Skip to content

Канцерогенами называют вещества вызывающие: Канцероген — Википедия – Чем опасны и где они содержатся

Содержание

Канцероген — Википедия

Канцероге́н (от лат. cancer — рак и др.-греч. γεννάω — рождаю) — факторы окружающей среды, воздействие которых на организм человека или животного повышает вероятность возникновения злокачественных опухолей. Указанные факторы могут иметь химическую (различные химические вещества), физическую (ионизирующие излучения, ультрафиолетовые лучи, а также, в некоторых случаях, электромагнитные поля[1]) или биологическую (онкогенные вирусы, некоторые бактерии[2]) природу; по оценкам онкологов, 80—90 % всех форм рака у человека представляет собой результат действия таких факторов[3].

По определению экспертов Всемирной организации здравоохранения, «канцероген — это агент, который в силу своих физических или химических свойств может вызвать необратимые изменения и повреждения в тех частях генетического аппарата, которые осуществляют контроль над соматическими клетками»[3].

Международное агентство по изучению рака ВОЗ выделило четыре группы веществ по их канцерогенным свойствам

[4][5]:

  1. канцерогенные для человека, их 120,
  2. вероятно и возможно канцерогенные — 82 и 311,
  3. неклассифицируемые как канцерогены для человека — 499,
  4. неканцерогенные — 1.

Международное агентство по изучению рака поместило в четвертую группу единственное вещество с доказанной неканцерогенностью — Капролактам[4][6]

Среди химических канцерогенов наиболее часто встречаемые следующие:

  • Нитраты и нитриты. Нитриты поступают в организм с пищей (в небольших количествах они содержатся в злаках и корнеплодах, а также в мясопродуктах, куда их добавляют в качестве консервантов). Основной источник поступления в организм нитратов — овощи, выращенные в условиях чрезмерного применения азотных удобрений. Часть нитратов в процессе хранения пищевых продуктов или непосредственно в пищеварительном тракте может восстанавливаться до нитритов. Попадая в желудок, нитриты способны под действием желудочного сока превращаться в
    нитрозамины
     — вещества с широким спектром канцерогенного действия[7][8].
  • Пищевые добавки. Некоторые пищевые добавки (например: Е123-Амарант (не путать с амарантом), Е121-Цитрусовый красный 2) являются доказанными канцерогенами и запрещены законодательством во многих странах.
  • Полициклические ароматические углеводороды и их производные — образуются при сгорании бытового мусора, неполном сгорании нефтепродуктов и присутствуют в выхлопных газах автомобилей. Среди них встречаются чрезвычайно канцерогенные вещества, в сотни раз более опасные чем бензол. Некоторые могут образовываться при жарке пищи, перекаливании растительных масел[источник не указан 376 дней].
  • Бензпирены — образуются при жарке и при приготовлении пищи на вертеле. Их много в табачном дыме. Продукты пиролиза белков образуются при длительном нагреве мяса в духовке. Найдены также в продуктах пиролиза древесины и некоторых других органических продуктов
    [источник не указан 376 дней]
    .
  • Пероксиды — образуются в прогорклых жирах и при сильном нагреве растительных масел[источник не указан 376 дней].
  • Афлатоксины — смертельно опасные микотоксины (подкласс поликетидов). Продуцируют эти токсины плесневые грибы — микромицеты нескольких видов рода Аспергилл (Aspergillus), в частности Aspergillus flavus (откуда и происходит название афлатоксинов) и Aspergillus parasiticus, которые произрастают и поражают зёрна, семена и плоды растений с высоким содержанием растительных масел и жирных кислот (например, на семенах арахиса, масличных культур) и других субстратах. Среди всех биологически производимых ядов афлатоксины являются самыми сильными гепатоканцерогенами из обнаруженных на сегодняшний день[9].
  • Диоксины — хлорорганические соединения, образующиеся при сжигании бытового мусора
    [источник не указан 376 дней]
    .
  • Винилхлорид — вещество является чрезвычайно огнеопасным и взрывоопасным. Продукты его горения токсичны. Оказывает на организм человека канцерогенное, мутагенное и тератогенное действие[9][10].
  • Бензол — токсичное и канцерогенное вещество[9]. Пары бензола могут проникать через неповрежденную кожу. Если организм человека подвергается длительному воздействию бензола в малых концентрациях, последствия также могут быть очень серьёзными. В этом случае хроническое отравление бензолом может стать причиной лейкемии (рака крови) и анемии (недостатка гемоглобина в крови)[источник не указан 376 дней].
  • Формальдегид — токсичен и оказывает сильное отрицательное воздействие на центральную нервную систему. Формальдегид внесён в список канцерогенных веществ ГН 1.1.725-98 в разделе «вероятно канцерогенные для человека», при этом доказана его канцерогенность для животных
    [11]
    [12][13].
  • Кадмий — кумулятивный яд (способен накапливаться в организме до опасных для здоровья количеств). Канцерогенен[14]. Соединения кадмия ядовиты.
  • Мышьяк — ядовитое и канцерогенное вещество[9]. Все соединения мышьяка также ядовиты.
  • Шестивалентный хром — является признанным канцерогеном при вдыхании[15].
  • Никель — соединения никеля токсичны, канцерогенны, аллергенны, мутагенны[источник не указан 376 дней].
  • Асбест — среди канцерогенов стоит особняком[9]. Его сложно отнести к химическим канцерогенам, которые, как правило, являются химически активными веществами. Канцерогенность асбеста, напротив, выражается в том, что живой организм не в состоянии избавиться от микроскопических, химически крайне инертных, частиц этого вещества.

Механизм действия химических канцерогенов[править | править код]

Большинство химических канцерогенов относятся к органическим соединениям, лишь небольшое число неорганических веществ обладают такой способностью. По Миллеру все канцерогены в той или иной степени являются электрофилами, которые легко взаимодействуют с нуклеофильными группами азотистых оснований нуклеиновых кислот, в частности ДНК, образуя с ними прочные ковалентные связи

[16]. Негативные действия со стороны канцерогенов проявляются в химической модификации нуклеиновой кислоты. Последствия такой модификации проявляются в невозможности правильного протекания процессов транскрипции и репликации ДНК, причина которого — образование ковалентно связанных с ней так называемых ДНК-аддуктов. Например, при репликации модифицированой ДНК, нуклеотиды которой связаны с канцерогеном, могут быть неправильно считаны ДНК-полимеразой, вследствие чего возникают мутации. Накопление большого количества мутаций в геноме приводят к трансформации нормальной клетки в опухолевую, что является основой канцерогенеза.

Химические канцерогены можно разделить на две большие группы:

  • Генотоксические
  • Негенотоксические

Генотоксические канцерогены — химические соединения, при взаимодействии которых с компонентами ДНК, могут возникать повреждения и мутации генома клетки. Мутации в свою очередь могут привести к процессам трансформации клеток, то есть к образованию опухолевых клеток.

Негенотоксические канцерогены — химические вещества, которые могут вызывать повреждения генома только в высоких концентрациях, при очень длительном и практически беспрерывном воздействии. Они вызывают бесконтрольную клеточную пролиферацию, тормозят апоптоз, нарушают взаимодействие между клетками (клеточную адгезию). Большинство негенотоксическиих канцерогенов — промоторы канцерогенеза, такие как: хлорорганические пестициды, гормоны, волокнистые материалы, асбест, в особенности его пыль.

По способу действия генотоксические канцерогены можно разделить на:

  • прямые — вещества с высокой реакционной способностью, непосредственно образующие с ДНК ковалентно связанные аддукты (это алкилирующие и ацетилирующие вещества — N-нитрозилалкилмочевина (НАМ), эпоксиды (в особенности ПАУ), этиленимин и его производные, хлорэтиламин и др.).
  • непрямые — малоактивные вещества, образующие ковалентно связанные ДНК-аддукты только после ферментативной активации, которая происходит с образованием высокоактивных электрофильных метаболитов, способных взаимодействовать с нуклеофильными группами ДНК (ПАУ и их производные).
  • Химические канцерогены
  • Метилхолантрен — сильнейший канцероген, образуется в организме человека, в результате нарушения обмена холестерина. Вызывает аденокарциному предстательной железы.

  • Окись этилена — обладает сильным алкилирующим действием на нуклеофильные группы молекулы ДНК, вызывает мутации.

  • Винилхлорид — ядовитое и канцерогенное вещество. Поражает печень (вызывает ангиосаркому), лёгкие, ЦНС, систему гемопоэза и иммунную систему.

  • 2,3,7,8-Тетрахлородибензодиоксин или ТХДД — одно из самых чрезвычайно токсичных соединений антропогенного происхождения, обладает сильной канцерогенностью, мутаген, тератоген, снижает деятельность гемопоэтической, эндокринной, репродуктивной системы, иммуносупрессор. Вызывает злокачественные новообразования печени, крови и молочной железы.

  • Этанол или этиловый спирт, в быту «спирт», проявляет канцерогенные и мутагенные свойства, является наркотическим веществом, подавляет деятельность ЦНС. Хроническое употребление алкоголя, содержащего большие концентрации этанола способствует увеличению риска возникновения злокачественных заболеваний органов ЖКТ, системы крови, нервной системы и головного мозга.

Наиболее известные физические канцерогены — это различные виды ионизирующего излучения (α, β, γ излучение, рентгеновское x излучение, нейтронное излучение, протонное излучение, кластерная радиоактивность, потоки ионов, осколки деления), хотя они же применяются и для лечения онкологических заболеваний. Ультрафиолет полностью поглощается кожей, и потому может вызвать лишь меланому. Тогда как ионизирующее излучение, свободно проникающие внутрь организма, способны вызвать радиогенные опухоли любых тканей и органов организма (довольно часто кроветворных, вследствие высокой чувствительности). Микроволновое излучение.

Роль биологических факторов в канцерогенезе не столь велика, сколь у химических и физических факторов, но в этиологии некоторых злокачественных опухолей она весьма значительна. Так, до 25 % случаев возникновения первичного рака печени в странах Азии и Африки связывают с инфицированностью вирусом гепатита B. Около 300 000 случаев заболевания раком шейки матки в год и значительная доля случаев заболевания раком полового члена связывают с передаваемыми половым путём папилломавирусами (в первую очередь, типа HPV-16, HPV-18, HPV-33)[20]. Примерно 30—50 % случаев заболевания лимфомой Ходжкина ассоциируется с поражением человеческого организма вирусом Эпштейна—Барр[21].

В 1990-е годы получены убедительные данные о зависимости большинства разновидностей рака желудка от инфицированности бактерией Helicobacter pylori[2].

  1. ↑ EMF Research (англ.). EMF Research. Дата обращения 27 января 2019.[неавторитетный источник? (обс.)]
  2. 1 2 Hatakeyama M. Helicobacter pylori CagA: a new paradigm for bacterial carcinogenesis : pdf / Hatakeyama M., Higashi H.  // Cancer Science : J. — Japanese Cancer Association, 2005. — Vol. 96, no. 12 (9 декабря). — P. 835—843. — DOI:10.1111/j.1349-7006.2005.00130.x. — PMID 16367902.
  3. 1 2 Черенков, 2010, с. 21.
  4. 1 2 Алексей Водовозов. Что опаснее: сигарета или колбаса? Лекция на YouTube
  5. ↑ Agents Classified by the IARC Monographs. Volumes 1–123 (англ.). International Agency for Research on Cancer (9 November 2018). Дата обращения 26 января 2019.
  6. ↑ List of classifications, Volumes 1–123 : [англ.] : pdf // IARC Monographs on the identifications of Carcinogenic Hazards to Humans. — WHO, 2018. — September. — P. 4. — 17 p.
  7. ↑ Нитраты и Нитриты — что это? (неопр.). // Сайт prodobavki.com. Дата обращения 13 февраля 2015.[неавторитетный источник?]
  8. Галачиев С. М., Макоева Л. М., Джиоев Ф. К., Хаева Л. Х.  Возможности эндогенного образования нитрозаминов в желудочном соке in vitro // Известия Самарского научн. центра РАН. — 2011. — Т. 13, № 1 (7). — С. 1678—1680.
  9. 1 2 3 4 5 Куценко С. А.  Основы токсикологии. — СПб.: Фолиант, 2004. — 720 с. — ISBN 5-93929-092-2.
  10. ↑ Хлорпроизводные непредельных алифатических углеводородов (неопр.). Новый справочник химика и технолога. Радиоактивные вещества. Вредные вещества. Гигиенические нормативы. ChemAnalitica.com. Дата обращения 5 ноября 2009.
  11. ↑ «Перечень веществ, продуктов, производственных процессов, бытовых и природных факторов, канцерогенных для человека», Приложение 2 к нормативам ГН 1.1.725-98 от 23 декабря 1998 г. № 32]
  12. ↑ Этот же перечень, Лаборатория аналитической экотоксикологии института проблем экологии и эволюции им. А. Н. Северцова РАН
  13. ↑ Территориальное управление Роспотребнадзора по Тульской области
  14. ↑ McDonald’s отзывает 12 млн стаканов из-за примесей кадмия (неопр.). Интерфакс (4 июня 2010). Дата обращения 4 июня 2010.
  15. ↑ «There is sufficient evidence in humans for the carcinogenicity of chromium[VI] compounds as encountered in the chromate production, chromate pigment production and chromium plating industries» // Volume 49: Chromium, Nickel, and Welding. — Lyon: International Agency for Research on Cancer, 5 ноября 1999. — ISBN 92-832-1249-5. Архивировано 24 декабря 2008 года.
  16. Miller E. C. Some current perspectives on chemical carcinogenesis in human and experimental animals: presidential adress.. — С. p. 1479— 1496. — (1978).
  17. Ilic Z., Crawford D., Vakharia D., Egner P. A., Sell S. Glutathione-S-transferase A3 knockout mice are sensitive to acute cytotoxic and genotoxic effects of aflatoxin B1. (англ.) // Toxicology and applied pharmacology. — 2010. — Vol. 242, no. 3. — P. 241—246. — DOI:10.1016/j.taap.2009.10.008. — PMID 19850059. [исправить]
  18. ↑ Kasper, Dennis L.et al. (2004) Harrison’s Principles of Internal Medicine, 16th ed., McGraw-Hill Professional, p. 618, ISBN 0071402357.
  19. Smith, Martyn T. Advances in understanding benzene health effects and susceptibility (англ.) // Ann Rev Pub Health : journal. — 2010. — Vol. 31. — P. 133–48. — DOI:10.1146/annurev.publhealth.012809.103646.
  20. ↑ Черенков, 2010, с. 22.
  21. Gandhi M. K., Tellam J. T., Khanna R. . Epstein-Barr virus-associated Hodgkin’s lymphoma // British Journal of Haematology, 2004, 125 (3). — P. 267—281. — DOI:10.1111/j.1365-2141.2004.04902.x. — PMID 15086409.
  • Черенков В. Г.  Клиническая онкология. 3-е изд. — М.: Медицинская книга, 2010. — 434 с. — ISBN 978-5-91894-002-0.

Чем опасны и где они содержатся

Канцерогены – это вредные вещества, оказывающие разрушающее действие на организм, негативно влияющие на обмен веществ и формирование здоровых клеток. Вред канцерогенов доказан целым рядом лабораторных исследований гастроэнтерологов, диетологов и онкологов. Канцерогены — главная причина и катализатор возникновения злокачественных опухолей.

О канцерогенах сейчас много пишут и говорят. Почему специалисты бьют тревогу и чем канцерогенные соединения так опасны? Это вещества и определенные факторы, которые могут «запускать» механизм развития новообразований в организме. Иными словами, канцерогены прямым или косвенным путем вызывают раковые заболевания. Подробнее читайте здесь.

Чего мы не знали о канцерогенах

Что из себя представляют канцерогены, каков их вред 

Канцерогены выступают как факторы, под влиянием которых возрастает риск возникновения новообразований.

Подписывайтесь на наш аккаунт в INSTAGRAM!

Канцерогены, к большому сожалению, присутствуют во многих продуктах, которые мы едим, и в бытовой химии, в медицинских препаратах. 

Как классифицируют канцерогены 

К канцерогенам относят большой перечень веществ химического и органического генезиса. Ученые не разработали единой их классификации по причине отсутствия общего отличительного признака. 

Типы канцерогенов 

Канцерогенные соединения возникают не только как продукты определенных реакций в производстве. Их можно обнаружить в продуктах питания, растениях, их могут продуцировать такие организмы как вирусы и бактерии.  

Канцерогены имеются в составе веществ, в классическом понимании полезных для здоровья людей. Но если превысить дозировку, то создаются условия для нежелательного деления клеток. К подобным соединениям можно отнести, например, березовый деготь. 

Чем могут быть коварны канцерогены

По вероятности контакта с человеком лидируют среди канцерогенов пищевые добавки, лекарства, инсектициды. Проникая в организм, эти соединения служат своеобразным пусковым крючком для запуска нежелательных процессов. В результате чего возникают и развиваются новообразования во внутренних органах и системах.

Природные канцерогены 

Под этим названием объединены факторы и вещества, которые присутствуют в природной среде и негативно воздействуют на организм. Их возникновение никак не связано с деятельностью населения. 

Например, ключевой момент в развитии рака кожи (одного из самых распространенных видов онкологических заболеваний) – солнечная радиация. Сегодня уже много пишут и говорят о вреде загара. Под прямым воздействием солнечного излучения в слоях эпидермиса может пойти неконтролируемый процесс деления клеток. 

Радон –  опасный инертный газ, находящийся в земной коре и стройматериалах. Поэтому у тех, кто имеет жилье на первых этажах, возрастает риск появления опухолей. Но содержание радона обнаруживают и в сельских постройках. В этих зданиях обычно есть погреб, где накапливается этот газ. Не исключено присутствие радона в артезианской воде, если она добывается на участке земли, загрязненной радоном; в природном бытовом газе. 

Помимо этого, канцерогенное влияние имеют гормоны, которые продуцируются железами внутренней секреции
Изучается канцерогенный эффект таких биологических соединений как вирусы. Они потенциально опасны как «спусковой крючок» развития гепатита B и С. 

Канцерогены антропогенного генезиса.

Накопление этого типа веществ в географической среде — итог природопользования.

К антропогенным канцерогенам относят:

  • соединения в составе угарного и выхлопного газа 
  • углеводороды, возникающие при сжигании нефтепродуктов, каменного угля, мусора
  • формальдегидные смолы, присутствующие в смоге мегаполисов. 
  • для здоровья чрезвычайно вредно ионизирующее излучение. Даже в самых незначительных дозах данный мощный канцерогенный фактор приводит к лучевой болезни, радиационному ожогу. 

Продукты, провоцирующие рак 

Производители продуктов питания скрывают наличие в них большого перечня пищевых добавок. Загадочные буквы с индексами на этикетках непонятны рядовому покупателю. Так обычно кодируют соединения, увеличивающие срок годности продуктов, улучшающие их эстетический вид и вкус.  

Пищевые добавки содержатся во всех молочных и кисломолочных продуктах. Много нитрозаминов имеется в колбасных изделиях и мясных продуктах, прошедших соответствующую обработку. Названные соединения при контакте со слизистоой ЖКТ в состоянии «подтолкнуть» образование опухоли. 

Подсластители сахарин и цикламат есть их в творожках и йогуртах. 

Продукты приобретают канцерогенные свойства, если их активно жарить в чрезмерном объеме растительного масла. В аппетитной поджаристой корочке можно обнаружить такие токсичные соединения: 
акриламид, метаболиты жирных кислот и т.д.

В состав кофе входит акриламид. Пока не доказана вероятность роста новообразований при употреблении этого напитка. Но присутствие в его составе канцерогена акриламида допускает эту вероятность. 

Канцерогены могут образовываться в продуктах со временем. Афлатоксин могут вырабатыватьплесневые грибы, споры которых есть в злаковых, отрубях, орехах и муке. Продукты с афлатоксином имеют горький вкус. Этот канцероген не выдерживает термической обработки.

Подписывайтесь на Эконет в Pinterest!

Максимально опасные канцерогены 

В земной среде присутствует множество различных соединений, оказывающих пагубное влияние на организм. Но максимальную опасность представляют те химические соединения, с которыми мы непосредственно контактируем в быту и на производстве. 

Перечень канцерогенов: 

  • Асбест. Минерал, относящийся к группе силикатов. Обычно применяется в строительных работах. В воздухе новых жилых зданий могут находиться его волокна. Частицы асбеста, попадая в организм человека через систему дыхания, могут стимулировать новообразования в дыхательных органах и желудке. 
  • Винилхлорид. Имеется в составе определенных сортов медицинских пластмасс. Из него делают товары для быта. У тех, кто работает на предприятиях, выпускающих эти товары, часто диагностируют опухоли таких органов как легкие и печень. 
  • Бензол. Соединение, которое при продолжительном воздействии может спровоцировать лейкоз. 
  • Еще одна группа канцерогенов: производные мышьяка, никеля и других веществ, присутствующие в выхлопных газах автомашин. Провоцируют рак таких органов как предстательная железа и мочевой пузырь.  

Как застраховаться от пагубного контакта с канцерогенами 

Как удалить канцерогены из организма? В этом помогут определенные продукты. Они имеют особенность связывать небезопасные соединения в химических реакциях или могут абсорбировать таковые на собственной поверхности. 

Вот эти продукты питания:

  • овощи: капуста, морковь, свекла и свежевыжатые соки из них 
  • гречневая каша, овсяная каша, рисовая каша 
  • зеленый чай, все кисломолочные продукты 
  • компот из сухофруктов. 

Очистить ЖКТ от скопившихся на его слизистой оболочке канцерогенов помогут абсорбенты и энтеросорбенты. 
Названные продукты необходимо включать в свой постоянный рацион, чтобы минимизировать негативное влияние канцерогенных соединений. 

Если придерживаться правил безопасности на производстве, употреблять больше натуральных (а не переработанных) продуктов и внимательно относиться к своему здоровью, можно в разы сократить силу пагубного воздействия канцерогенных веществ на ваш организм. 

Если вы проживаете на экологически загрязненной территории (район добычи полезных ископаемых, мегаполис, вблизи атомной электростанции) или работаете на «вредном» производстве, необходимо ежегодно проходить профилактические осмотры у врача. Ведь онкологическое заболевание, обнаруженное на ранней стадии, вылечить гораздо легче.*опубликовано econet.ru.

*Статьи Эконет.ру предназначены только для ознакомительных и образовательных целей и не заменяет профессиональные медицинские консультации, диагностику или лечение. Всегда консультируйтесь со своим врачом по любым вопросам, которые могут у вас возникнуть о состоянии здоровья.

Задайте вопрос по теме статьи здесь

Подписывайтесь на наш youtube канал!

P.S. И помните, всего лишь изменяя свое потребление — мы вместе изменяем мир! © econet

Химический канцерогенез — Википедия

Химический канцерогенез — сложный многоступенчатый процесс образования опухоли, происходящий под длительным воздействием химических веществ — канцерогенов, в основе которого лежит поражение генов и эпигенетические изменения.

Химические канцерогены ответственны за возникновение до 80-90 % всех злокачественных опухолей человека. Хотя процесс химического канцерогенеза часто разделяют на три стадии — инициацию, стимулирование и прогрессию — количество важных генетических изменений неизвестно.

Оказалось, что большинство «сильных» канцерогенов (например, ДМБА) обладают и инициирующими, и промоторными свойствами, а все промоторы, за редкими исключениями, проявляют канцерогенную активность, если их применять в высоких дозах и достаточно долго. Деление на инициаторы и промоторы в определённой степени соответствует делению канцерогенов на генотоксические и негенотоксические[1].

История открытия химического канцерогенеза[править | править код]

В 1775 году доктор Персиваль Потт впервые осознал, что химический канцерогенез является основой в этиологии рака. Им были описаны причины возникновения рака мошонки у ряда пациентов. Практически все они были трубочистами, это и натолкнуло Потта на то, что длительный контакт кожи с сажей, может приводить к развитию рака.

Примерно через столетие высокая частота рака кожи была выявлена у немецких рабочих, имевших длительный контакт с каменноугольной смолой — основным ингредиентом сажи. Гораздо позже было установлено и доказано экспериментальным путём, что канцерогенными веществами, которые содержатся в каменноугольной смоле и саже являются полициклические ароматические углеводороды (ПАУ).

В 1935 году были проведены многочисленные эксперименты доказывающие канцерогенную активность у целого ряда азокрасителей. В 1937 году в опытах на собаках удалось показать, что ароматические амины, и в частности 2-нафтиламин, способны вызывать опухоли мочевого пузыря. Высокая частота случаев этого новообразования у рабочих, контактировавших с некоторыми красителями, была показана ещё в XIX веке.

Соединения этого класса взаимодействуют с компонентами генома клетки, вызывая мутации ДНК. Мутации приводят к изменению свойств продуктов генов, что в конечном итоге вызывает нерегулируемый рост потомков этих клеток. Генотоксические вещества могут быть разделены на 2 группы: прямодействующие канцерогены и соединения, не канцерогенные в исходной форме, но активирующиеся в клетке под действием соответствующих ферментов — непрямые канцерогены.

Канцерогены прямого действия[править | править код]

Канцерогены прямого действия или прямые канцерогены — это чрезвычайно высокоактивные химические соединения, такие как лактоны, хлорэтиламины, эпоксиды (в частности, эпоксибензантрацен). Они способны непосредственно взаимодействовать со структурами клеток и вызывать развитие опухоли. Эти соединения не требуют каких-либо превращений в организме для проявления своего канцерогенного действия[2].

Электрофильная группа взаимодействует с отрицательно заряженными (нуклеофильными) группами молекулы ДНК, образуя стабильную ковалентную связь. При репликации нуклеотид, связанный с остатком канцерогена, может быть неправильно считан ДНК-полимеразой, что приводит к мутации.

Канцерогены непрямого действия[править | править код]

Канцерогены непрямого действия являются малореакционноспособными соединениями. Факт включения остатков этих соединений в макромолекулы клетки ставил в тупик исследователей до тех пор, пока в 1956 г. супруги Миллер (J. and E. Miller) не высказали предположения, что эти вещества в процессе метаболизма подвергаются ферментативной активации с образованием высокоактивных электрофильных метаболитов, способных взаимодействовать с нуклеофильными группами ДНК.

К канцерогенам непрямого действия относятся:

Благодаря низкой химической активности, эти вещества имеют свойства биоаккумуляции, накапливаются в окружающей среде и поэтому они представляют большую опасность для человека.

К негенотоксическим канцерогенам относятся соединения различной химической структуры и различного механизма действия: промоторы двухстадийного канцерогенеза, пестициды, гормоны, волокнистые материалы, прочие соединения (нужно заметить, что и пестициды, и гормоны могут быть промоторами канцерогенеза).

Промоторы вызывают клеточную пролиферацию, тормозят апоптоз, нарушают взаимодействие между клетками (клеточную адгезию).

Метаболическая активация и реактивность химических канцерогенов[править | править код]

Связывание канцерогенов макромолекулами in vivo[править | править код]

Впервые ковалентное взаимодействие химических канцерогенов с белками тканей-мишеней было отмечено ещё середине XX века. Наиболее раннее сообщение о реакции нуклеиновых кислот с алкилирующими агентами in vivo появилось в 1957 г.

Канцерогенность и мутагенность в связи с модификацией ДНК химическими канцерогенами[править | править код]

ДНК и РНК при химическом канцерогенезе[править | править код]

Основные химические канцерогены, их действие на организм и органы-мишени[править | править код]

Афлатоксины[править | править код]

Полициклические ароматические углеводороды и их производные[править | править код]

Одни из самых распространённых канцерогенов, многие из них являются довольно сильными. Входят в состав воздуха, воды, сильно загрязняют окружающую среду, имеют свойства биоаккумуляции. Такие соединения, как бенз[a]антрацен, бензпирен и овален, обладают также мутагенными и тератогенными свойствами. В основе практически всех техногенных источников ПАУ лежат термические процессы, связанные со сжиганием и переработкой органического сырья: нефтепродуктов, угля, древесины, мусора, пищи, табака и др.

Наибольшей канцерогенностью обладают вещества, имеющие 4-7 бензольных конденсированных колец. В структуре полициклических ароматических углеводородов выделены зоны, придающие соединению канцерогенную активность: так называемые «бэй»- и «фьорд-области».

Канцерогенез и мутагенез вызываемые ПАУ[править | править код]
Теория области «залива» («Bay» theory)[править | править код]

Теория «бэй-области» (области «залива») предполагает, что если диолэпоксиды ПАУ располагаются на угловых бензольных кольцах и при этом эпоксидная группа образует часть «бэй-области» канцерогенного ПАУ, то они должны обладать очень высокой биологической активностью. Впервые теория была высказана в 1980 году.

В последние годы было подтверждено, что теория «бэй-области» является очень удобной для предсказания структур конечных канцерогенов различных ПАУ[3].

Образование аддуктов с ДНК[править | править код]

Методом флюоресцентно-спектрального анализа было показано, что модифицированная бенз(а)пиреном ДНК содержится в количестве 1-105−106 оснований. Был осуществлён химический синтез конечных канцерогенов из ряда ПАУ, в частности дигидродиолэпоксиды бэй-области бенз(а)пирена и бенз(а)антрацена.

Ароматические амины и амиды[править | править код]

Многие ароматические амины и амиды широко производятся в промышленности красителей и используются в различных отраслях и в быту. Именно поэтому изучение их возможной канцерогенности представляется настоятельно необходимым[4]. Канцерогенность ароматических аминов (бывших причиной рака мочевого пузыря у рабочих, занятых в производстве красителей) была впервые установлена в конце прошлого века в Германии[4].

К данной группе относятся следующие соединения:

В настоящее время доказано, что не все ароматические амины являются канцерогенами. Образование канцерогенных метаболитов ароматических аминов происходит лишь при определенном положении аминогруппы в ароматическом кольце например, 2-нафтиламин (2-НА) — один из сильнейших канцерогенов для организма человека, тогда как 1-нафтиламин канцерогенной активностью вообще не обладает[5].

Канцерогенное действие ароматических аминов[править | править код]

Ароматические амины принадлежат к той категории канцерогенов, которые обладают резорбтивным действием[4].

Нитрозосоединения[править | править код]

По своей опасности для здоровья человека эта категория химических веществ выдвигается на первый план, наряду с повсеместно распространенными полициклическими ароматическими углеводородами. Сейчас известно более 100 канцерогенных нитрозаминов.

Наряду с токсичностью и канцерогенностью, эти агенты являются также тератогенными[6] и мутагенными и могут выраженно влиять на синтез ДНК, РНК и белка. Попытки дать объяснение этим биологическим и биохимическим эффектам концентрировались на механизмах и продуктах их расщепления и последующей их реакции с клеточными компонентами, особенно с макромолекулами. Как и в случае всех других химических канцерогенов, эти эффекты опосредуются электрофильными реакциями с клеточными составляющими[7] и на этой основе N-нитрозосоединения могут быть разделены на II группы: те, которые продуцируют электрофилы в ходе спонтанного распада (например, нитрозамиды), и те, которые химически более стабильны и требуют метаболической активации для инициации расщепления (как в случае нитрозаминов).

Наиболее изучены алкилирующие реакции нитрозосоединений с нуклеофильными центрами в клеточных макромолекулах, главным образом с нуклеиновыми кислотами. Алкилирование белков также имеет место. Известны данные, что могут алкилироваться и жиры. Реакции, иные чем алкилирование, привлекли сравнительно небольшое внимание, однако в некоторых случаях возможны реакции карбомоилирования и другие.

Многие N-нитрозосоединения столь же мутагенны, как и канцерогенны. Химически нестойкие амидные дериваты, особенно N-метил-N’-нитро-N-нигрозогуанидин, являются очень эффективными мутагенами во всех обычных микробных тест-системах, однако химически более стабильные нитрозамины таковыми не являются. Эти факты могут быть объяснены широко распространенным взглядом, согласно которому нитрозосоединения сами по себе не являются биологически активными, но производят свой эффект через химически реактивные интермедиаты. Последние могут образовываться как с помощью ферментов, так и без них.

Метаболизм нитрозосоединений
Химически стабильные нитрозосоединения разрушаются в организме быстро после введения, причем метаболизм осуществляется, главным образом (хотя и не исключительно), в печени. Связанные с обменом N-нитрозосоединений ферменты имеют те же характеристики, что и хорошо известные группы энзимов (микросомные гидроксилазы), которые ответственны за обмен большинства соединений, чужеродных для организма. Эти реакции уменьшают токсичность веществ и, таким образом, полезны. Но иногда, как в случае с нитрозаминами, имеет место обратное, а именно: продукты расщепления оказываются более токсичными и (или) канцерогенными, чем родительские соединения.

Нитрозоамиды[править | править код]

Аминоазосоединения[править | править код]

ПВХ[править | править код]

Металлы[править | править код]

Некоторые металлы, в частности хром, бериллий, никель, кобальт и кадмий обладают генотоксической кацерогенностью. Степень их канцерогенной активности и органы-мишени во многом определяются растворимостью в тканевых жидкостях и путях выведения из организма[1]. Особенно это свойство ярко выражено у шестивалентного хрома. Различие в канцерогенной активности определяется биодоступностью металлопроизводных: наиболее потенциально активные соединения содержат канцерогенные ионы металла, способные легко внедряться в клетки и реагировать с молекулой ДНК.

Волокнистые и неволокнистые силикаты[править | править код]

Другой тип канцерогенеза связан с воздействием на организм природных и синтетических силикатов. Они различаются по структуре кристаллической решетки, содержанию ионов металлов, но общим является наличие окислов кремния. Канцерогенными свойствами обладают вещества, имеющие волокнистую структуру.

Индивидуальная чувствительность к химическим канцерогенам[править | править код]

Канцероген — Википедия

Материал из Википедии — свободной энциклопедии

Канцероге́н (от лат. cancer — рак и др.-греч. γεννάω — рождаю) — факторы окружающей среды, воздействие которых на организм человека или животного повышает вероятность возникновения злокачественных опухолей. Указанные факторы могут иметь химическую (различные химические вещества), физическую (ионизирующие излучения, ультрафиолетовые лучи, ЭМП[1]) или биологическую (онкогенные вирусы, некоторые бактерии[2]) природу; по оценкам онкологов, 80—90 % всех форм рака у человека представляет собой результат действия таких факторов[3].

По определению экспертов Всемирной организации здравоохранения, «канцероген — это агент, который в силу своих физических или химических свойств может вызвать необратимые изменения и повреждения в тех частях генетического аппарата, которые осуществляют контроль над соматическими клетками»[3].

Химические канцерогены

Среди химических канцерогенов чаще всего называют следующие:

  • Бензпирены — образуются при жарке и при приготовлении пищи на вертеле. Их много в табачном дыме. Продукты пиролиза белков образуются при длительном нагреве мяса в духовке. Найдены также в продуктах пиролиза древесины и некоторых других органических продуктов.
  • Бензол — токсичное и канцерогенное вещество[6]. Пары бензола могут проникать через неповрежденную кожу. Если организм человека подвергается длительному воздействию бензола в малых концентрациях, последствия также могут быть очень серьёзными. В этом случае хроническое отравление бензолом может стать причиной лейкемии (рака крови) и анемии (недостатка гемоглобина в крови).
  • Формальдегид — токсичен и оказывает сильное отрицательное воздействие на центральную нервную систему. Формальдегид внесён в список канцерогенных веществ ГН 1.1.725-98 в разделе «вероятно канцерогенные для человека», при этом доказана его канцерогенность для животных[8][9][10].
  • Кадмий — кумулятивный яд (способен накапливаться в организме до опасных для здоровья количеств). Канцерогенен[11]. Соединения кадмия ядовиты.
  • Мышьяк — ядовитое и канцерогенное вещество[6]. Все соединения мышьяка также ядовиты.
  • Асбест — среди канцерогенов стоит особняком[6]. Его сложно отнести к химическим канцерогенам, которые, как правило, являются химически активными веществами. Канцерогенность асбеста, напротив, выражается в том, что живой организм не в состоянии избавиться от микроскопических, химически крайне инертных, частиц этого вещества.

Механизм действия химических канцерогенов

Большинство химических канцерогенов относятся к органическим соединениям, лишь небольшое число неорганических веществ обладают такой способностью. По Миллеру все канцерогены в той или иной степени являются электрофилами, которые легко взаимодействуют с нуклеофильными группами азотистых оснований нуклеиновых кислот, в частности ДНК, образуя с ними прочные ковалентные связи[13]. Негативные действия со стороны канцерогенов проявляются в химической модификации нуклеиновой кислоты. Последствия такой модификации проявляются в невозможности правильного протекания процессов транскрипции и репликации ДНК, причина которого — образование ковалентно связанных с ней так называемых ДНК-аддуктов. Например, при репликации модифицированой ДНК, нуклеотиды которой связанны с канцерогеном, могут быть неправильно считаны ДНК-полимеразой, вследствие чего возникают мутации. Накопление большого количества мутаций в геноме приводят к трансформации нормальной клетки в опухолевую, что является основой канцерогенеза.

Химические канцерогены можно разделить на две большие группы:

  • Генотоксические
  • Негенотоксические

Генотоксические канцерогены — химические соединения, при взаимодействии которых с компонентами ДНК, могут возникать повреждения и мутации генома клетки. Мутации в свою очередь могут привести к процессам трансформации клеток, то есть к образованию опухолевых клеток.

Негенотоксические канцерогены — химические вещества, которые могут вызывать повреждения генома только в высоких концентрациях, при очень длительном и практически беспрерывном воздействии. Они вызывают бесконтрольную клеточную пролиферацию, тормозят апоптоз, нарушают взаимодействие между клетками (клеточную адгезию). Большинство негенотоксическиих канцерогенов — промоторы канцерогенеза, такие как: хлорорганические пестициды, гормоны, волокнистые материалы, асбест, в особенности его пыль.

По способу действия генотоксические канцерогены можно разделить на:

  • прямые — вещества с высокой реакционной способностью, непосредственно образующие с ДНК ковалентно связанные аддукты (это алкилирующие и ацетилирующие вещества — N-нитрозилалкилмочевина (НАМ), эпоксиды (в особенности ПАУ), этиленимин и его производные, хлорэтиламин и др.).
  • непрямые — малоактивные вещества, образующие ковалентно связанные ДНК-аддукты только после ферментативной активации, которая происходит с образованием высокоактивных электрофильных метаболитов, способных взаимодействовать с нуклеофильными группами ДНК (ПАУ и их производные).
  • Химические канцерогены
  • Метилхолантрен — сильнейший канцероген, образуется в организме человека, в результате нарушения обмена холестерина. Вызывает аденокарциному предстательной железы.

  • Окись этилена — обладает сильным алкилирующим действием на нуклеофильные группы молекулы ДНК, вызывает мутации.

  • Винилхлорид — ядовитое и канцерогенное вещество. Поражает печень (вызывает ангиосаркому), лёгкие, ЦНС, систему гемопоэза и иммунную систему.

  • 2,3,7,8-Тетрахлородибензодиоксин или ТХДД — одно из самых чрезвычайно токсичных соединений антропогенного происхождения, обладает сильной канцерогенностью, мутаген, тератоген, снижает деятельность гемопоэтической, эндокринной, репродуктивной системы, иммуносупрессор. Вызывает злокачественные новообразования печени, крови и молочной железы.

  • Этанол или этиловый спирт, в быту «спирт», проявляет канцерогенные и мутагенные свойства, является наркотическим веществом, подавляет деятельность ЦНС. Хроническое употребление алкоголя, содержащего большие концентрации этанола способствует увеличению риска возникновения злокачественных заболеваний органов ЖКТ, системы крови, нервной системы и головного мозга.

Физические канцерогены

Наиболее известные физические канцерогены — это различные виды ионизирующего излучения (α, β, γ излучение, рентгеновское x излучение, нейтронное излучение, протонное излучение, кластерная радиоактивность, потоки ионов, осколки деления), хотя они же применяются и для лечения онкологических заболеваний. Ультрафиолет полностью поглощается кожей, и потому может вызвать лишь меланому. Тогда как ионизирующее излучение, свободно проникающие внутрь организма, способны вызвать радиогенные опухоли любых тканей и органов организма (довольно часто кроветворных, вследствие высокой чувствительности). Микроволновое излучение.

Биологические канцерогены

Роль биологических факторов в канцерогенезе не столь велика, сколь у химических и физических факторов, но в этиологии некоторых злокачественных опухолей она весьма значительна. Так, до 25 % случаев возникновения первичного рака печени в странах Азии и Африки связывают с инфицированностью вирусом гепатита B. Около 300 000 случаев заболевания раком шейки матки в год и значительная доля случаев заболевания раком полового члена связывают с передаваемыми половым путём папилломавирусами (в первую очередь, типа HPV-16, HPV-18, HPV-33)[17]. Примерно 30—50 % случаев заболевания лимфомой Ходжкина ассоциируется с поражением человеческого организма вирусом Эпштейна—Барр[18].

В 1990-е годы получены убедительные данные о зависимости большинства разновидностей рака желудка от инфицированности бактерией Helicobacter pylori[2].

См. также

Примечания

  1. ↑ EMF Research (англ.). EMF Research. Проверено 28 ноября 2016.
  2. 1 2 Hatakeyama M., Higashi H.  Helicobacter pylori CagA: a new paradigm for bacterial carcinogenesis // Cancer Science, 2005, 96 (12). — P. 835—843. — DOI:10.1111/j.1349-7006.2005.00130.x. — PMID 16367902.
  3. 1 2 Черенков, 2010, с. 21.
  4. ↑ Нитраты и Нитриты — что это?. // Сайт prodobavki.com. Проверено 13 февраля 2015.
  5. Галачиев С. М., Макоева Л. М., Джиоев Ф. К., Хаева Л. Х.  Возможности эндогенного образования нитрозаминов в желудочном соке in vitro // Известия Самарского научн. центра РАН. — 2011. — Т. 13, № 1 (7). — С. 1678—1680.
  6. 1 2 3 4 5 Куценко С. А.  Основы токсикологии. — СПб.: Фолиант, 2004. — 720 с. — ISBN 5-93929-092-2.
  7. ↑ Хлорпроизводные непредельных алифатических углеводородов. Новый справочник химика и технолога. Радиоактивные вещества. Вредные вещества. Гигиенические нормативы. ChemAnalitica.com. Проверено 5 ноября 2009. Архивировано 21 августа 2011 года.
  8. ↑ «Перечень веществ, продуктов, производственных процессов, бытовых и природных факторов, канцерогенных для человека», Приложение 2 к нормативам ГН 1.1.725-98 от 23 декабря 1998 г. № 32]
  9. ↑ Этот же перечень, Лаборатория аналитической экотоксикологии института проблем экологии и эволюции им. А. Н. Северцова РАН
  10. ↑ Территориальное управление Роспотребнадзора по Тульской области
  11. ↑ McDonald’s отзывает 12 млн стаканов из-за примесей кадмия. Интерфакс (4 июня 2010). Проверено 4 июня 2010.
  12. ↑ «There is sufficient evidence in humans for the carcinogenicity of chromium[VI] compounds as encountered in the chromate production, chromate pigment production and chromium plating industries» // Volume 49: Chromium, Nickel, and Welding. — Lyon: International Agency for Research on Cancer, 5 ноября 1999. — ISBN 92-832-1249-5. Архивировано 24 декабря 2008 года.
  13. Miller E. C. Some current perspectives on chemical carcinogenesis in human and experimental animals: presidential adress.. — С. p. 1479— 1496. — (1978).
  14. Ilic Z., Crawford D., Vakharia D., Egner P. A., Sell S. Glutathione-S-transferase A3 knockout mice are sensitive to acute cytotoxic and genotoxic effects of aflatoxin B1. (англ.) // Toxicology and applied pharmacology. — 2010. — Vol. 242, no. 3. — P. 241—246. — DOI:10.1016/j.taap.2009.10.008. — PMID 19850059. [исправить]
  15. ↑ Kasper, Dennis L.et al. (2004) Harrison’s Principles of Internal Medicine, 16th ed., McGraw-Hill Professional, p. 618, ISBN 0071402357.
  16. Smith, Martyn T. (2010). «Advances in understanding benzene health effects and susceptibility». Ann Rev Pub Health 31: 133–48. DOI:10.1146/annurev.publhealth.012809.103646.
  17. ↑ Черенков, 2010, с. 22.
  18. Gandhi M. K., Tellam J. T., Khanna R.  Epstein-Barr virus-associated Hodgkin’s lymphoma // British Journal of Haematology, 2004, 125 (3). — P. 267—281. — DOI:10.1111/j.1365-2141.2004.04902.x. — PMID 15086409.

Литература

  • Черенков В. Г.  Клиническая онкология. 3-е изд. — М.: Медицинская книга, 2010. — 434 с. — ISBN 978-5-91894-002-0.

Ссылки

Канцероген — Википедия. Что такое Канцероген

Канцероге́н (от лат. cancer — рак и др.-греч. γεννάω — рождаю) — факторы окружающей среды, воздействие которых на организм человека или животного повышает вероятность возникновения злокачественных опухолей. Указанные факторы могут иметь химическую (различные химические вещества), физическую (ионизирующие излучения, ультрафиолетовые лучи, ЭМП[1]) или биологическую (онкогенные вирусы, некоторые бактерии[2]) природу; по оценкам онкологов, 80—90 % всех форм рака у человека представляет собой результат действия таких факторов[3].

По определению экспертов Всемирной организации здравоохранения, «канцероген — это агент, который в силу своих физических или химических свойств может вызвать необратимые изменения и повреждения в тех частях генетического аппарата, которые осуществляют контроль над соматическими клетками»[3].

Химические канцерогены

Среди химических канцерогенов чаще всего называют следующие:

  • Бензпирены — образуются при жарке и при приготовлении пищи на вертеле. Их много в табачном дыме. Продукты пиролиза белков образуются при длительном нагреве мяса в духовке. Найдены также в продуктах пиролиза древесины и некоторых других органических продуктов.
  • Бензол — токсичное и канцерогенное вещество[6]. Пары бензола могут проникать через неповрежденную кожу. Если организм человека подвергается длительному воздействию бензола в малых концентрациях, последствия также могут быть очень серьёзными. В этом случае хроническое отравление бензолом может стать причиной лейкемии (рака крови) и анемии (недостатка гемоглобина в крови).
  • Формальдегид — токсичен и оказывает сильное отрицательное воздействие на центральную нервную систему. Формальдегид внесён в список канцерогенных веществ ГН 1.1.725-98 в разделе «вероятно канцерогенные для человека», при этом доказана его канцерогенность для животных[8][9][10].
  • Кадмий — кумулятивный яд (способен накапливаться в организме до опасных для здоровья количеств). Канцерогенен[11]. Соединения кадмия ядовиты.
  • Мышьяк — ядовитое и канцерогенное вещество[6]. Все соединения мышьяка также ядовиты.
  • Асбест — среди канцерогенов стоит особняком[6]. Его сложно отнести к химическим канцерогенам, которые, как правило, являются химически активными веществами. Канцерогенность асбеста, напротив, выражается в том, что живой организм не в состоянии избавиться от микроскопических, химически крайне инертных, частиц этого вещества.

Механизм действия химических канцерогенов

Большинство химических канцерогенов относятся к органическим соединениям, лишь небольшое число неорганических веществ обладают такой способностью. По Миллеру все канцерогены в той или иной степени являются электрофилами, которые легко взаимодействуют с нуклеофильными группами азотистых оснований нуклеиновых кислот, в частности ДНК, образуя с ними прочные ковалентные связи[13]. Негативные действия со стороны канцерогенов проявляются в химической модификации нуклеиновой кислоты. Последствия такой модификации проявляются в невозможности правильного протекания процессов транскрипции и репликации ДНК, причина которого — образование ковалентно связанных с ней так называемых ДНК-аддуктов. Например, при репликации модифицированой ДНК, нуклеотиды которой связанны с канцерогеном, могут быть неправильно считаны ДНК-полимеразой, вследствие чего возникают мутации. Накопление большого количества мутаций в геноме приводят к трансформации нормальной клетки в опухолевую, что является основой канцерогенеза.

Химические канцерогены можно разделить на две большие группы:

  • Генотоксические
  • Негенотоксические

Генотоксические канцерогены — химические соединения, при взаимодействии которых с компонентами ДНК, могут возникать повреждения и мутации генома клетки. Мутации в свою очередь могут привести к процессам трансформации клеток, то есть к образованию опухолевых клеток.

Негенотоксические канцерогены — химические вещества, которые могут вызывать повреждения генома только в высоких концентрациях, при очень длительном и практически беспрерывном воздействии. Они вызывают бесконтрольную клеточную пролиферацию, тормозят апоптоз, нарушают взаимодействие между клетками (клеточную адгезию). Большинство негенотоксическиих канцерогенов — промоторы канцерогенеза, такие как: хлорорганические пестициды, гормоны, волокнистые материалы, асбест, в особенности его пыль.

По способу действия генотоксические канцерогены можно разделить на:

  • прямые — вещества с высокой реакционной способностью, непосредственно образующие с ДНК ковалентно связанные аддукты (это алкилирующие и ацетилирующие вещества — N-нитрозилалкилмочевина (НАМ), эпоксиды (в особенности ПАУ), этиленимин и его производные, хлорэтиламин и др.).
  • непрямые — малоактивные вещества, образующие ковалентно связанные ДНК-аддукты только после ферментативной активации, которая происходит с образованием высокоактивных электрофильных метаболитов, способных взаимодействовать с нуклеофильными группами ДНК (ПАУ и их производные).
  • Химические канцерогены
  • Метилхолантрен — сильнейший канцероген, образуется в организме человека, в результате нарушения обмена холестерина. Вызывает аденокарциному предстательной железы.

  • Окись этилена — обладает сильным алкилирующим действием на нуклеофильные группы молекулы ДНК, вызывает мутации.

  • Винилхлорид — ядовитое и канцерогенное вещество. Поражает печень (вызывает ангиосаркому), лёгкие, ЦНС, систему гемопоэза и иммунную систему.

  • 2,3,7,8-Тетрахлородибензодиоксин или ТХДД — одно из самых чрезвычайно токсичных соединений антропогенного происхождения, обладает сильной канцерогенностью, мутаген, тератоген, снижает деятельность гемопоэтической, эндокринной, репродуктивной системы, иммуносупрессор. Вызывает злокачественные новообразования печени, крови и молочной железы.

  • Этанол или этиловый спирт, в быту «спирт», проявляет канцерогенные и мутагенные свойства, является наркотическим веществом, подавляет деятельность ЦНС. Хроническое употребление алкоголя, содержащего большие концентрации этанола способствует увеличению риска возникновения злокачественных заболеваний органов ЖКТ, системы крови, нервной системы и головного мозга.

Физические канцерогены

Наиболее известные физические канцерогены — это различные виды ионизирующего излучения (α, β, γ излучение, рентгеновское x излучение, нейтронное излучение, протонное излучение, кластерная радиоактивность, потоки ионов, осколки деления), хотя они же применяются и для лечения онкологических заболеваний. Ультрафиолет полностью поглощается кожей, и потому может вызвать лишь меланому. Тогда как ионизирующее излучение, свободно проникающие внутрь организма, способны вызвать радиогенные опухоли любых тканей и органов организма (довольно часто кроветворных, вследствие высокой чувствительности). Микроволновое излучение.

Биологические канцерогены

Роль биологических факторов в канцерогенезе не столь велика, сколь у химических и физических факторов, но в этиологии некоторых злокачественных опухолей она весьма значительна. Так, до 25 % случаев возникновения первичного рака печени в странах Азии и Африки связывают с инфицированностью вирусом гепатита B. Около 300 000 случаев заболевания раком шейки матки в год и значительная доля случаев заболевания раком полового члена связывают с передаваемыми половым путём папилломавирусами (в первую очередь, типа HPV-16, HPV-18, HPV-33)[17]. Примерно 30—50 % случаев заболевания лимфомой Ходжкина ассоциируется с поражением человеческого организма вирусом Эпштейна—Барр[18].

В 1990-е годы получены убедительные данные о зависимости большинства разновидностей рака желудка от инфицированности бактерией Helicobacter pylori[2].

См. также

Примечания

  1. ↑ EMF Research (англ.). EMF Research. Проверено 28 ноября 2016.
  2. 1 2 Hatakeyama M., Higashi H.  Helicobacter pylori CagA: a new paradigm for bacterial carcinogenesis // Cancer Science, 2005, 96 (12). — P. 835—843. — DOI:10.1111/j.1349-7006.2005.00130.x. — PMID 16367902.
  3. 1 2 Черенков, 2010, с. 21.
  4. ↑ Нитраты и Нитриты — что это?. // Сайт prodobavki.com. Проверено 13 февраля 2015.
  5. Галачиев С. М., Макоева Л. М., Джиоев Ф. К., Хаева Л. Х.  Возможности эндогенного образования нитрозаминов в желудочном соке in vitro // Известия Самарского научн. центра РАН. — 2011. — Т. 13, № 1 (7). — С. 1678—1680.
  6. 1 2 3 4 5 Куценко С. А.  Основы токсикологии. — СПб.: Фолиант, 2004. — 720 с. — ISBN 5-93929-092-2.
  7. ↑ Хлорпроизводные непредельных алифатических углеводородов. Новый справочник химика и технолога. Радиоактивные вещества. Вредные вещества. Гигиенические нормативы. ChemAnalitica.com. Проверено 5 ноября 2009. Архивировано 21 августа 2011 года.
  8. ↑ «Перечень веществ, продуктов, производственных процессов, бытовых и природных факторов, канцерогенных для человека», Приложение 2 к нормативам ГН 1.1.725-98 от 23 декабря 1998 г. № 32]
  9. ↑ Этот же перечень, Лаборатория аналитической экотоксикологии института проблем экологии и эволюции им. А. Н. Северцова РАН
  10. ↑ Территориальное управление Роспотребнадзора по Тульской области
  11. ↑ McDonald’s отзывает 12 млн стаканов из-за примесей кадмия. Интерфакс (4 июня 2010). Проверено 4 июня 2010.
  12. ↑ «There is sufficient evidence in humans for the carcinogenicity of chromium[VI] compounds as encountered in the chromate production, chromate pigment production and chromium plating industries» // Volume 49: Chromium, Nickel, and Welding. — Lyon: International Agency for Research on Cancer, 5 ноября 1999. — ISBN 92-832-1249-5. Архивировано 24 декабря 2008 года.
  13. Miller E. C. Some current perspectives on chemical carcinogenesis in human and experimental animals: presidential adress.. — С. p. 1479— 1496. — (1978).
  14. Ilic Z., Crawford D., Vakharia D., Egner P. A., Sell S. Glutathione-S-transferase A3 knockout mice are sensitive to acute cytotoxic and genotoxic effects of aflatoxin B1. (англ.) // Toxicology and applied pharmacology. — 2010. — Vol. 242, no. 3. — P. 241—246. — DOI:10.1016/j.taap.2009.10.008. — PMID 19850059. [исправить]
  15. ↑ Kasper, Dennis L.et al. (2004) Harrison’s Principles of Internal Medicine, 16th ed., McGraw-Hill Professional, p. 618, ISBN 0071402357.
  16. Smith, Martyn T. (2010). «Advances in understanding benzene health effects and susceptibility». Ann Rev Pub Health 31: 133–48. DOI:10.1146/annurev.publhealth.012809.103646.
  17. ↑ Черенков, 2010, с. 22.
  18. Gandhi M. K., Tellam J. T., Khanna R.  Epstein-Barr virus-associated Hodgkin’s lymphoma // British Journal of Haematology, 2004, 125 (3). — P. 267—281. — DOI:10.1111/j.1365-2141.2004.04902.x. — PMID 15086409.

Литература

  • Черенков В. Г.  Клиническая онкология. 3-е изд. — М.: Медицинская книга, 2010. — 434 с. — ISBN 978-5-91894-002-0.

Ссылки

Гепатоканцероген — Википедия

Гепатоканцероген (от лат. hepar „печень“ + лат. cancer „рак“ и др.-греч. γενναω „рождаю“) — различные факторы окружающей среды, обладающие опухолевородными свойствами, которые негативно влияют на ткани и клетки печени (гепатоциты), вызывая злокачественные опухоли. К таким факторам относят:

  • химические канцерогены,
  • физические канцерогены,
  • биологические канцерогены

Большинство гепатоканцерогенов — это химические вещества.

Механизмы действия химических канцерогенов[править | править код]

Химические гепатоканцерогены представлены многочисленными органическими соединениями, лишь небольшое число неорганических веществ обладают такой способностью.

Механизм действия ПАУ и их производных[править | править код]

Большинство химических гепатоканцерогенов — полициклические ароматические углеводороды и их производные. Они образуются в результате процессов сгорания нефтепродуктов, продуктов угольной и коксохимической промышленности, древесины, бытового мусора, неполного сгорания топлива, в результате перекаливания масел, при сильной жарке мяса и рыбы, входят в состав сигаретного дыма, смога, обнаруживаются в воздухе городов, крупных нефте-, коксохимических предприятий, ТЭС работающих на угле. Многие ПАУ, помимо канцерогенной активностью обладают тератогенным действием.

В организм ПАУ попадают несколькими путями:

  • воздушным — через дыхательные пути и лёгкие,
  • дермально — через кожу (особенно повреждённую) и слизистые оболочки,
  • алиментарно — то есть с пищей.

Проникнув в кровь ПАУ переносятся в печень, где обезвреживаются до инертных растворимых в воде и неканцерогенных метаболитов. Однако, зачастую продукты окисления ПАУ вызывают негативные изменения клеток — озлокачествление или опухолевую трансформацию.

Рассмотрим действие одного из производных бензантрацена — эпоксибензантрацена. Попадая в гепатоцит, бензантрацен окисляется (гидроксилируется) микросомальной системой, катализируемой цитохромом P450, до эпоксида. Эпоксид является веществом с высокой реакционной способностью, за счёт образования цикла, между атомом кислорода и молекулой углеводорода (цикл имеет сильное напряжение), вследствие этого он может легко связываться с нуклеофильными группами азотистых оснований, входящих в состав ДНК. Процесс взаимодействия эпоксида с нуклеофильными группами ДНК называется алкилированием. Алкилирование происходит с образованием ковалентно связанных (за частую очень прочно) ДНК-аддуктов с нуклеиновыми основаниями (в особенности с гуанином). Образовавшиеся аддукты вызывают целый ряд повреждений ДНК, которые приводят к нарушению транскрипции и мутациям. Помимо сильнейшего канцерогенного действия эпоксибензатрацен оказывает и сильное токсическое воздействие, однако, если его концентрация в клетках мала (<5 мкг/л), то продукты дальнейшего окисления менее опасны и выводятся из организма. Бóльшая концентрация эпоксида (от 5 мкг/л) в клетках печени, приводит к опухолевой трансформации, апоптозу и гибели. Накопление продуктов окисления эпоксида, также влечёт за собой мутации и опухолевородное воздействие.

Механизм действия ароматических аминов[править | править код]

Многие ароматические амины широко используются в промышленности и в быту. Они обладают резобтивным действием — вызывая опухоли, отдалённые от места попадания или введения. Такими способностями обладают:

  • 2-нафтиламин
  • Бензидин
  • 4-аминодифенил

Ароматические амины проникают в организм человека несколькими путями:

  • через дыхательные пути и лёгкие,
  • через кожу.

Механизм действия этих канцерогенов сходен с механизмом действия ПАУ. Попадая в гепатоцит, ароматический амин гидрокслируется до эпоксида, который в зависимости от концентрации либо повреждает генетический материал клетки, вызывая трансформацию или гибель клетки, либо обезвреживается ферментной системой до более безопасных метаболитов.

Механизм действия афлатоксинов[править | править код]

Афлатоксины (сокр. от Aspergillus flavus toxins) — являются сильнейшими гепатоканцерогенами, продуцируются некоторыми видами микроскопических грибов рода аспергилл (A.flavus, A.parasiticus итд.).

Все афлатоксины — контаминанты и попадают в организм человека исключительно алиментарным путём т.е с пищевыми продуктами, которые были поражены микромицетами аспергиллами (основу составляют продукты растительного происхождения с высоким содержанием масел и крахмала — арахис, зерновые культуры, кукуруза, сухофрукты, реже встречаются в продуктах животного происхождения — молоке, мясе и яйцах).

Механизм воздействия на гепатоциты имеет сходства с механизмом воздействия ПАУ. Однако продукты гидроксилирования имеют более высокие окислительные свойства и повреждают клетки посредством нарушения структуры целостности биомембран и алкирования нуклеиновых кислот.

В молекулах афлатоксинов большое количество атомов кислорода, вследствие этого, попадая в клетку печени и подвергаясь микросомальному гидроксилированию молекулы приобретают чрезвычайно реакционноспособные свойства. Они немедленно начинают алкилировать цепи ДНК, образуя с ними прочные аддукты. Алкилирование ДНК приводит к повреждениям гена-онкосупрессора p53, вплоть до утраты к экспрессии белка[1]. Тем самым лишая гепатоцит апоптоза. Дальнейшее продолжение процесса приводит к трансформации клеток, посредством активации некоторых онкогенов, например, K-ras, вызывая гепатоцеллюлярную карциному[2].

Скорость алкилирования лимитируется концентрацией продуктов гидроксилирования, однако, даже минимальное количество причиняет серьёзные повреждения гепатоцитам. Помимо этого они обладают сильнейшей гепатотоксичностью (в особенности Афлатоксин B1 — наиболее токсичный, СДЯВ, минимальная летальная доза для человека составляет менее 2 мг/кг). Отравление афлатоксинами требует безотлагательных мер медицинской помощи.

Hazard TT.svg

Механизм действия неорганических канцерогенов[править | править код]

Из неорганических гепатоканцерогенов следует отметить мышьяк, соединения кадмия и шестивалентный хром. Шестивалентный хром является генотоксичным непрямым гепатоканцерогеном. Попадая в клетку печени, он переходит в более стабильное пятивалентное состояние, которое обладает ярко выраженной генотоксичностью. Помимо пятивалентного состояния образуется и трехвалентный хром.

[3]

ВеществоВид животных
Азокрасители и их предшественники: -аминоазобензол -4-диметиламиноазобензол -о-аминоазотолуолкрысы, мыши
Алкилгалогены: -четыреххлористый углерод -хлороформ -иодоформ -бензилхлоридмыши, крысы, хомяки
Ароматические соединения: -1,1,1-трихлоро-2,2-бис (р-хлорфенил)этан -1,1-дихлор-2,2-бис (р-хлорфенил)этанмыши
2-ацетаминофлюоренкрысы, мыши, хомяки, кролики, собаки, кошки
Диалкил- и арилалкилгидразиныкрысы
Нитроароматические соединения: -ароматические гидраксиламины -4-нитрохинолон-1-оксидкрысы
Нитрозаминыкрысы
Тиосоединения: -тиомочевина -тиоацетамидгрызуны
Токсины: -афлатоксины -сафролкрысы
Этилкарбаматымыши

[3]

  1. ↑ Wogan GN, Hecht SS, Felton JS, Conney AH, Loeb LA. Environmental and chemical carcinogenesis. Seminars in Cancer Biology (2004). 14: 473-486.
  2. ↑ Ricordy R, Gensabella G, Cacci E, Augusti-Tocco G. Impairment of cell cycle progression of aflatoxin B1 in human cell lines. Mutagenesis (2002). 17: 241-249.
  3. 1 2 Куценко С.А. Основы токсикологии. — 2002.

Канцероген — это… Что такое Канцероген?

Канцероген (от лат. cancer — рак и др.-греч. γεννάω — рождаю), карциноген (от др.-греч. καρκίνος — краб и γεννάω — рождаю) — химическое (вещество) или физическое (излучение) воздействие на организм человека или животного, повышающее вероятность возникновения злокачественных новообразований (опухолей).

Примеры канцерогенов

Наиболее известный физический канцероген — ионизирующие излучения.

Среди химических канцерогенов чаще всего называют следующие:

  • Нитраты, нитриты — поступают в организм с переудобренными азотом овощами, например парниковыми. В желудочно-кишечном тракте нитраты могут превращаться в нитриты. Нитриты, вступая в реакцию с аминами, образуют канцерогенные нитрозамины. Нитриты добавляют также в колбасы и консервы[1].
  • Бензопирены — образуются при жарке и при приготовлении пищи на гриле. Их много в табачном дыме. Продукты белкового пиролиза образуются при длительном нагреве мяса в духовке. Найдены также в продуктах пиролиза древесины и некоторых других органических продуктов.
  • Афлатоксины — смертельно опасные микотоксины, относящиеся к классу поликетидов. Производящие токсин грибы нескольких видов рода аспергилл растут на зёрнах, семенах и плодах растений с высоким содержанием масла (например, на семенах арахиса) и других субстратах. Из всех биологически производимых ядов афлатоксины являются самыми сильными гепатоканцерогенами[2] из обнаруженных на сегодняшний день. При попадании в организм высокой дозы яда смерть наступает в течение нескольких суток из-за необратимых поражений печени.
  • Диоксины — хлорорганические соединения, образующиеся при сжигании бытового мусора.
  • Винилхлорид — вещество является чрезвычайно огнеопасным и взрывоопасным, выделяет при горении токсичные вещества. Оказывает на организм человека канцерогенное, мутагенное и тератогенное действие[2][3].
  • Бензол — токсичное и канцерогенное вещество[2]. Пары бензола могут проникать через неповрежденную кожу. Если организм человека подвергается длительному воздействию бензола в малых количествах, последствия также могут быть очень серьёзными. В этом случае хроническое отравление бензолом может стать причиной лейкемии (рака крови) и анемии (недостатка гемоглобина в крови). Бензол входит в состав бензина, широко применяется в промышленности, является исходным сырьём для производства различных пластмасс, синтетической резины, красителей.
  • Формальдегид — обладает токсичностью и оказывает сильное негативное воздействие на центральную нервную систему. Формальдегид внесён в список канцерогенных веществ ГН 1.1.725-98 в разделе «вероятно канцерогенные для человека», при этом доказана его канцерогенность для животных[4][5][6].
  • Мышьяк — ядовитое и канцерогенное вещество[2]. Все соединения мышьяка ядовиты.
  • Асбест — среди канцерогенов стоит особняком[2]. Его сложно отнести к химическим канцерогенам, которые, как правило, являются химически активными веществами. Канцерогенность асбеста напротив выражается в том, что живой организм не в состоянии вывести микроскопические, крайне химически инертные, частицы этого вещества.

См. также

Примечания

  1. E-250 (Е-250) Нитрит натрия
  2. 1 2 3 4 5 С. А. Куценко. Основы токсикологии. Санкт-Петербург, 2002
  3. Хлорпроизводные непредельных алифатических углеводородов. Новый справочник химика и технолога. Радиоактивные вещества. Вредные вещества. Гигиенические нормативы. ChemAnalitica.com. Архивировано из первоисточника 21 августа 2011. Проверено 5 ноября 2009.
  4. «Перечень веществ, продуктов, производственных процессов, бытовых и природных факторов, канцерогенных для человека», Приложение 2 к нормативам ГН 1.1.725-98 от 23 декабря 1998 г. № 32]
  5. Этот же перечень, Лаборатория аналитической экотоксикологии института проблем экологии и эволюции им. А. Н. Северцова РАН
  6. Территориальное управление Роспотребнадзора по Тульской области
  7. McDonald’s отзывает 12 млн стаканов из-за примесей кадмия. Интерфакс (4 июня 2010). Проверено 4 июня 2010.
  8. «There is sufficient evidence in humans for the carcinogenicity of chromium[VI] compounds as encountered in the chromate production, chromate pigment production and chromium plating industries» // Volume 49: Chromium, Nickel, and Welding. — Lyon: International Agency for Research on Cancer, 5 ноября 1999. — ISBN 92-832-1249-5.

Литература

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *