Skip to content

Какую нагрузку выдерживает газобетон: Несущая способность газобетона — обзор прочностных характеристик – Заблуждения о газобетоне

Содержание

Несущая способность газобетона — обзор прочностных характеристик

Несущая способность отдельно взятого газоблока и готовой стены сильно отличаются, и потому, при проектировании здания, нужно знать способ определения несущей способности участка стены. В данном обзоре мы расскажем о прочности блоков, классах, и о других моментах, связанных расчетными характеристиками стен.

Начнем с того, что автоклавный газобетон бывает различной плотности, от D300 до D700. Чем выше плотность блоков, тем они прочнее, зачастую. Причем, на разных заводах при одинаковой плотности, класс прочности может отличаться. К примеру, на одном заводе газобетон D400 обладает классом B3.5, а на втором, D400 имеет уже класс B2.

Несущая способность

Чтобы детально разобраться в данном вопросе, нужно рассмотреть три важных понятия:

  1. Прочность материала.
  2. Расчетное сопротивление кладки.
  3. Несущая способность участка стены.

Прочность газобетона на сжатие

Прочность на сжатие стеновых блоков принято обозначать классами, к примеру качественный автоклавный газобетон D400 обладает классом прочности B 2.5.

Что такое класс прочности, и что именно скрывается под этой цифрой? Давайте разбираться.

Класс прочности – гарантийное (обеспеченное) значение, что блок будет обладать заявленной прочностью. Марка прочности – усредненное значение, то есть, взяли 10 блоков и посчитали их среднюю прочность.

Класс B2.5 означает, что материал способен выдержать 2.5 Н (Ньютона) на квадратный миллиметр. То есть, квадратный сантиметр выдержит 25 кг нагрузки.

Теперь посчитаем площадь газобетонного блока, размерами 62 см на 30 см, получается 1860 см2. Далее определяем, сколько килограмм может выдержать блок – 1860 x 25= 46 000 кг = 46 тонн. То есть, погонный метр кладки толщиной 30 см выдержит 75 тонн.

Прочность газобетона определяют в лабораторных условиях при помощи пресса. То есть берутся кубики газобетона 10 на 10 см и давятся прессом, который фиксирует максимальное усилие до момента разрушения.

Расчетное сопротивление кладки

Расчетное сопротивление кладки – значение, определённое по строительным стандартам, которое включает в себя различные факторы, которые снижают прочность конструкции – стены. То есть, создается запас прочности по СНиП.

Расчетное сопротивление газобетонной кладки классом прочности B 2.5 составляет 1,0 Мпа, то есть 10 кг/см2. Как вы видите, это значение в 2.5 раза меньше чем прочность самого газобетона. То есть, погонный метр кладки выдерживает нагрузку в 30 тонн.

Несущая способность участка стены

Этот параметр будет еще меньше, и зависит от следующих параметров:

  1. Высота стены.
  2. Толщина стены.
  3. Характер нагрузки(эксцентриситет).

К примеру, на стену толщиной 300 мм опирается плита перекрытия, величина опирания – 120 мм. То есть нагрузка на стену прикладывается с отклонением от центра (эксцентриситетом), в результате, нагрузка распределяется неравномерно, что создает в стене некоторый сгибающий момент и лишнее напряжение, уменьшающее несущую способность. В результате, несущая способность участка стены будет примерно в два раза меньше чем расчетное сопротивление кладки.

Несущая способность участка стены в 5 раз меньше, чем прочность самого газобетона.

Заблуждения о газобетоне

Заблуждения о газобетонеСегодня распространены следующие заблуждения о газобетонных блоках:

  • газобетонные блоки боятся воды;
  • в газобетоне присутствует известь;
  • газобетон разрушается;
  • из газобетона нельзя строить высотные здания;
  • стены из газобетонных блоков не выдерживают больших нагрузок при креплениях.

Заблуждение: газобетонные блоки боятся воды

Это заблуждение часто связывают с пористой структурой газобетона. Существует мнение, что из-за пористости он обладает высокой влагонасыщаемостью, что может привести к изменению его свойств и разрушению материала.

Если рассмотреть газобетон «под лупой», то его характерной особенностью будет являться пористая структура, представленная микропорами. Но по своему составу эти поры закрыты, т.е. они не сообщаются между собой. Газобетон состоит из водонерастворимого минерала, поэтому вода не может разрушить его кристаллическую решётку, следовательно не может повлиять на его свойства. Конечно, вода может проникнуть внутрь материала из-за открытых пор на поверхности, но благодаря капилярно-пористой структуре газобетона влага быстро УХОДИТ в окружающую среду. Именно поэтому, за несколько лет эксплуатации здания в ограждающих конструкциях, достигается эксплуатационная (равновесная) влажность материала. Более того, согласно последним данным исследований немецких ученых, газобетон со временем набирает еще большую прочность.

То же самое происходит если на стены из газобетона воздействует влага в виде атмосферных осадков. Лишняя влага будет быстро удалена в окружающую среду, либо «мигрирует» внутрь, при необходимости (излишне сухом воздухе внутри помещения). Поэтому, когда воздух в помещении становится слишком сухим, то стены из газобетона обеспечивают его увлажнение, получив влагу за пределами помещения. И наоборот – если в помещении скапливается излишняя влажность, то вода не оседает в виде конденсата на стенах, а выводится наружу через стену. Именно так стены из газобетона обеспечивают самые комфортные условия в помещении.

Часто любители экспериментов занимаются «затоплением» кусочков газобетона. Но этот факт не может выступать в виде определяющего свойства материала. Плавучесть газобетона не имеет никакого отношения к его назначению, более того это подтверждает наличие большого количества резервных пор, которые не позволяют воде заполнить все поры.

Заблуждение: в готовом газобетоне присутствует известь

Для того, чтобы доказать ошибочность этого заблуждения, обратимся к процессу производства. Выясняется, что известь присутствует в составе газобетона, НО ТОЛЬКО НА начальном ЭТАПЕ ПРОИЗВОДСТВА, так же как и другие составляющие: портландцемент (М500 без различных добавок), кварцевый песок (содержащим оксид кремния не менее 85%) и вода.

В качестве газообразователя в производстве газобетона применяют алюминиевую пудру. Сырьевые компоненты проходят этап подготовки и очистки. Это необходимо для того, чтобы в процессе смешивания и автоклавирования химическая реакция была полной. В числе известь и песок подвергаются тщательному помолу для получения тонкодисперсной структуры.

При смешивании строго соблюдается дозирование и порядок поступления компонентов, что нужно для полноты протекающих реакций. Последней в смеситель добавляется малое количество (около 0,05%) алюминиевой пудры. Она вступает в реакцию с известью и обеспечивает созревание массива в уже залитых формах.

Все реакции и процессы в материале окончательно завершаются в автоклаве в среде насыщенного пара. Из таких материалов как оксид кальция, кремния и воды под воздействием высокого давления (11,5-13 бар) и температуры (190-193

oC) образуется новый минерал – искусственный камень. По своим свойствам он близок к природному минералу — тобермориту. В структуре готового массива, который после процесса автоклавирования набрал 100% прочности, содержится: 80% минерала – гидросиликата кальция и 20% кварцевого песка. Известь, так же как и алюминиевая пудра, полностью вступили в реакцию и в конечном результате отсутствуют в готовом материале.

В 2001 году в Новосибирском государственном архитектурно-строительном университете были проведены исследования структуры газобетона на основе дифракции синхротронного излучения (спектральный анализ). Данный спектральный анализ показал, что в газобетоне присутствует тоберморит и вода. Исходные компоненты, в том числе и известь, в структуре не выявлены.

Исследования были повторно проведены в 2007 году. Результаты были официально подтверждены.

Таким образом, заблуждение о том, что изделия из газобетона содержат известь, является неверным, поэтому неверны и утверждения о том, что из-за извести происходит насыщение газобетоном влаги. Отсутствие извести говорит о том, что газобетон экологически чистый продукт, что постоянно подтверждается санитарно-эпидемиологическими заключениями.

Заблуждение: в морозную погоду газобетон разрушается

Это заблуждение связано с ошибочным мнением о влиянии излишней увлажнённости на прочность газобетона в морозную погоду (замерзанием воды внутри пор), которая может привести к микротрещинам и разрыву структуры и, соответственно, разрушить материал.

Относительно газобетона эти опасения не оправдываются, поскольку микротрещин в материале не образуется. Поясним: образование микротрещин в газобетоне возможно либо в процессе механического воздействия при производстве, либо в процессе усадки материала. Благодаря современным технологиям и оборудованию механическое воздействие на массив при производстве газобетона минимизировано. Редко происходит и перемещение массива по технологическим линиям. Наиболее подвержены рискам повреждения на этапе производства  — например, при механических воздействий на массив, что как раз и гарантирует отсутствие микротрещин.

Если говорить об усадке, то процесс автоклавирования позволяет свести к минимуму вероятность образования усадочных трещин в изделиях. И в этом большое преимущество газобетона автоклавного твердения перед другими газо- и пенобетонами, изготовленными по упрощенным технологиям.

Разрывы структуры пор, вследствие замерзания воды, также не происходит. Ситуацию помогает стабилизировать пористая структура газобетона: благодаря наличию большого числа резервных пор, вода равномерно распределяется в них, оставляя свободное пространство для расширяющегося при замерзании льда. Соответственно, разрушения структуры газобетона НЕ ПРОИСХОДИТ и материал полностью сохраняет свои свойства.

Заблуждение: из газобетона нельзя строить высотные здания

Прочность ячеистого бетона, в зависимости от его плотности, изменяется от 35 кг/см2 при объёмном весе в 600 кг/м3 до 50 кг/см2 при объёмном весе в 700 кг/м3, что позволяет использовать материал в качестве несущих конструкций соответственно до 3 и 5 этажей. При выполнении ограждающих конструкций каркасных зданий этажность не ограничивается.

Заблуждение: стены из газобетона не выдерживают больших нагрузок при креплениях

Одно из преимуществ газобетона – технологичность – следует широко использовать для выполнения различного рода креплений. В ячеистый бетон можно, как в дерево, забивать скобы, нагели, гвозди, вворачивать шурупы и винты. Крепёжная способность гвоздей и шурупов зависит как от плотности и прочности газобетона, так и от материала самих крепёжных элементов.

Конструкции из газобетона не требуют предварительной установки закладных элементов для крепления тяжёлых элементов мебели и сантехнического оборудования. Любые полки, кухонные шкафы, зеркала, батареи отопления и т.п. с лёгкостью монтируются при помощи специальных дюбелей для ячеистого бетона, способных выдерживать весьма значительные нагрузки. Для навески лёгких предметов интерьера (картины, фотографии и т.д.) используются обычные гвозди, которые рекомендуется забивать под углом 45° (сверху вниз). О нагрузках, которые могут воспринять некоторые виды креплений, можно сказать следующее:

  • Стальные гвозди в газобетоне плотностью 600 и 700 кг/м3 при действии усилий перпендикулярно их оси выдерживают от 20 до 60 кгс при глубине вбиваемой части, от 40 до 100 мм и от 50 до 80 кгс при глубине забивки до 150 мм. При действии усилий вдоль оси гвоздя допускаемая нагрузка будет составлять примерно 40-50% от указанной.
  • Шурупы в газобетоне выдерживают нагрузку от 30 до 150 кгс при глубине ввинчиваемой части от 45 до 100 мм и действии усилий поперёк оси крепления. При действии по оси шурупа усилие должно быть уменьшено вдвое. При пользовании шурупами (винтами) нужно избегать слишком форсированной подачи до упора, чтобы газобетон не раскрошился под резьбой.
  • Современные крепёжные средства обеспечивают гарантированные показатели на выдёргивание. Ими являются различного рода дюбеля, которые при глубине забивки от 40 до 100 мм имеют показатели от 20 до 150 кгс на один элемент.

В настоящее время большое распространение получили нейлоновые дюбеля и химические анкеры, специально созданные для крепления в газобетон.

Расчет кладки из газобетона на смятие под действием нагрузки от перекрытия

Один из наиболее часто задаваемых вопросов: нужен ли распределительный монолитный пояс под перекрытием, если стены газобетонные? Очень хочется сказать: не просто нужен, но обязателен. Но это говорит опыт проектировщика – сколько строителей обращались с проблемой: трещит газобетон! И причин у такой проблемы много: это и неправильно выбранная марка газобетона, и отсутствие расчета, и к сожалению, просто плохое качество материала. Но заказчика такой довод, как опыт, обычно не устраивает, ему нужны более веские основания – он-то знает, что стена с монолитным поясом будет стоить дороже стены без него.

Рассмотрим, какие варианты вообще возможны:

 

1) Опирание перекрытия на кладку без дополнительных мероприятий.

2) Опирание перекрытия на армированную кладку. Армирование устраивается, если по результату расчета напряжение в стене от действия перекрытия составляет более 80% несущей способности стены – оставшиеся 20% запаса считаются ненадежными для кладки, ее нужно армировать. Армируется кладка сеткой из проволоки Вр-I диаметром 3-4 мм с шагом стержней 100х100 мм.

3) Опирание на монолитный пояс, либо на распределительный пояс из полнотелого кирпича, выполненный в один или несколько рядов.

Рассмотрим несколько примеров расчета газобетона на смятие по возрастающей (от первого варианта и далее).

Пример 1. Расчет на смятие кладки из газобетона марки по плотности D600, по прочности B3.5 (М50) на растворе марки М10. Толщина стены 350 мм. На кладку опирается сборное круглопустотное перекрытие, глубина опирания 160 мм. Пролет перекрытия 4,5 м.

Сбор нагрузки на стену (на 1 погонный метр кладки):

Действующая нагрузка

Расчет

Результат

Нагрузка от 1м2 сборного перекрытия 0,3 т/м2; половина пролета 3 м; коэффициент надежности по нагрузке 1,1; ширина сбора нагрузки 1 м.

0,3*2,25*1,1*1

0,75 т/м

Конструкция пола толщиной 100 мм, усредненный вес 0,14 т/м3; половина пролета 2,25 м; коэффициент надежности по нагрузке 1,1; ширина сбора нагрузки 1 м.

0,14*2,25*1,1*1

0,35 т/м

Перегородки – усредненная нагрузка 0,1 т/м2; половина пролета 2,25 м; коэффициент надежности по нагрузке 1,1; ширина сбора нагрузки 1 м.

0,1*2,25*1,1*1

0,25 т/м

Временная нагрузка на перекрытии 0,2 т/м2; половина пролета 2,25 м; коэффициент надежности по нагрузке 1,2; ширина сбора нагрузки 1 м.

0,2*2,25*1,2*1

0,54 т/м

Итого

 

Q = 1.89 т/м

 

Расчет ведем согласно п.п. 4.11-4.15 «Пособия по проектированию каменных и армокаменных конструкций».

Так как глубина опирания перекрытия (160 мм) меньше высоты перекрытия (180 мм), принимаем треугольную эпюру напряжений по рисунку.

Проверим, выполняется ли условие формулы (17), приведенное в СНиП II-22-81 «Каменные и армокаменные конструкции»:

Nc ≤ Ψ *d*Rc*Ac, где

 

Nc = Q*1м = 1.89 т – нагрузка на 1 погонный метр кладки;

Ψ – коэффициент, при треугольной эпюре напряжений равный 0,5;

d – коэффициент, равный 1 для газобетона;

Rc – расчетное сопротивление газобетона, которое находим из таблицы 5 «Рекомендаций по применению стеновых мелких блоков из ячеистых бетонов» для марки газобетона М35 на растворе марки М10; с расчетным коэффициентом 0,9 Rc = 0,9*0,7 = 0,63 МПа = 63 т/м2;

Ac — площадь смятия, на которую передается нагрузка, равная 0,16*1 = 0,16 м.

В итоге: 1.89 т < 0,5*1*63*0,16 = 5,04 т – условие выполняется.

Максимальное напряжение на 1 погонный метр кладки равно:

2Q/a0b = (2*1.89)/(0.16*1) = 24 т/м2 = 0,24 МПа.

Определим, какую часть от расчетного сопротивления составляет максимальное напряжение: (0,24/0,63)*100% = 38%, что значительно меньше 80%, значит армирование кладки не требуется.

 

Пример 2. Расчет на смятие кладки из газобетона марки по плотности D600, по прочности B2,5 (М25) на растворе марки М10. Толщина стены 350 мм. На кладку опирается монолитное железобетонное перекрытие толщиной 180 мм, глубина опирания 120 мм. Пролет перекрытия 5 м.

Сбор нагрузки на стену (на 1 погонный метр кладки):

Действующая нагрузка

Расчет

Результат

Перекрытие толщиной 0,18 м; вес 2,5 т/м3; половина пролета 2,5 м; коэффициент надежности по нагрузке 1,1; ширина сбора нагрузки 1 м.

0,18*2,5*2,5*1,1*1

1,24 т/м

Конструкция пола толщиной 100 мм, усредненный вес 0,14 т/м3; половина пролета 2,5 м; коэффициент надежности по нагрузке 1,1; ширина сбора нагрузки 1 м.

0,14*2,5*1,1*1

0,39 т/м

Перегородки – усредненная нагрузка 0,1 т/м2; половина пролета 2,25 м; коэффициент надежности по нагрузке 1,1; ширина сбора нагрузки 1 м.

0,1*2,5*1,1*1

0,28 т/м

Временная нагрузка на перекрытии 0,2 т/м2; половина пролета 2,25 м; коэффициент надежности по нагрузке 1,2; ширина сбора нагрузки 1 м.

0,2*2,5*1,2*1

0,6 т/м

Итого

 

Q = 2,51 т/м

 

Расчет ведем согласно п.п. 4.11-4.15 «Пособия по проектированию каменных и армокаменных конструкций».

Так как глубина опирания перекрытия (120 мм) меньше высоты перекрытия (180 мм), принимаем треугольную эпюру напряжений по рисунку.

Проверим, выполняется ли условие формулы (17), приведенное в СНиП II-22-81 «Каменные и армокаменные конструкции»:

Nc ≤ Ψ *d*Rc*Ac, где

Nc = Q*1м = 2,51 т – нагрузка на 1 погонный метр кладки;

Ψ – коэффициент, при треугольной эпюре напряжений равный 0,5;

d – коэффициент, равный 1 для газобетона;

Rc – расчетное сопротивление газобетона, которое находим из таблицы 5 «Рекомендаций по применению стеновых мелких блоков из ячеистых бетонов» для марки газобетона М25 на растворе марки М10; с расчетным коэффициентом 0,9 Rc = 0,9*0,51 = 0,46 МПа = 46 т/м2;

Ac — площадь смятия, на которую передается нагрузка, равная 0,12*1 = 0,12 м.

В итоге: 2,51 т < 0,5*1*46*0,12 = 2,76 т – условие выполняется.

Максимальное напряжение на 1 погонный метр кладки равно:

2Q/a0b = (2*2.51)/(0.12*1) = 42 т/м2 = 0,42 МПа.

Определим, какую часть от расчетного сопротивления составляет максимальное напряжение: (0,42/0,46)*100% = 91%, что превышает 80%, значит кладку нужно армировать. Армируем кладку сеткой из проволоки Вр-I диаметром 4 мм с шагом стержней 100х100 мм.

Пример 3. Расчет на смятие кладки из газобетона марки по плотности D600, по прочности B2.5 (М25) на растворе марки М10. Толщина стены 350 мм. На кладку опирается монолитное железобетонное перекрытие толщиной 200 мм, глубина опирания 140 мм. Пролет перекрытия 6,4 м.

Сбор нагрузки на стену (на 1 погонный метр кладки):

Действующая нагрузка

Расчет

Результат

Перекрытие толщиной 0,2 м; вес 2,5 т/м3; половина пролета 3,2 м; коэффициент надежности по нагрузке 1,1; ширина сбора нагрузки 1 м.

0,2*2,5*3,2*1,1*1

1,76 т/м

Конструкция пола толщиной 60 мм, усредненный вес 1,8 т/м3; половина пролета 3,2 м; коэффициент надежности по нагрузке 1,1; ширина сбора нагрузки 1 м.

0,06*1,8*3,2*1,1*1

0,38 т/м

Перегородки – усредненная нагрузка 0,1 т/м2; половина пролета 3,2 м; коэффициент надежности по нагрузке 1,1; ширина сбора нагрузки 1 м.

0,1*3,2*1,1*1

0,35 т/м

Временная нагрузка на перекрытии 0,2 т/м2; половина пролета 3,2 м; коэффициент надежности по нагрузке 1,2; ширина сбора нагрузки 1 м.

0,2*3,2*1,2*1

0,77 т/м

Итого

 

Q = 3,26 т/м

 

Расчет ведем согласно п.п. 4.11-4.15 «Пособия по проектированию каменных и армокаменных конструкций».

Так как глубина опирания перекрытия (150 мм) меньше высоты перекрытия (180 мм), принимаем треугольную эпюру напряжений по рисунку.

Проверим, выполняется ли условие формулы (17), приведенное в СНиП II-22-81 «Каменные и армокаменные конструкции»:

Nc ≤ Ψ *d*Rc*Ac, где

Nc = Q*1м = 3,26 т – нагрузка на 1 погонный метр кладки;

Ψ – коэффициент, при треугольной эпюре напряжений равный 0,5;

d – коэффициент, равный 1 для газобетона;

Rc – расчетное сопротивление газобетона, которое находим из таблицы 5 «Рекомендаций по применению стеновых мелких блоков из ячеистых бетонов» для марки газобетона М25 на растворе марки М10; с расчетным коэффициентом 0,9 Rc = 0,9*0,51 = 0,46 МПа = 46 т/м2;

Ac — площадь смятия, на которую передается нагрузка, равная 0,15*1 = 0,15 м.

В итоге: 3,26 т > 0,5*1*46*0,14 = 3,22 т – условие не выполняется. Необходимо устройство монолитного пояса. Толщину монолитного пояса можно определить по таблице 6 «Пособия по проектированию каменных и армокаменных конструкций».

Выводы.

При незначительном отклонении исходных данных, результаты расчета получаются совсем разными. От чего же, как выясняется, зависит прочность кладки на смятие?

1. От пролета перекрытия, от нагрузок, приложенных на перекрытие.

2. От толщины и глубины опирания перекрытия. Чем больше глубина опирания, тем лучше себя чувствует кладка – это видно из примеров. Но здесь нужно учитывать, что формулы расчета, приведенные в примерах выше,  распространяются на случай, когда глубина опирания перекрытия меньше его толщины. Для всех остальных случаев необходимо пользоваться методикой расчета, приведенной в п. 4.15 «Пособия …», для нетреугольной эпюры напряжения формулы расчета отличаются от приведенных в примерах.

3. От марки газобетона и раствора.

 

Еще полезные статьи:

«Выбор материала для стен»

«Как подобрать перемычки в кирпичных стенах»

«Как подобрать перемычки в частном доме – примеры расчета.»

«Подбираем перемычки в кирпичных перегородках – примеры расчета. Проемы №1-3.»

«Подбираем перемычки в самонесущих кирпичных стенах — примеры расчета. Проемы №4-6.»

«Подбираем перемычки в несущих кирпичных стенах — примеры расчета. Проемы №7-11.»

«Как выполнить чертеж перемычек — схему перекрытия оконных и дверных проемов»

«Устройство металлической перемычки»

«Как рассчитать стены из кладки на устойчивость.»

«Как пробить проем в существующей стене.»

Внимание! Для удобства ответов на ваши вопросы создан новый раздел «БЕСПЛАТНАЯ КОНСУЛЬТАЦИЯ».

class=»eliadunit»>
Добавить комментарий

Класс прочности газобетона и плотность блоков

Газобетон является легким пористым материалом, который имеет довольно низкий класс прочности. Да, по прочности на сжатие газобетон проигрывает почти всем строительным материалам. Но, очень важно понимать, что даже имеющейся прочности с запасом хватает на возведение двух/трехэтажного дома. Главное выбрать требуемую плотность газобетона, которая обеспечит нужную прочность по проекту.

Для строительства несущих стен применяют газобетоны плотностью от D300 до D700, а самыми популярными являются середнячки – D400 и D500, так как они обладают оптимальными прочностными и теплосберегающими свойствами.

Современные заводы по производству автоклавного газобетона изготавливают очень качественный и однородный газобетон, класс прочности которого, намного выше чем у устаревших заводов. К примеру, лучший газобетон плотностью D400 обладает классом B2.5, в то время, как более дешевый дотягивает только до B1.5.

Числовое значение класса B2.5 обозначает, что квадратный миллиметр газобетона выдерживает нагрузку в 2.5 Н(Ньютона). То есть, квадратный сантиметр гарантировано выдерживает нагрузку в 25 кг.

Само понятие “класс прочности газобетона” означает то, что каждый блок, привезенный с завода будет обладать прочностью, не менее чем заявлена производителем. То есть, это обеспеченная гарантийная прочность, ниже которой быть не должно.

Марка газобетона – среднестатистическое значение по прочности, получаемое при тестировании нескольких блоков из партии. То есть, взяли шесть блоков на пробу, и их показатели прочности составили соответственно: 31, 32, 32, 33, 35, 35 кг/см2. Среднее полученное значение – 33 кг/ см2. Что соответствует марке М35.

Таблица, прочность на сжатие (газобетон)
Марка газобетона Класс прочности на сжатие Средняя прочность (кг/см²)
 D300 (300 кг/м³) B0,75 — B1 10 — 15
D400
 B1,5 — B2,5 25 -32
D500  B1,5 — B3,5 25 — 46
D600 B2 — B4 30 — 55
D700 B2 — B5 30 — 65
D800 B3,5 — B7,5 46 — 98
D900 B3,5 — B10 46 — 13
D1000 B7,5 — B12,5 98 — 164
D1100 B10 — B15 131 — 196
D1200 B15 — B20 196 — 262

Марка прочности – это усредненное значение, а класс прочности – обеспеченное значение, ниже которого быть не может.

Чтобы определиться с требуемым классом прочности газобетона, необходимо знать расчетное сопротивление кладки и несущую способность участка стены.

Несущая способность стены будет примерно в 5 раз меньше, чем прочность материала на сжатие. Это связано с различными факторами, уменьшающими несущую способность кладки, и запасами по прочности по СНиП.

Основные факторы, влияющие на несущую способность: высота стены, толщина стены, и зона приложения нагрузки(эксцентриситет). Чем стена выше и тоньше, тем она сильнее может изгибаться под нагрузкой, что уменьшает ее расчетную несущую способность.

Зона приложения нагрузки(эксцентриситет) также сильно влияет на прочность конструкции, ведь если плита перекрытия опирается на стену только краем, и не доходит до центра стены, получается внецентренное сжатие, приводящее к сгибающему моменту.

Вывод. Газобетон бывает различной плотности от D300 до D700 и различных классов по прочности, от B1 до В5, что позволяет строить из него дома различной этажности и сложности. Если прочности газобетона не хватает, применяются железобетонные включения, на подобии железобетонных балок, перемычек, армопоясов и армокаркасов.

Прочностные расчеты кладки из газоблоков

Рекомендации по отделке

Альбом технических решений

Общие рекомендации

AEROC U-block

Перемычки AEROC

Сборно-монолитные перекрытия «MARKO-AEROC»

AEROC D300

Номенклатура AEROC и тех.характеристики

Газобетон AEROC предназначен для кладки как несущих, так и ненесущих стен и перегородок. Высокая точность размеров позволяет вести кладку на тонкослойных клеевых смесях со средней толщиной шва 2±1 мм.

Использование мелкозернистого клея не только повышает теплотехническую однородность кладки и увеличивает прочностные характеристики конструкций на 30% (в действующих нормах проектирования увеличение прочности при кладке на клею не отражено), но и ведет к общему снижению затрат на строительство.

Прочностные расчеты кладки из стеновых блоков должны выполняться в соответствии с действующими нормативными документами, в частности СНиП II-22 и СНиП 52-01. В развитие этих СНиПов выпущены пособия: «Пособие по проектированию бетонных и железобетонных конструкций из ячеистых бетонов» (НИИЖБ и ЦНИИСК им. Кучеренко) и «Рекомендации по применению мелких стеновых блоков из ячеистых бетонов» (ЦНИИСК им. Кучеренко).

Расчетные характеристики газобетонных блоков AEROC

Марка по средней плотности, класс по прочности на сжатие Расчетные сопротивления для предельных состояний I группы Расчетные сопротивления для предельных состояний II группы Начальный модуль упругости при сжатии Eb, МПа
Сжатие осевое Rb, МПа Сопротив-ление рас-тяжению Rbt, МПа Сопротив-ление срезу Rsh, МПа Сжатие осевое Rb, МПа Сопротив-ление рас-тяжению Rbt, МПа Сопротив-ление срезу Rsh, МПа
D500 В2,5 1,6 0,14 0,20 2,4 0,31 0,46 1400
D400 В2,5 1,6 0,14 0,20 2,4 0,31 0,46 1000
D300 В2,0 1,3 0,12 0,17 1,9 0,26 0,38 850

Расчет кладки из газоблоков

 Кладка из блоков AEROC должна вестись на клею или строительном растворе марки не ниже М50.

Расчетные сопротивления кладки из газоблоков, МПа

Марка блоков по средней плотности Сжатию R, МПа Осевому растяжению, Rt Растяжению при изгибе, Rtb Срезу по неперевя-занному сечению Rsq,
по непере-вязанному сечению (рис. 1) по перевя-занному сечению (рис. 2) по непере-вязанному сечению по перевя-занному сечению (рис. 3)
D500 В2,5 1,0 0,08 0,16 0,12 0,25 0,16
D400 В2,5 1,0
D300 В2,0 0,8

 

Модуль упругости (начальный модуль деформаций) кладки из блоков Е0, МПа:

Для блоков D400 и D500 В2,5        Е0 = 1687;

Для блоков D350 В2,0                     Е0 = 1350.

Расчетный модуль деформации кладки должен приниматься равным:

  1. При расчете конструкций по прочности для определения усилий в кладке Е = 0,5 . Е0 ;

  2. При определении кратковременных деформаций кладки от продольных и поперечных сил Е = 0,8 . Е0 .

Относительная деформация кладки из блоков с учетом ползучести ε = 3,5 . σ / Е0 ,

где σ – напряжение, при котором определяется ε.

Ненесущие конструкции

Основное количество газобетона, выпускаемого заводом «Аэрок СПб», используется в многоэтажном домостроении при заполнении наружных ограждений каркасных зданий. В этом варианте газобетонные стены делаются с поэтажным опиранием на перекрытия. Несущей способности блоков классов по прочности В2,0 и В2,5 для восприятия вертикальных нагрузок оказывается более чем достаточно (при правильном устройстве деформационного шва между кладкой и вышележащим перекрытием).

Однако такие стены, особенно при большой этажности зданий, должны проверяться на устойчивость к горизонтальным нагрузкам (ветровой напор и отсос, кратковременные нагрузки от опирания на стены находящихся в помещении людей). В общем случае, газобетонные стены должны закрепляться к поперечным несущим стенам или колоннам в двух уровнях по высоте этажа. 

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *