динамическую силу, добавив вибрирующий механизм.В методах вибрационного уплотнения используются разные амплитуды (количество движения по оси) и частоты (скорость движения) для приложения силы в чередующихся направлениях, обычно с помощью вращающегося груза, чтобы наносить быстрые удары по поверхности. Это переупорядочивает частицы почвы, поэтому уплотнение происходит не только в верхних слоях, но и в более глубоких слоях почвы. Другой динамический метод уплотнения грунта — ударное уплотнение падающим грузом. Этот метод позволяет уплотнять почву и на больших глубинах.

    Как уплотняется почва?

    Уплотнение почвы достигается за счет статической или динамической силы и манипуляций с почвой. Статическая сила использует собственный вес машин для приложения непрерывного давления вниз для увеличения уплотнения за счет сжатия верхнего слоя почвы. Динамическая сила использует движение в виде вибрации или падающего груза в сочетании со статической нагрузкой машины для увеличения плотности почвы. Мешалки и стрижки помогают уплотнять почву на большей глубине.

    Как вы проводите испытание на уплотнение почвы?

    Для определения степени уплотнения можно использовать несколько методов испытаний на уплотнение. Предварительные испытания на месте на объекте проекта важны для понимания того, какие условия присутствуют на начальном этапе. Испытание песчаным конусом, использование баллонного плотномера или трубки Шелби — все это жизнеспособные варианты, но чаще всего для проверки уплотнения в полевых условиях используется датчик ядерной плотности (ASTM D6938-08a). Лабораторные методы обычно включают уплотнение почвы в формы для получения плотности почвы.Например, тест на плотность влаги (обычно называемый тестами Проктора) (D698 и D1557) определяет уплотнение почвы в форме определенного объема с использованием стандартизированного веса с указанной высоты.

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *