Skip to content

Как сделать светодиодный фонарик: Самодельный супер яркий мини LED-фонарик 3 Вт своими руками

Содержание

Самодельный супер яркий мини LED-фонарик 3 Вт своими руками

Светодиоды сегодня встраивают куда угодно – в игрушки, зажигалки, бытовую технику и даже в канцелярские товары. Но самое полезное изобретение с ними – это конечно же фонарик. Большая часть из них автономны и выдают мощное свечение от небольших аккумуляторов. С ним не заблудишься в темноте, а при работе в слабоосвещенном помещении этот инструмент просто незаменим.
Небольшие экземпляры самых разных LED-фонариков можно купить практически в любом магазине. Стоят они недорого, но качество сборки может порой не радовать. То ли дело самодельные устройства, которые можно сделать на базе самых простых деталей. Это интересно, познавательно и оказывает развивающее действие на любителей мастерить.

Сегодня мы рассмотрим очередную самоделку — LED-фонарик, сделанную буквально из подручных деталей. Их стоимость не более нескольких долларов, а эффективность устройства выше чем у многих заводских моделей. Интересно? Тогда сделайте ее вместе с нами.

Принцип работы устройства


На сей раз светодиод подключен к аккумулятору только через сопротивление на 3 Ом. Поскольку в нем присутствует готовый источник энергии, ему не требуется накопительный тиристор и транзистор для распределения напряжения, как в случае с вечным фонариком Фарадея. Для зарядки аккумулятора применяется электронный модуль зарядки. Крохотный микромодуль обеспечивает защиту от перепадов напряжения и не допускает перезарядки аккумулятора. Заряжается устройство от USB разъема, а на самом модуле находится разъем микро USB.

Необходимые детали



Из инструментов понадобятся: паяльник с флюсом, клеевой пистолет, бормашина, зажигалка и малярный нож.

Собираем мощный светодиодный фонарик


Подготовка светодиода с линзами


Берем пластиковый колпак с линзами, и размечаем окружность радиатора. Он нужен для охлаждения светодиода. На алюминиевой пластине размечаем посадочные пазы, отверстия и вырезаем радиатор по разметке. Это можно сделать, например, при помощи бормашины.



Вытаскиваем на время увеличительные линзы, сейчас они не понадобятся. С тыльной стороны колпачка на суперклей приклеиваем пластину радиатора. Отверстия, пазы у колпачка и радиатора должны совпадать.


Контакты светодиода лудим и пропаиваем медной проводкой. Защищаем контакты термоусадочными кембриками, и прогреваем их зажигалкой. Вставляем с лицевой стороны колпака светодиод с проводкой.




Обработка корпуса фонарика из шприца


Отмыкаем поршень с рукояткой у шприца, они нам больше не понадобятся. Обрезаем подыгольный конус малярным ножом.
Счищаем полностью торец шприца, проделывая в нем отверстия для светодиодных контактов фонарика.
Крепим колпак фонаря к торцевой поверхности шприца на любой подходящий клей, например, на эпоксидную смолу или жидкие гвозди. Не забываем светодиодные контакты поместить во внутрь шприца.




Подключение микромодуля зарядки и аккумулятора


На литиевый аккумулятор крепим клеммы с контактами, и вставляем в корпус шприца. Подтягиваем медные контакты, чтобы зажать их корпусом аккумулятора.

У шприца остается всего несколько сантиметров свободного пространства, недостаточного для модуля зарядки. Поэтому его придется разделить на две части.
Проводим малярным ножом посередине платы модуля, и ломаем ее по линии среза. Используя двойной скотч соединяем обе половинки платы вместе.



Разомкнутые контакты модуля лудим, и пропаиваем медной проводкой.


Окончательная сборка фонарика


К плате модуля припаиваем резистор, и подключаем его к микро-кнопке, изолируя контакты термоусадкой.


Остальные три контакта припаиваем к модулю согласно схеме его подключения. Микро-кнопку подключаем в последнюю очередь, проверяя работу светодиода.



Электронную начинку нашего устройства помещаем в корпус шприца таким образом, чтобы разъем микро USB и микро-кнопка остались на поверхности. Остальное пространство изолируем горячим клеем. Устанавливаем светодиодные линзы обратно на их место с лицевой стороны колпака.



Ставим на зарядку аккумулятор, и через некоторое время светодиод на модуле зарядки даст знать, что нашим фонариком уже можно пользоваться. Кстати, по заверениям автора, такой фонарик способен на одном заряде проработать около 10 часов!





Смотрите видео


Как сделать мощный светодиодный фонарь своими руками

Совсем недавно, слово светодиод ассоциировалось только с индикаторными приборами. Так как они были довольно дорогими и излучали всего несколько цветов при этом ещё и слабо светили. С развитием технологий, цена на светодиодные изделия постепенно снижалась, область применения широкими шагами расширялась.

Сегодня их используют в разных приборах, применяются практически везде, где нужны осветительные приборы. Фары и лампы в автомобилях оснащены светодиодами, рекламу на щитах выделяют светодиодные ленты. В бытовых условиях они также не менее часто применяются.

Причины использования светодиодов

Не обошли стороной и фонари. Благодаря мощным светодиодам, стало возможно собрать сверхмощный и при этом довольно автономный фонарь. Такие фонари могут излучать очень сильный и яркий, свет на дальнее расстояние или по большой площади.

В этой статье мы вам расскажем о главных преимуществах светодиодов большой мощности, и расскажем, как сложить светодиодный фонарь своими руками. Если вы уже сталкивались с этим, тогда сможете дополнить свои познания, для новичков в этой области, статья ответит на многие вопросы, связанные со светодиодами и фонарями с их применением.

Если вы хотите сэкономить, используя светодиод, следует учесть некоторые факторы. Так как иногда цена такой лампы, может превышать все сэкономленные средства. Если же вам приходится тратить много средств и времени на обслуживание источников света, при этом общее их количество потребляет много электроэнергии, тогда вам следует подумать, будет ли светодиод лучшей заменой.

Перед обычными светильниками, светодиод имеет ряд преимуществ, которые возвышают его:

  • Отсутствует потребность в обслуживании.
  • Значительная экономия электроэнергии, порой экономия доходит и до 10 раз.
  • Высокое качество светового потока.
  • Очень высокий срок службы.

Необходимые состовляющие

Если вы решили собрать своими руками светодиодный фонарь, для передвижения в темноте или для работы в ночное время суток, но не знаете с чего начать? Вы вам поможем в этом. Первым что нужно сделать, это найти необходимые элементы для сборки.

Вот предварительный список необходимых деталей:

  1. Светодиод
  2. Провод намоточный, 20-30 см.
  3. Кольцо ферритовое примерно 1-.1.5 см в диаметре.
  4. Транзистор.
  5. Резистор на 1000 Ом.

Конечно, этот список нужно дополнить ещё и батарейкой, но это такой элемент, который можно спокойно найти в любом доме и он не требует особой подготовки. Также следует подобрать корпус или какое-то основание, на которое будет устанавливаться вся схема. Хорошим корпусом будет старый нерабочий фонарик либо тот, который вы собираетесь модифицировать.

Как собрать своими руками

При сборе схемы, нам будет необходим трансформатор, но его в список не добавили. Мы будем делать его своими руками из ферритового кольца и провода. Сделать это очень просто, берём наше кольцо и начинаем наматывать провод сорок пять раз, этот провод будет подключаться к светодиоду. Берём следующий провод, и наматывает его уже тридцать раз, и направляем на базу транзистора.

Резистор, используемый в схеме, должен иметь сопротивление 2000 Ом, только используя такое сопротивление, схема сможет работать без сбоев. При тестировании схемы, резистор R1 заменить на похожий, с регулируемым сопротивлением. Включить всю схему и регулируя сопротивление этого резистора, настроить напряжение на отметку примерно 25мА.

В результате вы узнаете, какое сопротивление должно быть в этой точке, и сможете подобрать подходящий резистор, с нужным вам номиналом сопротивления.

Если схема составлена в полном соответствии с вышеуказанными требованиями, тогда фонарь должен сразу работать. Если он не работает, тогда возможно вы совершили следующую ошибку:

  • Концы обмотки подключены наоборот.
  • Количество витков не соответствует необходимому.
  • Если намотанных витков меньше 15, тогда генерация тока в трансформаторе перестаёт осуществляться.

Собираем светодиодный фонарь на 12 вольт

Если количества света от фонарика не хватает, тогда можно собрать мощный фонарь, питающийся от аккумулятора на 12 вольт. Такой фонарь все ещё остаётся переносным, но уже значительно больше в габаритах.

Для сборки схемы такого фонаря своими руками нам понадобятся следующие детали:

  1. Пластиковая труба, диаметром около 5 см и клей для ПВХ.
  2. Резьбовой фитинг для ПВХ, две штуки.
  3. Заглушка с резьбой.
  4. Тумблер.
  5. Собственно сама светодиодная лампа, рассчитанная на 12 вольт.
  6. Аккумулятор для питания светодиода, на 12 вольт.

Изолента, термоусадочные трубки и маленькие хомуты, что б привести проводку в порядок.
Аккумулятор можно изготовить своими руками, из маленьких батарей, которые используют в радиоуправляемых игрушках. Может понадобиться 8-12шт, в зависимости от их мощности, чтобы в совокупности получилось 12 вольт.

К контактам на лампочке, припаиваете два провода, длина каждого должна превышать длину аккумулятора на несколько сантиметров. Все тщательно изолируются. При соединении лампы и батареи тумблер установить таким образом, что б он располагался на противоположном конце от светодиодной лампы.

На концах проводов идущих от лампы и от блока батарей, который мы сделали своими руками, устанавливает специальные разъёмы, для удобства соединения. Собираем всю схему и проверяем её работоспособность.

Схема сборки

Если все работает, то приступаем к созданию корпуса. Отрезав необходимую длину трубы, вставляем в неё всю нашу конструкцию. Аккумулятор Тщательно закрепляем внутри с помощью клея, чтобы он не повредил лампочку в процессе эксплуатации.

На обоих концах устанавливаем фитинг, крепим его с помощью клея, так мы обезопасим фонарь от случайного попадания влаги вовнутрь. Далее, выводим наш тумблер на противоположный край от лампы, и также тщательно закрепляем. Задний фитинг должен полностью закрывать включатель своими стенками, и при закрученной заглушке предотвращать попадание туда влаги.

Для использования достаточно открутить заглушку, включить фонарь и заново плотно закрутить.

Ценовой вопрос

Самое дорогое, что вам понадобится это светодиодная лампа на 12 вольт. Она стоит порядка 4-5 долларов. Покопавшись в старых игрушках детей, аккумуляторы со сломанной машинки будут для вас бесплатными.

Тумблер и трубу тоже можно найти в гараже, обрезки таких труб постоянно остаются после ремонтов. Если труб и аккумуляторов нету, можно спросит друзей и соседей или купить в магазине. Если покупать абсолютно все, тогда такой фонарь вам может обойтись примерно в 10 долларов.

Подведём итог

Светодиодные технологии набирают всё большей популярности. Имея хорошие характеристики, в скором времени они могут полностью вытеснить всех конкурентов в области освещения. А самому собрать мощный переносной фонарь со светодиодной лампой своими руками, не составит для вас практически никакого труда.

пошаговая инструкция сборки прожектора своими руками

Хотите сделать мощный и симпатичный светодиодный фонарь своими руками? Тогда этот проект для вас!
Посмотрите видео, в котором раскрыты все особенности этого проекта, а также пройдитесь по шагам до конца статьи, чтобы ознакомиться с частью «как это делается». Для более глубокого понимания проекта, я рекомендую вам посмотреть как видео, так и тексто-графическую часть инструкции.

Шаг 1: Корпус и детали

Чтобы создать переносной светодиодный фонарь, вам понадобятся:

  • Корпус: здесь можно применить всю вашу фантазию. Корпус может быть различной формы. И конечно, вы можете сделать корпус для своего самодельного ручного сверхмощного фонарика, просто скопировав мой вариант. Я использовал алюминиевую трубку и центральный алюминиевый сердечник для отведения тепла. Очень важно, чтобы чип светодиода охлаждался, именно поэтому я установил его на такой большой кусок металла. Так что спокойно используйте мои идеи по изготовлению корпуса, они детально рассмотрены в видео. Передняя и задняя крышки, а также ручка напечатаны на 3D принтере из ABS. Я не буду прилагать файлы для 3D печати, так как они были подготовлены для трубки моего диаметра, и вы легко сможете сами сделать 3D-модели заглушек для ваших трубок.
  • Чип для 100W светодиода, отражатель, линза.
  • 100W драйвер для светодиода — поищите повышающий драйвер постоянного тока для светодиодов («step up constant voltage led driver» для поиска на зарубежных сайтах).
  • Литий-полимерный аккумулятор (я использовал 4S 3300mAh).
  • Мелкая электроника (выключатель, потенциометр, резисторы).

Шаг 2: Установка светодиода

  1. Установите светодиод на радиатор, используя термопасту и винты.
  2. Приклейте отражатель и линзу при помощи эпоксидки.
  3. Припаяйте на светодиод провода, соединяющие его с драйвером.

Совет: если ваш радиатор недостаточно велик, вы можете использовать активное охлаждение в виде вентилятора. Соедините вентилятор напрямую с источником питания после выключателя.

Шаг 3: Драйвер светодиода

Выберите повышающий DC-DC драйвер, который может держать ток мощностью минимум 100W. Если вы хотите менять яркость дальнобойного фонарика, то используйте приложенную схему для его доработки. После апгрейда, установите максимальный вольтаж на подстроечном резисторе. Максимальный вольтаж должен быть таким же, какой указан у производителя чипа светодиода. Также проверьте ток чипа вольтажа — на максимуме он может выдавать более 100W. Если так, то установите максимальный ток немного ниже, таким образом, вы не превысите 100W при полностью открытом подстроечном резисторе и полностью заряженном аккумуляторе.

А еще вы можете выбрать драйвер постоянного тока и настроить его.

Шаг 4: Подгоняем и соединяем

Вставьте драйвер в трубку (или в ваш собственный корпус). Оставьте место для аккумулятора
Установите потенциометр подстроечного резистора. Установите на корпус выключатель и последовательно соедините его с плюсовым проводом аккумулятора.

Шаг 5: Итог

Поместите аккумулятор в трубку, закройте её (или ваш собственный корпус). Всё готово. Включайте ваш мощный прожектор-фонарь и развлекайтесь!

Более подробные детали сборки можно найти в видео.

Светодиодные фонари своими руками

В этой статье мы рассмотрим, как можно своими руками изготовить мощный фонарь на основе светодиодов самостоятельно. Он в разы будет потреблять меньше количество энергии, чем обычный.
Сегодня купить качественный светодиодный фонарь по хорошей цене достаточно сложно. Поэтому мы предлагаем седлать его своими собственными руками. Смастерить мощный светодиодный фонарь самому совершенно легко. Общая стоимость изготовления фонаря будет меньше, чем Вы бы отдали за аналогичный заводской фонарь. Нужно немного терпения и огромное желание, а также пару инструментов. Использовать данное приспособление вы сможете для различных целей: на территории сада или в огороде, возле дома, для подсветки мебели, как фары для машины и даже для занятия подводным плаванием!

Для создания светодиодного фонаря своими руками вам понадобится:

  • нерабочий фонарик
  • несколько светодиодных лампочек;
  • резисторы;
  • клей – герметик или силиконовый клей хорошего качества;
  • пластина желательно из алюминия, но можно взять и другой прочный материал;
  • любой светоотражатель.

Основные этапы нашей работы:

  1. Составление электрической схемы
  2. Изготовление и подготовка пластины для светодиодов
  3. Сборка схемы
    3.1 Спаивание выводов лампы
    3.2 Заливка контактов и их проверка
  4. Работа со светоотражателем (подготовка и сборка)
  5. Закрепление всех деталей светодиодного фонарика

Итак, приступим. Первым делом нужно сделать схему подключения резисторов и светодиодов. Отсутствие знаний и опыта в работе с электричеством — не проблема. Выполнить схему можно прочитав информацию на интернет-сайтах или через онлайн программы. В итоге вы, следуя инструкциям, получите схему-проект на экране в готовом виде.


Для правильного моделирования и изготовления схемы нужно четко определится с силой напряжения источника питания и светодиодных ламп, количеством светодиодов и силой тока одного светодиода. Все эти параметры указаны в характеристиках и описаниях в инструкциях к деталям.

Первый этап изготовления светодиодного фонарика своими руками закончен. Приступаем к следующему – изготовление пластины. Данная пластина будет использоваться как держатель. Для начала начертите на листке бумаги предварительную схему пластины со всеми отверстиями для светодиодов. Дырочек должно быть столько сколько и светодиодов. Затем ножницами вырежьте схему и приклейте ее к пластине. По эскизу, который нанесен на бумаге сделайте соответствующие отверстия и в пластине. Сделать это будет удобно и легко с помощью дрели.

Далее протяните все светодиоды в полученные дырочки. Важно не зацепить и не повредить контакты. Следите за тем, чтобы катоды и аноды чередовались! Все это желательно делать на ровной поверхности. В конечном результате светодиоды должны как бы «проваливаться» в отверстия. Не забудьте закрепить светодиодные лампочки клеем или клеем-герметиком для большей прочности и надежности.

Третий этап создания светодиодного фонарика своими руками начинается еще с одного дополнительного слоя клея. Теперь спаивайте светодиоды и резисторы обычной паяльной лампой. Старайтесь не повредить и не затрагивать контакты. Помните, что перед спайкой все кончики светодиодных лампочек необходимо укоротить. Для начала отметьте положительный и отрицательный выводы, чтобы их не спутать.
Как вариант можно просто сделать отрицательный вывод чуть короче. На качество это не повлияет. Теперь припаяйте выводы.

Проверка и заливка контактов важное действие при сборке светодиодного фонарика. Перед тем как приступить к этому заданию, проверьте работу уже полученного устройства, подключив его к питанию. Все лампы должны светиться. Теперь заливаем контакты. Это удобно сделать обычным воском или использовать парафин. Лучше всего выдавливать воск шприцом для того, чтобы контакты не соприкасались друг с другом. Это мера предосторожности от замыкания.

Переходим к работе со светоотражателем. Он увеличивает мощность светодиодного фонаря. Из светоотражателя нужно вытащить галогенную лампу. Рекомендуем также очистить его от смолы, на которой держалась лампа.
Сборка светодиодной лампы — предпоследний этап работы над светодиодным фонариком, сделанного своими руками. Для этого надежно зафиксируем все контакты. Следите, чтобы все плотно прилегало!

Наконец мы подошли к завершению создания светодиодного фонаря своими руками. Для заливки контактов нужна расплавленная пластмасса. Воск, который был использован ранее, не подходит, так как тут нужна высокая надежность и прочность. Припаиваем к источнику питания, например, к обычной батарейке, либо к вилке.

После того как застынет пластмасса, срежьте лишние выводы. Затем снова подключите полученное устройство к питанию. Если в течение 2 минут нет признаков замыкания, уверенно устанавливайте сделанный своими руками светодиодный фонарь в любое место.

Самодельный фонарик из светодиодной ленты и сдохшей батареи шуруповерта

Светодиодные ленты сейчас применяются повсеместно и порой попадают в руки отрезки таких лент, ленты со сгоревшими местами светодиодами. А целых, рабочих светодиодов полным-полно и жалко выбрасывать такое добро, хочется где-то их применить. Так же попадаются различные аккумуляторные элементы. В частности мы рассмотрим элементы «сдохшей» Ni-Cd (никель-кадмиевой) батареи. Из всего этого хлама можно соорудить добротный самодельный фонарь, с большой вероятностью лучше заводского.

Светодиодная лента, как проверить

Как правило, светодиодные ленты рассчитаны на напряжение 12 вольт и состоят из множества независимых сегментов, соединенных параллельно в ленту. Это означает, что если выходит из строя какой-то элемент, работоспособность теряет только соответствующий элемент, остальные сегменты светодиодной ленты продолжают работать.

Собственно, нужно лишь подать питающее напряжение 12 вольт на специальные точки-контакты, которые имеются на каждом кусочке ленты. При этом, напряжение поступит на все сегменты ленты и станет ясно, где неработающие участки.

Каждый сегмент состоит из 3-х светодиодов и токоограничивающего резистора, включенных последовательно. Если разделить 12 вольт на 3 (количество светодиодов), то получим 4 вольта на светодиод. Это напряжение питания одного светодиода — 4 вольта. Подчеркну, так как всю цепь ограничивает резистор, то диоду вполне хватит напряжения 3,5 вольта. Зная это напряжение, мы можем проверить непосредственно любой светодиод на ленте по отдельности. Сделать это можно, коснувшись выводов светодиода щупами, подключенными к блоку питания с напряжением 3,5 вольта.

Для этих целей можно использовать лабораторный, регулируемый блок питания или зарядное устройство мобильного телефона. Зарядное устройство не рекомендуется подключать напрямую к светодиоду, ибо его напряжение около 5 вольт и теоретически светодиод может сгореть от большого тока. Чтобы этого не произошло, подключать зарядное устройство нужно через резистор 100 Ом, так мы ограничим ток.

Я сделал себе такое простое устройство — зарядка от мобильного с крокодилами вместо штекера. Очень удобна для включения сотовых без батареи, подзарядки батарей вместо «лягушки» и прочего. Для проверки светодиодов тоже сойдет.

Для светодиода важна полярность напряжения, если перепутать плюс с минусом, диод не загорится. Это не проблема, на ленте обычно указанна полярность каждого светодиода, если нет, то нужно пробовать и так и так. От перепутанных плюсов или минусов диод не испортится.

Лампа из светодиодов

Для фонарика необходимо изготовить светоизлучающий узел, лампу. Собственно, нужно светодиоды с ленты демонтировать и сгруппировать на свой вкус и цвет, по количеству, яркости и питающему напряжению.

Для снятия с ленты я использовал концелярский нож, акуратно срезая светодиоды прямо с кусочками токопроводящих жил ленты. Пробовал выпаивать, но что-то у меня плохо это удавалось. Наковыряв штук 30-40, я остановился, для фонарика и прочих поделок более чем достаточно.

Соединять светодиоды следует по простому правилу: 4 вольта на 1 или несколько запараллеленных диодов. То есть, если сборка будет запитываться от источника не более 5 вольт, сколько бы не было светодиодов, их нужно спаивать параллельно. Если же планируется питать сборку от 12 вольт — нужно сруппировать 3 последовательных сегмента с равным количеством диодов в каждом. Вот например сборка, которую я спаял из 24 светодиодов, разделив их на 3 последовательные секции по 8 штук. Рассчитана она на 12 вольт.

Каждая из трех секций этого элемента рассчитана на напряжение около 4-х вольт. Секции соединены последовательно, поэтому вся сборка питается от 12 вольт.

Кто-то пишет, что светодиоды не следует включать в параллель без индивидуального ограничивающего резистора. Может это и правильно, но я не ориентируюсь на такие мелочи. Для продолжительного срока службы, на мой взгляд, важнее подобрать токоограничительный резистор для всего элемента и подбирать его следует не измеряя ток, а щупая работающие светодиоды на предмет нагрева. Но об этом позже.

Я решил делать фонарь, работающий от 3-х никель-кадмиевых элементов из отработавшей батареи шуруповерта. Напряжение каждого элемента 1.2 вольта, следовательно 3 элемента, соединенных последовательно, дают 3.6 вольт. На это напряжение и будем ориентироваться.

Подключив 3 аккумуляторных элемента к 8-ми параллельным диодам, я измерил ток — около 180 миллиампер. Было решено делать светоизлучающий элемент из 8 светодиодов, как раз он удачно поместится в отражатель от галогеновой, точечной лампы.

В качестве основания я взял кусочек фольгированного стеклотекстолита примерно 1смХ1см, на него поместится 8 светодиодов в два ряда. В фольге прорезал 2 разделяющих полосы — средний контакт будет «-«, два крайних будут «+».

Для пайки таких мелких деталей моего 15-ваттного паяльника многовато, точнее слишком большое жало. Можно сделать жало для пайки SMD-компонентов из куска электромонтажного провода 2.5мм. Чтобы новое жало держалось в большом отверстии нагревателя, можно согнуть проволоку пополам или добавить дополнительные кусочки проволоки в большое отверстие.

Основание залуживается припоем с канифолью и светодиоды впаиваются с соблюдением полярности. К средней полосе припаиваются катоды («-«), а к крайним аноды («+»). Припаиваются соединительные провода, крайние полосы соединяются перемычкой.

Нужно проверить спаянную конструкцию, подключив ее к источнику 3.5-4 вольта или через резистор к зарядному устройству телефона. Не забываем про полярность включения. Остается придумать отражатель фонаря, я взял отражатель от галогеновой лампы. Светоэлемент нужно надежно зафиксировать в отражателе, например клеем.

К сожалению, фото не может передать яркости свечения собранной конструкции, от себя скажу: слепит весьма не плохо!

Аккумулятор

Для питания фонаря я решил использовать аккумуляторные элементы из «сдохшей» батареи шуруповерта. Достал из корпуса все 10 элементов. Шуруповерт работал от этой батареи 5-10 минут и садился, по моей версии, для работы фонаря вполне могут подойти элементы этой батареи. Ведь для фонаря нужны токи, гораздо меньшие, чем для шуруповерта.

Я сразу отцепил три элемента от общей связки, они как раз будут давать напряжение 3.6 вольт.

Я замерил напряжение на каждом элементе по отдельности — на всех было около 1,1 В, только одна показывала 0. Видимо это неисправная банка, ее в мусорку. Остальные еще послужат. Для моей светодиодной сборки будет достаточно трех банок.

Проштудировав интернет, я вывел для себя важную информацию о никель-кадмиевых аккумуляторах: номинальное напряжение каждого элемента 1.2 вольт, заряжать банку следует до напряжения 1.4 вольт (напряжение на банке без нагрузки), разряжать следует не ниже 0.9 вольт — если составленно несколько элементов последовательно, то не ниже 1 вольта на элемент. Заряжать можно током десятой доли емкости (в моем случае 1.2А/ч=0.12А), но по факту можно и большим (шуруповерт заряжается не более часа, значит токи зарядки не менее 1.2А). Для тренировки/востановления полезно разрядить аккумулятор до 1 В какой-либо нагрузкой и зарядить заново, так несколько раз. Заодно оценить примерное время работы фонаря.

Итак, для трех элементов, соединенных последовательно, параметры таковы: напряжение зарядки 1.4X3=4.2 вольта, номинальное напряжение 1.2X3=3.6 вольт, ток заряда — какой даст зарядное мобильного со стабилизатором моего изготовления.

Единственный не ясный момент: как мерять минимальное напряжение на разряженных аккумуляторах. До подключения моего светильника на трех элементах было напряжение 3.5 вольт, при подключении — 2.8 вольт, напряжение быстро восстанавливается при отключении опять до 3.5 вольт. Я решил так: на нагрузке напряжение не должно падать ниже 2.7 вольт (0.9 В на элемент), без нагрузки желательно чтобы было 3 вольта (1 В на элемент). Однако, разряжать придется долго, чем дольше разряжаешь, тем стабильнее напряжение, перестает быстро падать на зажженых светодиодах!

Свои и без того разряженные аккумуляторы я разряжал несколько часов, иногда отключая лампу на несколько минут. В итоге получилось 2.71 В с подключенной лампой и 3.45 В без нагрузки, разряжать дальше не рискнул. Замечу, светодиоды продолжали светить, хоть и тускловато.

Зарядное устройство для никель-кадмиевых аккумуляторов

Теперь следует соорудить зарядное устройство для фонарика. Основное требование — напряжение на выходе не должно превышать 4.2 В.

Если планируется питать зарядное от какого-либо источника более 6 вольт — актуальна простая схема на КР142ЕН12А, это очень распространенная микросхема для регулируемого, стабилизированного питания. Зарубежный аналог LM317. Вот схема зарядного устройства на этой микросхеме:

Но эта схема не вписывалась в мою задумку — универсальность и максимальное удобство для зарядки. Ведь для этого устройства понадобится делать трансформатор с выпрямителем или использовать готовый блок питания. Я решил сделать возможность заряда аккумуляторов от зарядного устройства мобильника и USB порта компьютера. Для реализации потребуется схемка посложнее:

Полевой транзистор для этой схемы можно взять с неисправной материнской платы и другой компьютерной периферии, я срезал его со старой видеокарты. Таких транзисторов полно на материнке возле процессора и не только. Чтобы быть уверенным в своем выборе, нужно вбить номер транзистора в поиск и убедиться по даташитам, что это полевой с N-каналом.

В качестве стабилитрона я взял микросхему TL431, она встречается практически в каждом заряднике от мобилы или в других импульсных блоках питания. Выводы этой микросхемы нужно соединить как на рисунке:

Я собрал схему на кусочке текстолита, для подключения предусмотрел сразу гнездо USB. В дополнение к схеме впаял один светодиод возле гнезда, для индикации зарядки (что на USB-порт поступает напряжение).

Немного пояснений к схеме Так как зарядная схема будет все время присоединена к батарее, диод VD2 необходим, чтобы батарея не разряжалась через элементы стабилизатора. Подбором R4 нужно добиться на указанной контрольной точке напряжения 4.4 В, мерять нужно при отцепленной батарее, 0.2 вольта — это запас на просадку. Да и вообще, 4.4 В не выходит за пределы рекомендуемого напряжения для трех аккумуляторных банок.

Схему зарядного можно существенно упростить, однако заряжать придется только от источника 5 В (USB-порт компьютера удовлетворяет этому требовванию), если зарядное телефона выдает большее напряжение — использовать его нельзя. По упрощенной схеме, теоретически, аккумуляторы могут перезаряжаться, на практике же так заряжают аккумуляторы во многих заводских изделиях.

Ограничение тока светодиодов

Чтобы исключить перегрев светодиодов, а заодно уменьшить потребляемый ток от батареи, нужно подобрать токоограничительный резистор. Я подбирал его без каких-либо приборов, на ощупь оценивая нагрев и на глаз контролировал яркость свечения. Подбор нужно производить на заряженной батарее, следует найти оптимальное значение между нагревом и яркостью. У меня получился резистор 5.1 Ом.

Время работы

Я производил несколько зарядок-разрядок и получил следующие результаты: время зарядки — 7-8 часов, при непрерывно включенной лампе аккумулятор разряжается до 2.7 В примерно за 5 часов. Однако, при выключении на несколько минут, батарея немного восстанавливает заряд и может проработать еще полчаса, и так несколько раз. Это означает, что фонарик достаточно долго проработает, если светить не все время, а на практике так и выходит. Даже если пользоваться практически не выключая, на пару ночей должно хватить.

Конечно, ожидалось более продолжительное время работы без перерыва, но не стоит забывать, что аккумуляторы были взяты из «сдохшей» батареи шуруповерта.

Корпус для фонаря

Получившееся устройство нужно куда-то поместить, сделать какой-то удобный корпус.

Хотел расположить аккумуляторы со светодиодным фонарем в полипропиленовой водопроводной трубе, но банки не лезли даже в 32 мм трубу, ведь внутренний диаметр трубы намного меньше. В итоге остановился на соединительных муфтах для полипропилена 32 мм. Взял 4 соединительных муфты и 1 заглушку, склеил их вместе клеем.

Склеив все в одну конструкцию, получился весьма массивный фонарь, диаметром около 4 см. Если использовать какую-либо другую трубу, то можно существенно уменьшить размеры фонаря.

Обмотав все это дело изолентой для лучшего вида, мы получили вот такой фонарь:

Послесловие

В заключение хочется сказать несколько слов о получившемся обзоре. Не каждый USB порт компьютера может заряжать этот фонарь, все зависит от его нагрузочной способности, 0.5 А должно вполне хватить. Для сравнения: сотовые телефоны при подключении к некоторым компьютерам могут показывать зарядку, однако на самом деле никакой зарядки нет. Другими словами, если компьютер заряжает телефон, то и фонарь тоже будет заряжаться.

Схему на полевом транзисторе можно использовать для заряда от USB 1-го или 2-х аккумуляторных элементов, нужно лишь подстроить напряжение соответственно.


Оцените публикацию: Оценка: 3.0 (5 голосов)

Смотрите также другие статьи

Как сделать фонарик своими руками: мощный, на светодиоде

Содержание статьиПоказать

Фонарики представляют собой очень удобные приборы, которые применяются для решения большого количества задач. В хозяйстве фонарик вещь незаменимая и крайне важная. Но далеко не всегда у пользователя есть в наличии уже готовый прибор, так что на помощь придут знания о том, как сделать фонарик своими руками.

Этапы сборки фонарика на ярком светодиоде

Наиболее эффективными считаются самодельные фонарики на сверхъярких светодиодах. Они отличаются надежностью, удобством и невысокими требованиями к питанию. Чтобы самодельный фонарик работал долго, рекомендуем соблюдать этапы сборки.

Самодельный фонарик.

Чертеж и схема

Обычные схемы фонарей с лампами энергозатратны и неудобны. Они не способны обеспечить нужный световой поток и не обладают большим ресурсом. Избавиться от недостатков помогут схемы для диодных источников освещения.

При разработке схемы фонарика со сверхярким светодиодом учитывайте, что он запитывается двумя батарейками типа АА или аккумуляторами. Лучше всего подойдет светодиод DFL-OSPW5111Р с высокой яркостью света, белым оттенком и рабочим током 80 мА.

Для стабилизации напряжения и предотвращения мерцаний в схему встраивают готовую микросхему ADP1110, способную функционировать от батареек с напряжением 2-12 В.Она имеет три вывода напряжения: 12 В, 5,5 В, 3,3 В.

Схема самодельного сверхъяркого фонарика со стабилизатором напряжения.

От батареек или аккумуляторов ток поступает на конденсатор большой емкости и обкладки чипа ADP1110. В качестве источников питания можно использовать батарейки «таблетки».

Ограничение пульсаций обеспечивает катушка индуктивности и диод Шотки. Диод создает барьерный эффект на переходе от металла к проводнику. Прямое сопротивление в данном случае очень мало, что увеличивает быстродействие.

Подбор инструментов и материала

Инструменты для создания самодельного фонарика.

Чтобы самостоятельно сделать фонарь со светодиодными источниками, потребуются:

  • Батарейки. Это могут быть плоские «таблетки», блоки типа АА или иные источники питания.
  • «Карман» для установки батарей. При работе с «таблетками» лучше всего подойдет «карман», демонтированный со старой материнской платы компьютера.
  • Яркие светодиоды. Количество и размер будут зависеть от конкретных требований.
  • Линзы для светодиода, для рассеивание света или фокусировки в один луч.
  • Корпус фонарика. Это может быть пластиковый контейнер, старый шприц или любой другой предмет, соответствующий технике безопасности.
  • Переключатель, с помощью которого на диод будет подаваться напряжение включения.
  • Стабилизатор напряжения. Это может быть готовый модуль из других электроприборов или комплект деталей для самостоятельной сборки.
  • Клей. В качестве скрепляющего состава можно использовать жидкие гвозди, эпоксидную смолу или стандартный суперклей.
  • Провода для соединения элементов конструкции в схему. Лучше подбирать медные кабели с лучшими показателями проводимости.
  • Нож или ножницы для резки проводов.

Чтобы наносить клей было удобно, можно воспользоваться шприцем или специальным пистолетом для дозирования вязких веществ.

Сборка самодельного фонарика предполагает работу с электрическими схемами, потребуется паяльник и припой.

Китайский паяльник с зарядкой от usb.

Читайте также

Разновидности фонариков: как не запутаться при выборе

 

Сборка фонарика

Этапы сборки:

  1. Из старой материнской платы компьютера необходимо извлечь карман батарейки, паяльником аккуратно отсоединяя все контакты от микросхемы. Слишком большое усилие может привести к повреждению контактов и сложностям при сборке конструкции. При выборе других источников питания карман для установки должен быть демонтирован с соответствующих приборов.

    Извлечение «кармана» для батарейки из материнской платы.

  2. Кнопку включения припаять к плюсовому контакту кармана. Для соединения используются медные провода.
  3. Ножка светодиода также припаивается ко второму контакту переключателя.
  4. Вторая ножка светодиода соединяется с минусовым полюсом кармана.

Собранная электрическая цепь прибора.

В итоге получим электрическую цепь, которая будет замыкаться при нажатии на кнопку переключателя. Для проверки работоспособности схемы вставить батарейку в карман и нажать на выключатель. Светодиод должен загореться.

Чтобы цепь была достаточно прочной, рекомендуется места соединений залить горячим клеем. Теперь нужно собрать конструкцию, поместив все элементы в корпус и закрепив на положенных местах. Корпус может представлять собой оболочку старого фонарика или пластиковый контейнер. Собранный подобным образом светильник не занимает много места и отлично справляется со своими задачами.

Корпус самодельного фонарика.

Чтобы не возникало проблем с перегревом, рекомендуется установить на светодиод небольшой алюминиевый радиатор.

Для равномерности свечения без пульсаций потребуется интегрировать в цепь стабилизатор напряжения. Лучше использовать готовые микросхемы, последовательно подключая к ним соответствующие провода от источника питания и диодов. Иногда для стабилизации достаточно установить дополнительный резистор или конденсатор.

Читайте также

ТОП лучших фонариков

 

Как можно использовать самодельный фонарь

Использование самодельного фонарика в темном помещении.

Самодельный фонарик может использоваться для самых разных целей. Все зависит от его размеров, конструкции и мощности. Переносной карманный фонарик помогает осветить нужную область в том случае, если включение стационарных источников освещения невозможно.

Бытовые фонарики широко применяются в работах на садовых участках, при подсветке чуланов, подвалов или других помещений с полным отсутствием света. Также их активно используют при осмотре автомобиля из смотровой ямы.

Самостоятельно можно сделать не только переносной, но и мощный стационарный светодиодный фонарь, который легко установить в подходящем месте. При этом желательно учитывать возможность подключения к прибору питания от общей электросети.

Видео: Крепкий надежный Подводный фонарь с мощным лучом

При работе со светодиодами важно учитывать их особенности. Из-за неравномерной вольтамперной характеристики и нестабильного напряжения пользователи нередко делают выбор в пользу традиционных светильников. Однако стабилизатор позволяет устранить недостаток.

Лучше собирать устройства, способные работать от одной или двух батареек популярных типов. Слишком быстрый расход элементов питания будет свидетельствовать об ошибках сборки. Светодиоды отличаются энергоэффективностью, а значит элементов питания должно хватать надолго.

Самостоятельно делать фонарик не так сложно, как кажется. Все инструменты и материалы доступны, а сборка не требует специфических умений. Достаточно иметь представление о работе электронных схем и иметь навыки пайки.

фонарик на светодиодах


Делаем фонарик на светодиодах своими руками

 


Светодиодный фонарик с 3-х вольтовым конвертором для светодиода 0.3-1.5V 0.3-1.5V LED FlashLight

Обычно, для работы синего или белого светодиода требуется 3 — 3,5v, данная схема позволяет запитать синий или белый светодиод низким напряжением от одной пальчиковой батарейки. Normally, if you want to light up a blue or white LED you need to provide it with 3 — 3.5 V, like from a 3 V lithium coin cell.

 


Детали:
Светодиод
Ферритовое кольцо (диаметром ~10 мм)
Провод для намотки (20 см)
Резистор на 1кОм
N-P-N транзистор
Батарейка

 

 

Параметры используемого трансформатора:
Обмотка, идущая на светодиод, имеет ~45 витков, намотанных проводом 0.25мм.
Обмотка, идущая на базу транзистора, имеет ~30 витков провода 0.1мм.
Базовый резистор в этом случае имеет сопротивление около 2К.
Вместо R1 желательно поставить подстроечный резистор, и добиться тока через диод ~22мА, при свежей батарейке измерить его сопротивление, заменив потом его постоянным резистором полученного номинала.

Собранная схема обязана работать сразу.
Возможны только 2 причины, по которым схема работать не будет.
1. перепутаны концы обмотки.
2. слишком мало витков базовой обмотки.
Генерация исчезает, при количестве витков <15.

Куски проводов сложить вместе и намотать на кольцо.
Соединить между собой два конца разных проводов.
Схему можно расположить внутри подходящего корпуса.
Внедрение такой схемы в фонарь, работающий от 3V существенно продлевает, продолжительность его работы от одного комплекта батареек.

 


 


 


 


 


 


 


 


 


Вариант исполнения фонаря от одной батарейки 1,5в.

Транзистор и сопротивление помещаются внутрь ферритового кольца

 
 
Белый светодиод работает от севшей батарейки ААА


Вариант модернизации «фонарик – ручка»

Возбуждение изображенного на схеме блокинг-генератора достигается трансформаторной связью на Т1. Импульсы напряжения, возникающие в правой (по схеме) обмотке складываются с напряжением источника питания и поступают на светодиод VD1. Конечно, можно было бы исключить конденсатор и резистор в цепи базы транзистора, но тогда возможен выход из строя VT1 и VD1 при использовании фирменных батарей с низким внутренним сопротивлением. Резистор задает режим работы транзистора, а конденсатор пропускает ВЧ составляющую.

В схеме использовался транзистор КТ315 (как самый дешевый, но можно и любой другой с граничной частотой от 200 МГц), сверхяркий светодиод. Для изготовления трансформатора потребуется кольцо из феррита (ориентировочный размер 10х6х3 и проницаемостью около 1000 HH). Диаметр проволоки около 0,2-0,3 мм. На кольцо наматываются две катушки по 20 витков в каждой.
Если нет кольца, то можно использовать аналогичный по объему и материалу цилиндр. Только придется мотать уже 60-100 витков для каждой из катушек.
Важный момент: мотать катушки нужно в разные стороны.

Фотографии фонарика:
выключатель находится в кнопке «авторучки», а серый металлический цилиндр проводит ток.

 


По типоразмеру батарейки делаем цилиндр.

Его можно изготовить из бумаги, или использовать отрезок любой жесткой трубки.
Проделываем отверстия по краям цилиндра, обматываем его залуженным проводом, пропускаем в отверстия концы проволоки. Фиксируем оба конца, но оставляем с одного из концов кусок проводника: чтобы можно было подсоединить преобразователь к спирали.
Кольцо из феррита не влезло бы в фонарь, поэтому использовался цилиндр из аналогичного материала.

 
Цилиндр из катушки индуктивности от старого телевизора.
Первая катушка — около 60 витков.
Потом вторая, мотается в обратную сторону опять 60 или около того. Витки скрепляются клеем.

Собираем преобразователь:

Все располагается внутри нашего корпуса: Распаиваем транзистор, конденсатор резистор, подпаиваем спираль на цилиндре, и катушку. Ток в обмотках катушки должен идти в разные стороны! То есть если вы мотали все обмотки в одну сторону, то поменяйте местами выводы одной из них, иначе генерация не возникнет.

Получилось следующее:


Все вставляем вовнутрь, а в качестве боковых заглушек и контактов используем гайки.
К одной из гаек подпаиваем выводы катушки, а к другой эмиттер VT1. Приклеиваем. маркируем выводы: там, где у нас будет вывод от катушек ставим « — », где вывод от транзистора с катушкой ставим «+» (чтобы было все как в батарейке).

Теперь следует изготовить «ламподиод».

Внимание: на цоколе должен быть минус светодиода.

Сборка:
Как понятно из рисунка, преобразователь представляет собой «заменитель» второй батарейки. Но в отличие от нее, он имеет три точки контакта: с плюсом батарейки, с плюсом светодиода, и общим корпусом (через спираль).

Его местоположение в батарейном отсеке является определенным: он должен контактировать с плюсом светодиода.


Современный фонарик c режимом эксплуатации светодиода питанием постоянным стабилизированным током.

Схема стабилизатора тока работает следующим образом:
При подаче питания на схему транзисторы Т1 и Т2 заперты, Т3 открыт, потому как на его затвор подано отпирающее напряжение через резистор R3 . Благодаря наличию в цепи светодиода катушки индуктивности L1 ток нарастает плавно. По мере возрастания тока в цепи светодиода возрастает падение напряжения на цепочке R5- R4, как только оно достигнет примерно 0,4V, откроется транзистор Т2, а вслед за ним и Т1, который в свою очередь закроет токовый ключ Т3. Нарастание тока прекращается, в катушке индуктивности возникает ток самоиндукции, который через диод D1 начинает протекать через светодиод и цепочку резисторов R5- R4. Как только ток уменьшиться ниже определенного порога, транзисторы Т1 и Т2 закроются, Т3 — откроется, что приведет к новому циклу накопления энергии в катушке индуктивности. В нормальном режиме колебательный процесс происходит на частоте порядка десятков килогерц.

О деталях:
Вместо транзистора IRF510 можно применить IRF530, или любой n-канальный полевой ключевой транзистор на ток более 3А и напряжение более 30 В.
Диод D1 должен быть обязательно с барьером Шоттки на ток более 1А, если поставить обычный даже высокочастотный типа КД212, КПД снизится до 75-80%.
Катушка индуктивности самодельная, мотают ее проводом не тоньше 0,6 мм, лучше — жгутом из нескольких более тонких проводов. Около 20-30 витков провода на броневой сердечник Б16-Б18 обязательно с немагнитным зазором 0,1-0,2 мм или близкий из феррита 2000НМ. При возможности толщину немагнитного зазора подбирают экспериментально по максимальному КПД устройства. Неплохие результаты можно получить с ферритами от импортных катушек индуктивности, устанавливаемых в импульсных блоках питания, а также в энергосберегающих лампах. Такие сердечники имеют вид катушки для ниток, не требуют каркаса и немагнитного зазора. Очень хорошо работают катушки на тороидальных сердечниках из прессованного железного порошка, которые можно найти в компьютерных блоках питания (на них намотаны катушки индуктивности выходных фильтров). Немагнитный зазор в таких сердечниках равномерно распределен в объеме благодаря технологии производства.
Эту же схему стабилизатора можно использовать и совместно с другими аккумуляторами и батареями гальванических элементов напряжением 9 или 12 вольт без какого-либо изменения схемы или номиналов элементов. Чем выше будет напряжение питания, тем меньший ток будет потреблять фонарик от источника, его КПД будет оставаться неизменным. Рабочий ток стабилизации задают резисторы R4 и R5.
При необходимости ток может быть увеличен до 1А без применения теплооотводов на деталях, только подбором сопротивления задающих резисторов.
Зарядное устройство для аккумулятора можно оставить «родное» или собрать по любой из известных схем или вообще применить внешнее для уменьшения веса фонаря.


Светодиодный фонарь из калькулятора Б3-30

В основу преобразователя взята схема калькулятора Б3-30, в импульсном источнике питания которого используется трансформатор толщиной всего 5 мм, имеющий две обмотки. Использование импульсного трансформатора от старого калькулятора позволило создать экономичный светодиодный фонарь.

В результате получилась очень простая схема.

Преобразователь напряжения выполнен по схеме однотактного генератора с индуктивной обратной связью на транзисторе VT1 и трансформаторе Т1. Импульсное напряжение с обмотки 1-2 (по принципиальной схеме калькулятора Б3-30) выпрямляется диодом VD1 и подается на сверхъяркий светодиод HL1. Конденсатор С3 фильтр. За основу конструкции взят фонарь китайского производства рассчитанного на установку двух элементов питания типа АА. Преобразователь монтируется на печатной плате из односторонне фольгированного стеклотекстолита толщиной 1,5 мм рис.2 размерами, заменяющими один элемент питания и вставляемой в фонарь вместо него. К торцу платы обозначенной знаком «+» припаивается контакт, изготовленный из двухсторонне фольгированного стеклотекстолита диаметром 15мм, обе стороны соединяются перемычкой и облуживаются припоем.
После установки на плату всех деталей торцевой контакт «+» и трансформатор Т1 заливаются термоклеем для увеличения прочности. Вариант компоновки фонаря показан на рис.3 и в конкретном случае зависит от типа используемого фонаря. В моем случае никакой доработки фонаря не потребовалось, отражатель имеет контактное кольцо, к которому подпаивается минусовой вывод печатной платы, а сама плата крепится к отражателю с помощью термоклея. Печатная плата в сборе с отражателем вставляется вместо одного элемента питания и зажимается крышкой.

 


В преобразователе напряжения использованы малогабаритные детали. Резисторы типа МЛТ-0,125, конденсаторы С1 и С3 импортные, высотой до 5 мм. Диод VD1 типа 1N5817 с барьером Шотки, при его отсутствии можно использовать любой выпрямительный диод, подходящий по параметрам, желательно германиевый ввиду более малого падения напряжения на нем. Правильно собранный преобразователь в налаживании не нуждается, если не перепутаны обмотки трансформатора, в противном случае поменяйте их местами. При отсутствии вышеуказанного трансформатора его можно изготовить самостоятельно. Намотка производится на ферритовое кольцо типоразмера К10*6*3 магнитной проницаемостью 1000-2000. Обе обмотки наматываются проводом ПЭВ2 диаметром от 0,31 до 0,44 мм. Первичная обмотка имеет 6 витков, вторичная 10 витков. После установки такого трансформатора на плату и проверки работоспособности его следует закрепить на ней с помощью термоклея.
Испытания фонаря с элементом питания типа АА представлены в таблице 1.
При испытании использовалась самая дешевая батарейка типа АА стоимостью всего 3 р. Начальное напряжение под нагрузкой составило 1,28 В. На выходе преобразователя напряжение, измеренное на сверхярком светодиоде 2,83 В. Марка светодиода неизвестна, диаметр 10 мм. Общий потребляемый ток 14 mА. Суммарное время работы фонаря составило 20 часов непрерывной работы.
При снижении напряжения на элементе питания ниже 1V яркость заметно падает.

 

Время, ч V батареи, В V преобр., В
0 1,28 2,83
2 1,22 2,83
4 1,21 2,83
6 1,20 2,83
8 1,18 2,83
10 1,18 2.83
12 1,16 2.82
14 1,12 2.81
16 1,11 2.81
18 1,11 2.81
20 1,10 2.80


Самодельный фонарик на светодиодах
 
Основа — фонарик «VARTA» с питанием от двух батареек типа АА:
Поскольку диоды имеют сильно нелинейную ВАХ необходимо оснастить фонарь схемой для работы на светодиоды, которая обеспечит постоянную яркость свечения по мере разряда батареи и сохранит работоспособность при возможно более низком напряжении питания.
Основа стабилизатора напряжения, это микромощный повышающий DC/DC конвертор MAX756.
По заявленным характеристикам он работает при снижении входного напряжения до 0.7В.

 


Схема включения — типовая:

 


Монтаж выполнен навесным способом.
Электролитические конденсаторы — танталовые ЧИП. Они имеют низкое последовательное сопротивление, что несколько улучшает КПД. Диод Шоттки — SM5818. Дроссели пришлось соединить два в параллель, т.к. не оказалось подходящего номинала. Конденсатор С2 — К10-17б. Светодиоды — сверхяркие белые L-53PWC «Kingbright».
Как видно на рисунке, вся схема легко уместилась в пустом пространстве светоизлучающего узла.

Выходное напряжение стабилизатора в данной схеме включения равно 3.3V. Поскольку падение напряжения на диодах в номинальном диапазоне токов (15-30мА) составляет около 3.1V, то лишние 200мV пришлось гасить на резисторе, включенном последовательно с выходом.
Кроме этого, небольшой последовательный резистор улучшает линейность нагрузки и стабильность схемы. Связано это с тем, что диод имеет отрицательный ТКС, и при разогреве его прямое падение напряжения уменьшается, что приводит к резкому росту тока через диод, при питании его от источника напряжения. Разравнивать токи через параллельно включенные диоды не пришлось — различия яркости на глаз не наблюдалось. Тем более, что диоды были одного типа и взяты из одной коробки.
Теперь о конструкции светоизлучателя. Как видно на фотографиях, светодиоды в схеме не запаяны намертво, а являются съемной частью конструкции.

 


Потрошится родная лампочка, и во фланце с 4-х сторон делаются 4 пропила (один там уже был). 4 светодиода располагаются симметрично по кругу. Плюсовые выводы (по схеме) припаиваются на цоколь возле пропилов, а минусовые вставляются изнутри в центральное отверстие цоколя, обрезаются и тоже пропаиваются. «Ламподиод», вставляется на место обычной лампочки накаливания.

Тестирование:
Стабилизация выходного напряжения (3.3V) продолжалась вплоть до снижения напряжения питания до ~1.2V. Ток нагрузки при этом составлял около 100мА (~ по 25мА на диод). Затем выходное напряжение начало плавно снижаться. Схема перешла в другой режим работы, при котором она уже не стабилизирует, а выдает на выход все, что может. В таком режиме она проработала до напряжения питания 0.5V! Выходное напряжение при этом упало до 2.7В, а ток со 100мА до 8мА.

Немного о КПД.
КПД схемы около 63% при свежих батарейках. Дело в том, что миниатюрные дроссели, использованные в схеме, имеют чрезвычайно высокое омическое сопротивление — около 1.5ом
Решение кольцо из µ-пермаллоя с проницаемостью порядка 50.
40 витков провода ПЭВ-0.25, в один слой — получилось около 80мкГ. Активное сопротивление около 0.2 Ом, а ток насыщения по расчетам — более 3А. Выходной и входной электролит меняем на 100мкФ, хотя без ущерба для КПД можно уменьшить и до 47мкФ.


Схема светодиодного фонаря на DC/DC конверторе фирмы Analog Device — ADP1110.

Стандартная типовая схема включения ADP1110.
Данная микросхема-конвертер, согласно спецификации фирмы-производителя, выпускается в 8 вариантах:

Модель Выходное напряжение
ADP1110AN Регулируемое
ADP1110AR Регулируемое
ADP1110AN-3.3 3.3 V
ADP1110AR-3.3 3.3 V
ADP1110AN-5 5 V
ADP1110AR-5 5 V
ADP1110AN-12 12 V
ADP1110AR-12 12 V

 


Микросхемы с индексами «N» и «R» отличаются только типом корпуса: R компактнее.
Если вы купили чип с индексом -3.3, можете пропускать следующий абзац и переходить к пункту «Детали».
Если нет — представляю вашему вниманию еще одну схему:


В ней добавлены две детали, позволяющие получить на выходе требуемые 3,3 вольта для питания светодиодов.
Схему можно улучшить, приняв во внимание, что для работы светодиодам нужен источник тока, а не напряжения. Изменения  в схеме, что бы она выдавала 60мА (по 20 на каждый диод), а напряжение диоды нам выставят автоматически, те самые 3.3-3.9V.

резистор R1 служит для измерения тока. Преобразователь так устроен, что когда напряжение на выводе FB (Feed Back) превысит 0.22V, он закончит повышать напряжение и ток, значит номинал сопротивления R1 легко рассчитать R1 = 0.22В/Iн, в нашем случаи 3.6Ом. Такая схема помогает стабилизировать ток, и автоматически выбрать необходимое напряжение. К сожалению, на этом сопротивлении будет падать напряжение, что приведет к снижению КПД, однако, практика показала, что оно меньше чем превышение, которое мы выбрали в первом случаи. Я измерял выходное напряжение, и оно составило 3.4 — 3.6В. Параметры диодов в таком включении также должны быть по возможности одинаковыми, иначе суммарный ток в 60мА, распределился между ними не поровну, и мы опять, получим разную светимость.

Детали

1. Дроссель подойдет любой от 20 до 100 микрогенри с маленьким (меньше 0.4 Ома) сопротивлением. На схеме указано 47 мкГн. Его можно сделать самому — намотать около 40 витков провода ПЭВ-0.25 на кольце из µ-пермаллоя с проницаемостью порядка 50, типоразмера 10х4х5.
2. Диод Шоттки. 1N5818, 1N5819, 1N4148 или аналогичные. Analog Device НЕ РЕКОМЕНДУЕТ использовать 1N4001
3. Конденсаторы. 47-100 микрофарад на 6-10 вольт. Рекомендуется использовать танталовые.
4. Резисторы. Мощностью 0,125 ватта сопротивлением 2 Ома, возможно 300 ком и 2,2 ком.
5. Светодиоды. L-53PWC — 4 штуки.


Светодиодный фонарь
Преобразователь напряжения для питания светодиода DFL-OSPW5111Р белого свечения с яркостью 30 Кд при токе 80 мА и шириной диаграммы направленности излучения около 12°.

 


   
Ток, потребляемый от батареи напряжением 2,41V, — 143мА; при этом через светодиод протекает ток около 70 мА при напряжении на нем 4,17 В. Преобразователь работает на частоте 13 кГц, электрический КПД составляет около 0,85.
Трансформатор Т1 намотан на кольцевом магнитопроводе типоразмера К10x6x3 из феррита 2000НМ.

Первичную и вторичную обмотки трансформатора наматывают одновременно (т. е. в четыре провода).
Первичная обмотка содержит — 2×41 витка провода ПЭВ-2 0,19,
Вторичная обмотка содержит — 2×44 витка провода ПЭВ-2 0,16.
После намотки выводы обмоток соединяют в соответствии со схемой.

Транзисторы КТ529А структуры p-n-p можно заменить на КТ530А структуры n-p-n, в этом случае необходимо изменить полярность подключения батареи GB1 и светодиода HL1.
Детали размещают на рефлекторе, используя навесной монтаж. Обратите внимание на то, чтобы был исключён контакт деталей с жестяной пластиной фонаря, подводящей «минус» батареи GB1. Транзисторы скрепляют между собой хомутом из тонкой латуни, который обеспечивает необходимый отвод тепла, и затем приклеивают к рефлектору. Светодиод размещают взамен лампы накаливания так, чтобы он выступал на 0,5… 1 мм из гнезда для её установки. Это улучшает отвод тепла от светодиода и упрощает его монтаж.
При первом включении питание от батареи подают через резистор сопротивлением 18…24 Ом чтобы не вывести из строя транзисторы при неправильном подключении выводов трансформатора Т1. Если светодиод не светит, необходимо поменять местами крайние выводы первичной или вторичной обмотки трансформатора. Если и это не приводит к успеху, проверяют исправность всех элементов и правильность монтажа.


Преобразователь напряжения для питания светодиодного фонаря промышленного образца.

Преобразователь напряжения для питания светодиодного фонаря
Схема взята из руководства фирмы Zetex по применению микросхем ZXSC310.
ZXSC310 — микросхема драйвера светодиодов.
FMMT 617 или FMMT 618.
Диод Шоттки — практически любой марки.
Конденсаторы C1 = 2.2 мкФ и C2 = 10 мкФ для поверхностного монтажа, 2.2 мкФ величина, рекомендованная производителем, а С2 можно поставить примерно от 1 до 10 мкФ

 


Катушка индуктивности 68 микрогенри на 0.4 А

Индуктивность и резистор устанавливают с одной стороны платы (где нет печати), все остальные детали — с другой. Единственную хитрость представляет изготовление резистора на 150 миллиом. Его можно сделать из железной проволоки 0.1 мм, которую можно добыть, расплетая тросик. Проволочку следует отжечь на зажигалке, тщательно протереть мелкой шкуркой, облудить концы и кусочек длиной около 3 см припаять в отверстия на плате. Далее в процессе настройки надо, измеряя ток через диоды, двигать проволочку, одновременно разогревая паяльником место ее припаивания к плате.

Таким образом, получается нечто вроде реостата. Добившись тока в 20 мА, паяльник убирают, а ненужный кусок проволочки обрезают. У автора вышла длина примерно 1 см.


Фонарик на источнике тока

Рис. 3. Фонарик на источнике тока, с автоматическим выравниванием тока в светодиодах, так что светодиоды могут быть c любым разбросом параметров (светодиод VD2 задает ток, который повторяют транзисторы VT2, VT3, таким образом, токи в ветвях будут одинаковыми)
Транзисторы конечно тоже должны быть одинаковыми, но разброс их параметров не так критичен, поэтому можно взять либо дискретные транзисторы, либо если сможете найти, три интегральных транзистора в одном корпусе, у них параметры максимально одинаковые. Проиграйтесь с размещением светодиодов, нужно подобрать пару светодиод-транзистор так что бы выходное напряжение было минимально, это повысит КПД.
Введение транзисторов выровняло яркость, однако они имеют сопротивление и на них падает напряжение, что вынуждает преобразователь повышать уровень выходного до 4В, для снижения падения напряжения на транзисторах можно предложить схему на рис.4, это модифицированное токовое зеркало, вместо опорного напряжения Uбэ=0.7В в схеме на рис.3 можно воспользоваться встроенным в преобразователем источником 0.22В, и поддерживать его в коллекторе VT1 при помощи операционика, также встроенным в преобразователь.


Рис. 4. Фонарик на источнике тока, с автоматическим выравниванием тока в светодиодах, и с улучшенным КПД

Т.к. выход операционника имеет тип «открытый коллектор» его необходимо «подтянуть» к питанию, что делает резистор R2. Сопротивления R3, R4 выполняют функции делителя напряжения в точке V2 на 2, таким образом операционник поддержит в точке V2 напряжение 0.22*2 = 0.44В, что меньше чем в предыдущем случаи на 0.3В. Брать делитель еще меньше, чтобы понизить напряжение в точке V2, нельзя т.к. биполярный транзистор имеет сопротивление Rкэ и при работе на нем будет падать напряжение Uкэ, чтобы транзистор правильно работал V2-V1 должно быть больше Uкэ, для нашего случая 0.22В вполне достаточно. Однако биполярные транзисторы можно заменить полевыми, в которых сопротивление сток исток гораздо меньше, это даст возможность уменьшить делитель, так чтобы, сделать разность V2-V1 совсем незначительной.

Дроссель. Дроссель нужно брать с минимальным сопротивлением, особое внимание следует уделить максимальному допустимому току он должен быть порядка 400 -1000 мА.
Номинал не играет такой роли как максимальный ток, поэтому Analog Devices рекомендует, что-то между 33 и 180мкГн. В данном случаи, теоретически, если не обращать внимание на габариты, то чем больше индуктивность, тем лучше по всем показателем. Однако на практике это не совсем так, т.к. мы имеем не идеальную катушку, она имеет активное сопротивление и не линейна, кроме того, ключевой транзистор при низких напряжениях уже не выдаст 1.5А. Поэтому лучше попробовать несколько катушек разного типа, конструкции и разного номинала, что бы выбрать катушку, при которой самый высокий КПД, и самое маленькое минимальное входное напряжение, т.е. катушку, с которой фонарик будет светиться максимально долго.

Конденсаторы.
C1 может быть любым. С2 лучше взять танталовым т.к. у него маленькое сопротивление это повышает КПД.

Диод Шотки.
Любой на ток до 1А, желательно с минимальным сопротивлением и минимальным падением напряжения.

Транзисторы.
Любые с током коллектора до 30 мА, коэф. усиления тока порядка 80 с частотой до 100Мгц, КТ318 подойдет.

Светодиоды.
Можно белые NSPW500BS со свечением в 8000мКд от Power Light Systems .

Преобразователь напряжения
ADP1110, или его замену ADP1073, для его использования схему на рис.3 нужно будет изменить, взять дроссель 760мкГ, а R1 = 0.212/60мА = 3.5Ом.


Фонарь на ADP3000-ADJ

Параметры:
Питание 2.8 — 10 В, КПД ок. 75%, два режима яркости — полный и половина.
Ток через диоды 27 мА, в режиме половинной яркости — 13 мА.
В схеме для получения высокого КПД желательно использовать чип-компоненты.
Правильно собранная схема в настройке не нуждается.
Недостатком схемы является высокое (1,25V) напряжение на входе FB (вывод 8).
В настоящее время выпускаются DC/DC конвертеры с напряжением FB около 0,3V, в частности, фирмы Maxim, на которых реально достичь КПД выше 85%.

 
Схема фонаря на Кр1446ПН1.

Резисторы R1 и R2 — датчик тока. Операционный усилитель U2B — усиливает напряжение, снимаемое с датчика тока. Коэффициент усиления = R4 / R3 + 1 и составляет примерно 19. Требуется такой коэффициент усиления, чтобы при токе через резисторы R1 и R2 60 мА напряжение на выходе открыло транзистор Q1. Изменяя эти резисторы, можно устанавливать другие значения тока стабилизации.
       В принципе операционный усилитель можно и не ставить. Просто вместо R1 и R2 ставится один резистор 10 Ом, с него сигнал через резистор 1кОм подаётся на базу транзистора и всё. Но. Это приведёт к уменьшению КПД. На резисторе 10 Ом при токе 60 мА напрасно рассеивается 0.6 Вольта — 36 мВт. В случае применения операционного усилителя потери составят:
   на резисторе 0.5 Ома при токе 60 мА = 1.8 мВт   +   потребление самого ОУ 0.02 мА пусть при 4-х Вольтах = 0.08 мВт
   =    1.88 мВт — существенно меньше, чем 36 мВт.        

 


О компонентах.

      На месте КР1446УД2 может работать любой малопотребляющий ОУ с низким минимальным значением напряжения питания, лучше подошёл бы OP193FS, но он достаточно дорогой. Транзистор в корпусе SOT23. Полярный конденсатор поменьше — типа SS на 10 Вольт. Индуктивность CW68 100мкГн на ток 710 мА. Хотя ток отсечки у преобразователя 1 А, она работает нормально. С ней получился наилучший КПД. Светодиоды я подбирал по наиболее одинаковому падению напряжения при токе 20 мА. Собран фонарик в корпусе для двух батарей AA. Место под батареи я укоротил под размер батарей AAA, а в освободившемся пространстве навесным монтажом собрал эту схему. Хорошо подойдёт корпус для трёх батарей AA. Ставить нужно будет только две, а на месте третьей разместить схему.

        КПД получившегося устройства.
Входные   U     I      P    Выходные   U     I      P     КПД
        Вольт   мА    мВт            Вольт   мА    мВт     %
        3.03    90    273            3.53    62    219     80
        1.78   180    320            3.53    62    219     68
        1.28   290    371            3.53    62    219     59

 


Замена лампочки фонарика  “Жучёк” на модуль фирмы  Luxeon Lumiled LXHL-NW98. 
Получаем ослепительно яркий фонарик,  с очень легким жимом  (по сравнению с лампочкой).
 
  
Схема переделки и параметры модуля.

 


Преобразователи StepUP DC-DC конверторы ADP1110 фирма Analog devices.

  

Питание: 1 или 2 батарейки 1,5в работоспособность сохраняется до Uвход.=0,9в
Потребление:
*при разомкнутом переключателе S1 = 300mA
*при замкнутом переключателе S1 = 110mA


Светодиодный электронный фонарь
С питанием всего от одной пальчи­ковой батареи типоразмера АА или AAA на микросхеме (КР1446ПН1), которая является полным аналогом микросхемы МАХ756 (МАХ731) и имеет практиче­ски идентичные характеристики.

За основу взят фо­нарь, в котором в качестве источника питания используются две паль­чиковые батарейки (аккумуляторы) типоразмера АА.
Плата преобразователя помещается в фонарь вместо второго эле­мента питания. С одного торца платы припаян контакт из луженой же­сти для питания схемы, а с другого — светодиод. На выводы светодиода надет кружок из той же жести. Диаметр кружка должен быть чуть боль­ше диаметра цоколя отражателя (на 0,2-0,5 мм), в который вставля­ется патрон. Один из выводов диода (минусовой) припаян к кружку, второй (плюсовой) проходит насквозь и изолирован кусочком трубоч­ки из ПВХ или фторопласта. Назначение кружка — двойное. Он обе­спечивает конструкции необходимую жесткость и одновременно слу­жит для замыкания минусового контакта схемы. Из фонаря заранее удаляют лампу с патроном и помещают вместо нее схему со светодиодом. Выводы светодиода перед установкой на плату укорачивают та­ким образом, чтобы обеспечивалась плотная, без люфта, посадка «по месту». Обычно длина выводов (без учета пайки на плату) равна длине выступающей части полностью вкрученного цоколя лампы.
Схема соединения платы и аккумулятора приведена на рис. 9.2.
Далее фонарь собирают и проверяют его работоспособность. Если схема собрана правильно, то никаких настроек не требуется.

В конструкции применены, стандарт­ные установочные элементы: конденсаторы типа К50-35, дроссели ЕС-24 индуктивностью 18-22 мкГн, светодиоды яркостью 5-10 кд диаметром 5 или 10 мм. Разумеется, возможно, применение и других светодиодов с напряжением питания 2,4-5 В. Схема имеет достаточный запас по мощности и позволяет пи­тать даже светодиоды с яркостью до 25 кд!

О некоторых результатах испытаний данной конструкции.
Доработанный таким образом фонарь проработал со «свежей» ба­тарейкой без перерыва, во включенном состоянии, более 20 часов! Для сравнения — тот же фонарь в «стандартной» комплектации (то есть с лампой и двумя «свежими» батарейками из той же партии) рабо­тал всего 4 часа.
И еще один важный момент. Если применять в данной конструкции перезаряжаемые аккумуляторы, то легко следить за состоянием уров­ня их разрядки. Дело в том, что преобразователь на микросхеме КР1446ПН1 стабильно запускается при входном напряжении 0,8-0,9 В. И свечение светодиодов стабильно яркое, пока напряжение на аккуму­ляторе не достигло этого критического порога. Лампа гореть при таком напряжении, конечно, еще будет, но вряд ли можно говорить о ней как о реальном источнике света.

Рис. 9.2                                                                    Рис 9.3


Печатная плата устройства приведена на рис. 9.3, а расположение элементов — на рис. 9.4.


Включение и выключение фонаря одной кнопкой

 



Схема собрана на микросхеме D-триггера CD4013 и полевом транзисторе IRF630 в режиме «выкл.» ток потребления схемы — практически 0. Для стабильной работы D-триггера на входе микросхемы подключен фильтр резистор и конденсатор их функция- устранение контактного дребезга. Не используемые выводы микросхемы лучше никуда не подключать. Микросхема работает от 2 до 12 вольт, в качестве силового ключа можно использовать любой мощный полевой транзистор, т.к. сопротивление сток-исток у полевого транзистора ничтожно мало и не нагружает выход микросхемы.

 


CD4013A в корпусе SO-14, аналог К561ТМ2, 564ТМ2

 


Простые схемы генератора.
Позволяют питать светодиод с напряжением загорания 2-3V от 1-1,5V. Короткие импульсы повышенного потенциала отпирают p-n переход. КПД конечно понижается, но это устройство позволяет «выжать» из автономного источника питания почти весь его ресурс.
Проволока 0,1 мм — 100-300 витков с отводом от середины, намотанные на тороидальное колечко.

 


 


Светодиодный фонарь с регулируемой яркостью и режимом «Маяк»

Питание микросхемы — генератора с регулируемой скважностью (К561ЛЕ5 или 564ЛЕ5) которая управляет электронным ключом, в предлагаемом устройстве осуществляется от повышающего преобразователя напряжения, что позволяет питать фонарь от одного гальванического элемента 1,5.
Преобразователь выполнен на транзисторах VT1, VT2 по схеме трансформаторного автогенератора с положительной обратной связью по току.
Схема генератора с регулируемой скважностью на упомянутой выше микросхеме К561ЛЕ5 немного изменена с целью улучшения линейности регулирования тока.
Минимальный потребляемый ток фонаря с шестью параллельно включенными суперяркими светодиодами L-53MWC фирмы Kingbnght белого свечения равен 2.3 мА Зависимость потребляемого тока от числа светодиодов — прямо пропорциональная.
Режим «Маяк», когда светодиоды с невысокой частотой ярко вспыхивают и затем гаснут, реализуется при установке   регулятора   яркости на максимум и повторном включении фонаря. Желаемую частоту световых вспышек регулируют подбором конденсатора СЗ.
Работоспособность фонаря сохраняется при понижении напряжения до 1.1v хотя при этом значительно уменьшается яркость
В качестве электронного ключа применен полевой транзистор с изолированным затвором КП501А (КР1014КТ1В). По цепи управления он хорошо согласуется с микросхемой К561ЛЕ5. Транзистор КП501А имеет следующие предельные параметры, напряжение сток-исток — 240 В; напряжение затвор—исток — 20 В. ток стока — 0.18 А; мощность — 0.5 Вт
Допустимо параллельное включение транзисторов желательно из одной партии. Возможная замена — КП504 с любым буквенным индексом. Для полевых транзисторов IRF540 напряжение питания микросхемы DD1. вырабатываемое преобразователем, должно быть повышено до 10 В
В фонаре с шестью параллельно включенными светодиодами L-53MWC потребляемый ток примерно равен 120 мА при подключении параллельно VT3 второго транзистора — 140 мА
Трансформатор Т1 намотан на ферритовом кольце 2000НМ К10- 6’4.5. Обмотки намотаны в два провода, причем конец первой обмотки соединяют с началом второй обмотки. Первичная обмотка содержит 2-10 витков, вторичная — 2*20 витков Диаметр провода — 0.37 мм. марка — ПЭВ-2. Дроссель намотан на таком же магнитопроводе без зазора тем же проводом в один слой, число витков — 38. Индуктивность дросселя     860 мкГн



 



 


 



Схема преобразователя для светодиода от 0,4 до 3V — работающая от одной батарейки AAA. Этот фонарь повышает входное напряжение до нужного простым конвертером DC-DC.

 

 



Выходное напряжение составляет приблизительно 7 вт (зависит от напряжения установленного диода LEDs).

Building the LED Head Lamp

 


Что касается трансформатора в конвертере DC-DC. Вы должны его сделать самостоятельно. Изображение показывает, как собрать трансформатор.

Ещё вариант преобразователей для светодиодов _http://belza.cz/ledlight/ledm.htm


 


Фонарь на свинцово-кислотном герметичном аккумуляторе с зарядным устройством.

Свинцово кислотные герметичные аккумуляторные батареи самые дешевые в настоящее время. Электролит в них находится в виде геля, поэтому аккумуляторы допускают работу в любом пространственном положении и не производят никаких вредных испарений. Им свойственна большая долговечность, если не допускать глубокого разряда. Теоретически они не боятся перезаряда, однако злоупотреблять этим не следует. Подзарядку аккумуляторных батарей можно производить в любое время, не дожидаясь их полной разрядки.
Свинцово-кислотные герметичные аккумуляторные батареи подходят для применения в переносных фонарях, используемых в домашнем хозяйстве, на дачных участках, на производстве.

Рис.1. Схема электрического фонаря

Электрическая принципиальная схема фонаря с зарядным устройством для 6-вольтового аккумулятора, позволяющая простым способом не допустить глубокий разряд аккумулятора и, таким образом, увеличить его срок службы, показана на рисунке. Он содержит заводской или самодельный трансформаторный блок питания и зарядно-коммутационное устройство, смонтированное в корпусе фонаря.
В авторском варианте в качестве трансформаторного блока применен стандартный блок, предназначенный для питания модемов. Выходное переменное напряжение блока 12 или 15 В, ток нагрузки – 1 А. Встречаются такие блоки и с встроенными выпрямителями. Они также подходят для этой цели.
Переменное напряжение с трансформаторного блока поступает на зарядно-коммутационное устройство, содержащее вилку для подключения зарядного устройства X2, диодный мостик VD1, стабилизатор тока (DA1, R1, HL1), аккумулятор GB, тумблер S1, кнопку экстренного включения S2, лампу накаливания HL2. Каждый раз при включении тумблера S1 напряжение аккумулятора поступает на реле К1, его контакты К1.1 замыкаются, подавая ток в базу транзистора VТ1. Транзистор включается, пропуская ток через лампу HL2. Выключают фонарь переключением тумблера S1 в первоначальное положение, в котором аккумулятор отключен от обмотки реле К1.
Допустимое напряжение разряда аккумулятора выбрано на уровне 4,5 В. Оно определяется напряжением включения реле К1. Изменять допустимое значение напряжения разряда можно с помощью резистора R2. С увеличением номинала резистора допустимое напряжение разряда увеличивается, и наоборот. Если напряжение аккумулятора ниже 4,5 В, то реле не включится, следовательно, не будет подано напряжение на базу транзистора VТ1, включающего лампу HL2. Это значит, что аккумулятор нуждается в зарядке. При напряжении 4,5 В освещенность, создаваемая фонарем, неплохая. В случае экстренной необходимости можно включить фонарь при пониженном напряжении кнопкой S2, при условии предварительного включения тумблера S1.
На вход зарядно-коммутационного устройства можно подавать и постоянное напряжение, не обращая внимание на полярность стыкуемых устройств.
Для перевода фонаря в режим заряда необходимо состыковать розетку Х1 трансформаторного блока с вилкой Х2, расположенной на корпусе фонаря, а затем включить вилку (на рисунке не показана) трансформаторного блока в сеть 220 В.
В приведенном варианте применен аккумулятор емкостью 4,2 Ач. Следовательно, его можно заряжать током 0,42 А. Заряд аккумулятора производится постоянным током. Стабилизатор тока содержит всего три детали: интегральный стабилизатор напряжения DA1 типа КР142ЕН5А либо импортный 7805, светодиод HL1 и резистор R1. Светодиод, кроме работы в стабилизаторе тока, выполняет также функцию индикатора режима заряда аккумулятора.
Настройка электрической схемы фонаря сводится к регулировке тока заряда аккумулятора. Зарядный ток (в амперах) обычно выбирают в десять раз меньше численного значения емкости аккумулятора (в ампер-часах).
Для настройки лучше всего собрать схему стабилизатора тока отдельно. Вместо аккумуляторной нагрузки к точке соединения катода светодиода и резистора R1 подключить амперметр на ток 2…5 А. Подбором резистора R1 установить по амперметру вычисленный ток заряда.
Реле К1 – герконовое РЭС64, паспорт РС4.569.724. Лампа HL2 потребляет ток примерно 1А.
Транзистор КТ829 можно применить с любым буквенным индексом. Эти транзисторы являются составными и имеют высокий коэффициент усиления по току – 750. Это следует учитывать в случае замены.
В авторском варианте микросхема DA1 установлена на стандартном ребристом радиаторе размерами 40х50х30 мм. Резистор R1 состоит из двух последовательно соединенных проволочных резисторов мощностью 12 Вт.

 


Схемы:

 


РЕМОНТ СВЕТОДИОДНОГО ФОНАРИКА

Номиналы деталей (С, D, R)
C = 1 мкФ. R1 = 470 кОм. R2 = 22 кОм.
1Д, 2Д — КД105А (допустимое напряжение 400V предельный ток 300 mA.)
Обеспечивает:
зарядный ток = 65 — 70mA.
напряжение = 3,6V.

 

 

 

 

 

 

 

 

LED-Treiber PR4401 SOT23



Siehe auch:Elektor-Praxistipp High Power LEDsLernpaket LEDs von Fran
Модернизация фонарика (альтернативная версия).

Вариант модернизации:
1. Более яркое свечение светодиода, чем при применении преобразователя из статьи (Модернизация фонарика.).
2. Возможность отрегулировать свечение светодиода подбором емкости конденсатора или ограничительного резистора.
3. Возможность питания до 3-4 светодиодов. Если конечно это вам нужно.

Схема и правила намотки трансформатора:

О трансформаторе.
Мотаем его на ферритовом кольце диаметром 7мм и длиной 11мм (можно взять любое другое ферритовое кольцо). Феррит берем целый, не раскалывая его. Провод берем любой, какой влезет на ваш феррит до заполнения. Количество витков 20. Мотаем сразу двумя проводами, свитыми в жгут. Затем начало одной обмотки соединяем с концом другой обмотки. (не перепутайте, а то работать не будет). Начало обмоток на схеме показано точками.
Транзистор VT1 2SC945 можно заменить на любой транзистор этой структуры, например КТ315. D1 1N5819 — любой диод Шоттки такого типа, С1 — 47мф х 16В (можно и на 6В), R1 — 1Ком, R2 — 100 Ом (можно не ставить). С1 и R2 регулируют яркость и ток светодиода.
Не перепутайте плюс и минус при подключении светодиода. При неверном подключении светодиод сгорит! Помните об этом!
Если все сделано правильно преобразователь начинает работать сразу. Не включайте его без нагрузки (светодиода) иначе конденсатор может выти из строя. На холостом ходу преобразователь дает до 60В!
Теперь поговорим о конструировании каркаса преобразователя.

Нам понадобится:
1. Мерная часть шприца на 5мл (каркас для преобразователя).
2. Алюминиевая плечевая часть тюбика (от зубной пасты, крема и т.д) вместе с резьбой и крышечкой (это будет общий минус).
3. Пружина от автоматической шариковой авторучки (плюс, идущий к светодиоду) и маленький кусочек изоляции для пружины.
4. Шуруп с шайбой или подходящая пружина (плюс, идущий к батарейке).
5. Парафин для заливания всего преобразователя (не обязательно).

Берём мерную часть шприца на 5мл, обрезаем с одной стороны конус для одевания иглы, с другой стороны срезаем плечи. Делаем заготовку похожую на ровную трубочку с дном. Вставляем преобразователь внутрь шприца. Плюсовой вывод для батарейки выводим в отверстие для иглы и вкручиваем туда же шуруп-саморез с шайбой. В центр плотно вставляем пружину от авторучки в изоляции (это плюс идущий к светодиоду). Минус крепим к плечевой части с помощью завинчивающей крышки просто зажав провод крышкой. (Внешний вид типа спутниковой тарелки). Теперь припаиваем выводы этой так называемой тарелки к выходу преобразователя и плотно вставляем в шприц. Вот и всё. Хотя можно всё это ещё залить парафином для надёжности. Я этого делать не стал просто для того чтобы показать внутренности преобразователя.

Если всей длины преобразователя не хватает до плюса батарейки, просто поставьте металлическую втулку или подходящую по длине пружину.



Светодиодный осветительный LED-фонарь на замечательном белом светодиоде Luxeon LXHL-NWE8 он примечателен своей яркостью — 500000mcd, а также потребляемым током — 350 mA. На фотографии с деталями он находится справа вверху.
Справа внизу — ParaLight EP2012-150BW1, но он явно уступает по параметрам люксеону.

Схема включения срисована из даташита с подбором параметров деталей опытным путем.

Все детали SMD — потому что занимают меньше места — раз, надоело сверлить дырки в платах — два… Конденсаторы C2C3 танталовые, для уменьшения паразитной индуктивности и увеличения общего КПД схемы.

 


Плата фонарика в DipTrace
Вся конструкция собрана в виде моноблока: детали с одной стороны, светодиод — с другой. Токоограничительный резистор R1 нужен для ограничения рабочего тока через светодиод и уменьшения общего энергопотребления схемы. Дроссель L1 — 40…50 витков медного провода на кольце диаметром 12 мм. из мю-пермаллоя.

 

 


При напряжении питания от 1,5 до 3 Вольт КПД преобразователя примерно равен 70%, что в общем не так уж и плохо. При понижении U питания менее 1 вольта микросхема уже не может выдать нормальное выходное напряжение и дает просто «все, что может» высасывая батарейку почти до 0,3 Вольта, после чего схема перестает работать.



Как из 1,5 сделать 5?
Как от 1,5 вольтовой батарейки запитать микроконтроллер, как засветить белый светодиод? Оказывается очень просто, в очередной раз постарались товарищи из фирмы MAXIM, изобрели вот такое чудо — MAX1674 (MAX1676).

Это повышающий индуктивный преобразовать со встроенным синхронным выпрямителем, позволяющим повысить эффективность, компактность схемы, избавиться от назойливых для таких схем диодов шоттки, так же повысить простоту изготовления. Характеристики преобразователя смотрим здесь:

Рабочее напряжение, В 0,7…5,5
КПД (при Iнагр.=120мА), % 94
Выходное напряжение, В 3,3/5
Номинальный выходной ток, мА 300
Ограничение выходного тока, А 1
Ток холостого хода, мА 0,1
Диапазон рабочих температур, °С -40…+85
Смотрим схему:

Чтобы получить выходной ток в 300мА указанный фирмой, нужно очень постараться. Если детально разобраться, то получим такую картинку — во первых учтём мощность на выходе преобразователя. Допустим берём 300мА при 5-ти вольтах и того имеем 1,5Вт, не будет учитывать потери и представим что КПД преобразователя 100%, значит от батарейки конвертор тоже потребит 1,5Вт, при 1,5В питания получится не много не мало 1А. А такой ток выдаст не каждая батарейка, к тому же под нагрузкой, это напряжение сразу же просядет. Это первый фактор. Второй — для нормальной работы преобразователя нужен дроссель с большим током насыщения, который быть больше импульсного тока внутреннего MOSFET транзистора, а значит всё это приведёт к немалыми габаритам индуктивности, а значит берем то, что реально нужно:
Номинальный выходной ток, не менее, мА Индуктивность дросселя, мкГн
300 47
120 22
70 10

Некоторые особенности включения микросхемы. Если вход FB соединен с общим проводом, выходное напряжение соответствует +5 В. Если этот вход соединить с выходом OUT, на нем установится выходное напряжение +3,3 В. Если же между выходом OUT и общим проводом включить делитель, его среднюю точку соединить с выводом FB, то на выходе преобразователя можно установить напряжение в диапазоне от 3,3 до 5 В. Плату следует разводить согласно рекомендациям фирмы-изготовителя, длину проводников выполнять минимальной, ширину максимальной. Среди возможного разнообразия дросселей следует выбрать с минимальным сопротивлением обмотки.
Во время экспериментов с «черновым» вариантом (фото), наибольший КПД наблюдался в районе 120мА. Преобразователь как к источнику напряжения был подключён к 4-м запараллелиным ионисторам, по 1 фараду каждый. Что дало возможность в ускоренном снижении входного напряжения следить за работой микросхемы. На удивление микросхема сохраняла работоспособность вплоть до 0,5В, правда, ток снимаемый с выхода был менее одного миллиампера.


Рекомендуемые дроссели из DataSheet-а производителя:

 

Производитель, тип индуктивности Индуктивность, мкГн Сопротивление обмотки, Ом Пиковый ток, А Высота, мм
Coilcraft DT1608C-103 10 0,095 0,7 2,92
Coilcraft DT1608C-153 15 0,200 0,9 2,92
Coilcraft DT1608C-223 22 0,320 0,7 2,92
Coiltronics UP1B-100 10 0,111 1,9 5,0
Coiltronics UP1B-150 15 0,175 1,5 5,0
Coiltronics UP1B-223 22 0,254 1,2 5,0
Murata LQh5N100 10 0,560 0,4 2,6
Murata LQh5N220 22 0,560 0,4 2,6
Sumida CD43-8R2 8,2 0,132 1,26 3,2
Sumida CD43-100 10 0,182 1,15 3,2
Sumida CD54-100 10 0,100 1,44 4,5
Sumida CD54-180 18 0,150 1,23 4,5
Sumida CD54-220 22 0,180 1,11 4,5

 


Как конечный результат экспериментов с данной микросхемой хочется отметить действительно высокий КПД построенного преобразователя, высокая нагрузочная способность, компактность собранной схемы. На фото данная схема «трудится» на светодиод Luxeon. Светодиод подключен без резистора. Схема питается от 1,5-вольтовой батарейке Kodak

 



Здесь можно посмотреть к чему привёли результаты эксперимента.

 


Предложенная Вашему вниманию схема, была использована для питания светодиодного фонарика, подзарядки мобильного телефона от двух металлгидритных аккумуляторов, при создании микроконтроллерного устройства, радиомикрофона. В каждом случае работа схемы была безупречной. Список, где можно использовать MAX1674 можно ещё долго продолжать.

 


Самый простой способ получить более-менее стабильный ток через светодиод — включить его в цепь нестабилизированного питания через резистор. Надо учитывать, что питающее напряжение должно быть как минимум в два раза больше  рабочего напряжения светодиода. Ток через светодиод рассчитывается по формуле:
         I led = (Uмакс.пит — U раб. диода) : R1

 


Эта схема чрезвычайно проста и во многих случаях является оправданной, но применять ее следует там, где нет нужды экономить электричество, и нет высоких требований к надежности.
Более стабильные схемы,   — на основе линейных стабилизаторов:

В качестве стабилизаторов лучше выбирать регулируемые, или на фиксированное напряжение, но оно должно быть как можно ближе к напряжению на светодиоде или цепочке последовательно соединенных светодиодов.
Очень  хорошо подходят стабилизаторы типа LM 317. 
ный немецкий текст:iel war es, mit nur einer NiCd-Zelle (AAA, 250mAh) eine der neuen ultrahellen LEDs mit 5600mCd zu betreiben. Diese LEDs benötigen 3,6V/20mA. Ich habe Ihre Schaltung zunächst unverändert übernommen, als Induktivität hatte ich allerdings nur eine mit 1,4mH zur Hand. Die Schaltung lief auf Anhieb! Allerdings ließ die Leuchtstärke doch noch zu wünschen übrig. Mehr zufällig stellte ich fest, dass die LED extrem heller wurde, wenn ich ein Spannungsmessgerät parallel zur LED schaltete!??? Tatsächlich waren es nur die Messschnüre, bzw. deren Kapazität, die den Effekt bewirkten. Mit einem Oszilloskop konnte ich dann feststellen, dass in dem Moment die Frequenz stark anstieg. Hm, also habe ich den 100nF-Kondensator gegen einen 4,7nF Typ ausgetauscht und schon war die Helligkeit wie gewünscht. Anschließend habe ich dann nur noch durch Ausprobieren die beste Spule aus meiner Sammlung gesucht… Das beste Ergebnis hatte ich mit einem alten Sperrkreis für den 19KHz Pilotton (UKW), aus dem ich die Kreiskapazität entfernt habe. Und hier ist sie nun, die Mini-Taschenlampe:

Источники:
http://pro-radio.ru/
http://radiokot.ru/
http://radio-hobby.org/

Вернутся

Как сделать свой собственный светодиодный фонарик красного света

Фонарь красного света — жизненно важный инструмент для астрономов, так как он помогает вам ориентироваться в темноте или проверять звездные карты, не портя зрение, адаптированное к темноте. В этом руководстве мы покажем вам, как сделать очень простой фонарик, используя красный светоизлучающий диод (LED).

Вам не понадобится электроника, специальные знания или навыки пайки, потому что мы будем использовать клеммные колодки типа «шоколадная коробка», для которых вам понадобится только отвертка, чтобы соединить части вместе.

И хотя некоторые компоненты довольно маленькие, с ними легко работать и не требуется никакого специального обращения.

Подробнее Астрономия своими руками

Красный фонарик позволяет вам проверять карты, не нарушая адаптированного зрения к темноте.

У горелки нет кожуха как такового. На самом деле это всего лишь небольшая группа деталей, которые после соединения и проверки скрепляются клеем и располагаются на защелкивающемся разъеме аккумулятора.

Образовавшуюся «каплю» можно прикрепить к любой стандартной батарее PP3 9 В — квадратного типа, который используется в бытовых детекторах дыма — и она обеспечит много часов полезного света.

Поскольку собранный фонарь не намного больше, чем сама батарея, его можно легко хранить в окуляре или носить в кармане.

В нашем пошаговом руководстве объясняется, как сделать стандартную ручную версию фонарика, но проявив немного изобретательности, вы сможете настроить дизайн в соответствии с различными потребностями.

Какой фонарик использовать для красного света

Прикрепите свой красный фонарь к ножке штатива, чтобы помочь вам найти предметы, упавшие на землю. Кредит: Марк Пэрриш

.

Ярко-красный светодиод полезен для ориентировки и поиска упавших предметов.

Установив самоклеящиеся накладки на липучках, вы можете прикрепить фонарь к различным частям вашей установки для освещения без помощи рук.

Версия с пониженным энергопотреблением с красными светодиодами, прикрепленная к простой деревянной подставке, неоценима для чтения карт звездного неба или создания зарисовок.

Используя мигающие красные светодиоды, вы можете сделать эффективные, привлекающие внимание предупреждающие огни. Их можно прикрепить к ножкам штатива или ящикам с оборудованием, чтобы другие люди не споткнулись о них.

Зачем нужен красный фонарик?

Один взгляд на экран смартфона — и ваше драгоценное зрение, адаптированное к темноте, разрушено! Предоставлено: Джейми Картер

.

Красный свет, излучаемый этими светодиодами, бесценен для астрономов, поскольку он не портит ночное зрение — когда наши глаза становятся чувствительными к очень слабому свету и при наблюдении улавливают более слабые объекты.

Сетчатка в задней части наших глаз имеет два типа сенсорных клеток — палочки и колбочки. Стержни улавливают очень низкий уровень света, становясь чрезвычайно чувствительными в темноте.

Наши глаза постепенно адаптируются к темноте — для их полной адаптации может потребоваться до 20 минут.

Внезапные источники яркого света, такие как обычные белые фонари, автомобильные фары и вспышки фотокамер, портят эту чувствительность. Но чистый красный свет, излучаемый светодиодами, практически не влияет на стержни, поэтому мы можем делать красные фонари и сигнальные лампы, которые не портят ночное зрение.

По этой причине также стоит по возможности повернуть экран смартфона в красный цвет, так как яркий экран испортит вам ночное зрение. Прочтите наш простой ярлык, чтобы сделать экран iPhone красным.

А чтобы узнать больше о науке, стоящей за зрением, прочтите наше руководство по боковому зрению.

Оборудование, необходимое для изготовления фонарика на красный свет

Компоненты, необходимые для изготовления фонарей (светодиоды, переключатели и резисторы), легко доступны у поставщиков электроники и относительно недороги.

А если вы сделаете несколько факелов — для себя или, возможно, для друзей из местного общества — вы можете покупать детали в больших количествах, что снижает затраты.

Наш дизайн можно охарактеризовать как более «практичный», чем эстетичный, но всего за несколько минут вы можете создать полезный набор источников света за небольшую часть стоимости коммерческих альтернатив — и при этом поддерживать ночное зрение каждого.

Для получения дополнительной помощи загрузите нашу электрическую схему и фотографии, которые помогут вам построить свой фонарик на красный свет.

This How To впервые появилось в мартовском номере BBC Sky at Night Magazine за 2011 год.

Как сделать фонарик | Светодиодный фонарик своими руками

Светодиодный фонарик, хорошо известный прибор из нашего дома. Все мы используем это устройство, чтобы видеть в темноте. Его можно найти в различных моделях, формах и размерах. Сегодня учим , как сделать фонарик в домашних условиях. Этот светодиодный фонарик DIY LED легко собрать из простых предметов домашнего обихода.

Светодиодный фонарик

своими руками имеет множество применений. Его просто можно использовать для освещения ночью для поиска вещей. Некоторые несложные модификации позволяют использовать его как лампу для учебы.

Этот фонарик для научного проекта, сделанный своими руками, лучше всего подходит для учеников 6-х классов. Но может также подойти и ученикам 5 и 7 классов. При выполнении этого научного проекта используются некоторые электронные устройства, такие как светодиоды, аккумулятор, выключатель и т. Д. Это помогает понять об этом устройстве и его использовании.

Как сделать фонарик в домашних условиях?

Фонарик

или просто фонарик светодиодный — один из распространенных гаджетов из нашего дома.Есть мои типы фонарей. Некоторые питаются от аккумулятора. Некоторые сделаны механическими. Сейчас мы можем видеть также солнечные вспышки.

С некоторыми распространенными материалами, такими как светодиоды, батарея на 9 В, сопротивление, переключатель и перемычка. Мы можем сделать светодиодный фонарик своими руками в домашних условиях.

Самодельный фонарик Научный проект помогает нам ответить на такие вопросы, как:

  • Что такое фонарик?
  • Как сделать фонарик?
  • Различные типы фонарей.
  • Знания о светодиодах.

Материалы, необходимые для изготовления классных детских фонариков:

Разрешите составить список материалов, которые необходимы для создания данного научного проекта.

светодиодный фонарик своими руками
  • LED,
  • аккумулятор 9 вольт,
  • Сопротивление,
  • Разъем аккумулятора,
  • Переключатель,
  • Соединительный кабель.

Некоторые из других необходимых материалов: коврик для резки, термоплавкий клей, резак, ножницы, паяльник и т. Д.Обычно светодиод потребляет гораздо меньше электроэнергии по сравнению с другими электрическими лампочками.

Светодиод (светоизлучающий диод) — это полупроводниковое устройство, излучающее свет при прохождении через него тока.

Примечание: (Светодиоды имеют полярность по своей природе, т. Е. Свет светится только в одном направлении тока. При противоположной полярности свет не светится.)

Основным источником питания для этого научного проекта является батарея на 9 вольт. мы также можем использовать любой другой источник питания, такой как адаптер, 1.Аккумуляторы на 5 вольт.

Коммутатор

не является обязательным условием для этого научного проекта. Использование переключателя упрощает включение и выключение. Используется простой однополюсный однопозиционный переключатель.

В случае, если мы используем простой светодиодный светильник на 1,5 вольта. Обязательно использование сопротивления. Я рекомендую использовать сопротивление 1 кОм.

Как сделать фонарик:

Собрав все материалы, пора начинать наш научный проект. Здесь мы предоставили пошаговое руководство, как сделать светодиодный фонарик своими руками.

  • Для начала возьмите тесто на 9 вольт. Это основной источник энергии.
  • Возьмите кусок двойной ленты для приклеивания переключателя и светодиода. В качестве альтернативы для этой задачи можно использовать термоклей.
  • Подсоедините разъем аккумулятора к клеммам.
  • С помощью паяльника припаяйте один конец разъема с переключателем, а другой — со светодиодом.
  • Теперь подключите противоположный конец переключателя и светодиода одним соединительным кабелем.
  • Наконец, научный проект светодиодных фонарей готов к использованию.

Светодиодный фонарик своими руками Видео:

Для лучшей демонстрации этого проекта вы можете просто посмотреть видео ниже.


Вот полный процесс создания этого научного проекта в виде видео. Это наш YouTube-канал DIY Projects. Мы также создали на нашем канале множество других школьных научных проектов. Мы также предлагаем школьникам множество идей для научных ярмарок.

Мы можем многому научиться из этого научного проекта diy flashlight .Некоторые из важных тем отмечены ниже.

Светодиодная вспышка

— незаменимый гаджет для нас. Мы можем разделить вспышки на разные типы в зависимости от источника питания. Некоторые используют в качестве основного источника питания простую батарею. В то время как другие используют аккумуляторную батарею. Солнечные панели также прикреплены к телу света, который действует как источник энергии. Где как некоторые используют механическую энергию.

Switch — это электронное устройство, которое мы используем для отключения и подключения электрического тока.Есть много типов переключателей. Некоторые из них — однополюсный однопозиционный переключатель (SPST), однополюсный двухпозиционный переключатель (SPDT), двухполюсный одинарный переключатель (DPST) и двухполюсный двухпозиционный переключатель (DPDT).

Сопротивление — электронное устройство, противоположное проводнику. Единица измерения — Ом.

Преимущества изготовления горелки:

У этого научного проекта самодельного фонарика много преимуществ. Мы упомянули некоторые достоинства ниже:

  • По своей природе портативный.Мы легко можем его нести.
  • Самодельный научный проект с факелом помогает нам узнать об электрической схеме. Студент может лучше понять, что такое разомкнутая цепь и замкнутая цепь через этот проект.
  • Мы учимся использовать электрические устройства, такие как выключатель и светодиод.
  • этот научный проект вдохновляет студентов на научные семинары.

Советы по безопасности для светодиодного фонарика DIY Project:

Нашим главным приоритетом перед выполнением любого научного проекта является безопасность.Любой человек должен защищать себя, или она является обязательным условием.

  • При выполнении научных проектов всегда надевайте безопасное стекло, которое защищает ваши глаза.
  • Осторожно обращайтесь с паяльным стержнем. Это может обжечь руку.
  • Обращайтесь с термоплавким клеем правильно, так как он может нанести вам вред.
  • Выполняйте этот научный проект в присутствии ваших родителей, учителей или старших братьев и сестер.
как сделать фонарик

Альтернативный проект как сделать фонарик:

Мы можем сделать много научных проектов, похожих на этот. Как сделать минимальный миксер — одна крутая идея для научного проекта. Вы также можете создавать проекты, перечисленные ниже. Эти проекты могут быть хорошими идей научных проектов для предстоящей научной ярмарки.

Некоторые из классных научных проектов с использованием двигателя постоянного тока:

Вопросы и ответы о научном проекте светодиодного фонарика DIY:

1. Какая польза от фонарика?

Светодиодная вспышка — это электронное устройство, которое используется для освещения в темноте.

2. Какие есть альтернативы фонарику?

Теперь в сутки мы можем получать различные источники света. В нашем смартфоне есть множество приложений, связанных со светом. Эти приложения — хорошая альтернатива.

Также мы можем купить различные фары головного света, часы, которые излучают свет.

3. Где купить светодиодную вспышку?

Есть много интернет-магазинов и офлайн-магазинов, продающих миксеры. Вы можете приобрести его в ближайшем электронном магазине. Некоторые из интернет-магазинов — Amazon, Ali-express, eBay и др.

4. Почему люди выбирают светодиодные фонари вместо больших фонарей

Портативность — это причина, по которой один человек может широко использовать светодиодные фонари.

Самодельный фонарик Отчет научного проекта:

Если вы ищете проекты для 6-го класса, посвященные научной ярмарке. Я надеюсь, что этот эксперимент мне очень поможет. Эта документация может быть лучшей для вашей рабочей модели.

Если вам нравится этот научный проект или у вас есть вопросы по этому проекту. Вы можете просто прокомментировать нас в нашем разделе комментариев.

Чтобы узнать больше, войдите в SCHOOLSCIENCEEXPERIMENTS.COM

.

Popsicle Stick Светодиодный фонарик Summer STEM Activity

Помогите детям этим летом в увлекательной игровой форме узнать о электрических цепях, а также о положительных и отрицательных зарядах. Этот светодиодный фонарик в виде палочки для мороженого прост в изготовлении и является идеальным летним занятием для детей. Читайте здесь, как это сделать, и идеи для игр с фонариками.

Мы определенно делаем вещи легкими и веселыми в течение лета, но это не значит, что мы не можем уклоняться от некоторых занятий, на которых дети могут чему-то научиться.Фонарики — огромная часть нашего летнего веселья, поэтому, когда я увидел этот проект от Instructables, я понял, что нам будет интересно его попробовать.

Прочтите ниже, чтобы увидеть, как мы создали светодиодный фонарик в виде палочек для мороженого, используя несколько простых принадлежностей. Кроме того, я добавил несколько забавных идей для игр с фонариком в конце поста, чтобы продолжить летнее веселье!

( Этот пост содержит партнерские ссылки, что означает, что я могу заработать небольшую комиссию, если вы нажмете ссылку и сделаете покупку. Как партнер Amazon я зарабатываю на соответствующих покупках.)

Вот что вам понадобится:

* Для изготовления фонарей можно использовать обычную кухонную фольгу вместо медной ленты. При первом дубле мы использовали фольгу, но я обнаружил, что медная лента намного надежнее, поэтому рекомендую именно ее.

Как сделать светодиодный фонарик в виде палочки для мороженого

Их действительно просто собрать, и их можно изготовить за короткое время. У моей 10-летней девочки не было проблем, когда я показал ей, как я сделал свой, однако детям младшего возраста может потребоваться помощь с некоторыми шагами.Обязательно ознакомьтесь с инструкциями по устранению неполадок в конце этого сообщения, если у вас возникнут проблемы!

Шаг 1: Отрежьте концы ваших палочек так, чтобы у вас был прямой край с одной стороны. Я отрезал примерно 1 1/4 дюйма и использовал свой средний зажим для бумаги в качестве ориентира.

Шаг 2: Сначала проверьте батарею и светодиодный индикатор, вставив батарею C-cell между контактами светодиода. Как только вы узнаете, что все работает, поместите светодиод на кончик изогнутого конца вашего джамбо-стика.

Шаг 3: Отрежьте полоску медной ленты немного короче, чем длина вашей палочки для мороженого. Протяните ленту от изогнутого кончика, полностью закрывая выступы светодиодов, вниз к обрезанному концу палочки. Повторите с другой стороны.

Шаг 4: Добавьте зажим для бумаги в нижнюю часть палочки для мороженого с выступами вверх. Используйте прозрачную ленту (или любую токонепроводящую ленту), чтобы закрепить аккумулятор на месте. Закрывайте батарею только верхнюю часть изолентой, чтобы металлические выступы зажимов могли соприкасаться с батареей (см. Фото справа внизу). Возможно, вам придется повозиться с размещением батареи. Вы поймете, что он находится в нужном месте, когда загорится ваш свет.

Шаг 5: Зажги! Фонарик должен включаться и выключаться, когда вы поднимаете и опускаете металлический стержень зажима для папок. Если ваш свет не работает, см. Советы по устранению неполадок ниже.

Как работает светодиодный фонарик Popsicle Stick:

Медная лента действует как проводник для переноса заряда от источника питания (батареи) к светодиоду.

Зажим для папки помогает замкнуть цепь и действует как переключатель, позволяя включать и выключать фонарик.

Вот милое видео для детей, в котором просто объясняется, как работает схема: The Power of Circuits от SciShow Kids

Устранение неполадок:

Иногда все работает плавно сразу, иногда нужно немного повозиться. Во-первых, если у вас есть время, я рекомендую привлечь детей к устранению неполадок. Дать им возможность спросить, почему это не работает, и работать над решением проблемы — это хорошая практика, и в конечном итоге они получат больше от этого проекта.Сказав это, вот несколько указателей, которые, надеюсь, помогут вам:

  • Если вы не подтвердили, что аккумулятор и светодиод работают, прежде чем собирать фонарик, вам следует сначала это проверить.
  • Попробуйте перевернуть аккумулятор на другую сторону
  • Попробуйте обрезать медную ленту так, чтобы она не доходила до пластиковой части зажимов

5 веселых игр с фонариками

Теперь, когда ваши фонарики заработали, пришло время повеселиться с ними! У детей, возможно, уже есть свои идеи о том, как они хотят использовать свои фонарики, но если вам нужны идеи, взгляните на эти игры с фонариками, в которые можно играть как внутри, так и снаружи.

  1. Тег фонарика: Один человек «это», а все остальные прячутся. Если свет от фонарика попадает в ваше тело, вы «помечаете» и становитесь новым «этим» человеком.
  2. Фонарик Марко Поло: Подобно классической игре в бильярд, один человек — это ищущий, который зовет «Марко», а другие игроки пытаются спрятаться. Когда вызывается «Марко», скрывающиеся мигают своими фонариками, затем искатель пытается найти прятников, основываясь на том, где светились огни.Hiders могут продолжать движение, но они должны мигать своими фарами каждый раз, когда ищущий говорит «Марко».
  3. Shadow puppets: Это может быть простое творческое задание или вы можете превратить его в игру в угадывание, где игроки по очереди создают тени от света, отбрасываемого фонариком. Один игрок создает тень, а другие должны угадать, что это такое. У вас может быть корзина с листками бумаги с написанными на них идеями, из которых игроки должны выбирать, а затем пытаться создать то, что написано (подумайте о Шарадах).
  4. Светлячок Фонарик Игра: Один человек — это «он» и бегает с фонариком в темноте, в то время как другие игроки пытаются их поймать.
  5. Flashlight Freeze Dance: Дети танцуют в темноте, а затем замирают на своих местах, когда на них светит свет. Когда фонарик погаснет, танцы возобновятся. Это забавная игра с множеством глупостей!

Не забудьте PIN-код изображения ниже, чтобы поделиться и сохранить на будущее!

Как сделать простой светодиодный мини-фонарик

До изобретения светодиодов лампы накаливания были единственными светоизлучающими устройствами, которые можно было легко и дешево использовать в фонариках.Хотя даже сейчас такие фонари используются, но лампы накаливания, как мы все знаем, довольно неэффективны с точки зрения энергопотребления, и требуют частой замены батареи, и, таким образом, такие фонари в конечном итоге становятся дорогостоящими в обслуживании и эксплуатации.

С появлением современных усовершенствованных высокоэффективных белых светодиодов стало возможным создание ослепляющего света с использованием незначительной мощности, а лампы накаливания постепенно устаревают. Фактически, светодиодные фонари настолько эффективны, что их батарейки могут работать почти вечно, что делает их удивительными устройствами, производящими свет.

Белые светодиоды также имеют встроенные линзы и поэтому могут не требовать дополнительных отражателей, что увеличивает их эффективность в создании четких световых узоров. -ослепляющее освещение через обычные вводы питания.

В этой статье мы попытаемся разобраться в электрических и механических деталях серийно выпускаемого светодиодного фонарика.Давайте изучим довольно простую конструкцию одного такого образца.

Простые внутренние конфигурации

На самом деле зажечь светодиод очень просто, поскольку это не требует особых технических или электронных навыков.

Просто подключив анодные и катодные выводы светодиода к источнику напряжения, светодиод может ярко загореться.

Тем не менее, один критерий, который необходимо строго соблюдать при использовании светодиодов, заключается в том, что напряжение питания никогда не должно намного превышать его прямое падение напряжения, которое может быть разным для разных светодиодов (цвета.)

Например, прямое напряжение белого светодиода составляет около 3,6 вольт, поэтому приложенное напряжение никогда не должно превышать 4 вольт (в идеале), но при этом более высокие входные напряжения могут поддерживаться только при подключении светодиода. к соответствующим образом рассчитанному резистору, включенному последовательно.

На изображении рядом показан мини-светодиодный фонарик, который очень дешево доступен на рынке (вы можете купить 7 штук всего за доллар), так что он хорошо подходит для использования и бросания. Он в основном состоит из одного белого светодиода, питаемого от трех крошечных кнопочных ячеек, соединенных последовательно.

Поскольку каждая ячейка производит разность потенциалов в 1,5 вольта, три из них складываются, чтобы дать хорошие 4,5 вольта, что идеально подходит для очень яркого питания одного белого светодиода (изображение просто доказывает, что .)

На разрезе фонарика выделяются следующие этапы, которые может быть легко воспроизведен и построен даже новичком в области электроники:

Электрическая часть этого светодиодного фонарика в основном состоит из светодиода и трех кнопок, расположенных последовательно, i .е. отрицательный элемент верхней ячейки касается положительного полюса второй ячейки, а отрицательный элемент второй ячейки касается положительного элемента третьей ячейки, оставляя положительный элемент первой и отрицательный элемент третьей ячейки свободными, так что они могут завершиться до Светодиодные провода.

Катод светодиода постоянно соединен с отрицательным полюсом сборки элемента, а анод подключается к положительному выводу источника напряжения через латунную полоску, расположенную так, что он действует как «листовой переключатель» для попеременного переключения светодиода. ВКЛ и ВЫКЛ в ответ на скольжение (пальцем) внешнего механизма.

Использование концепции для инновационных приложений

Как уже обсуждалось, светодиоды довольно просты в подключении, поэтому можно создать ряд интересных небольших улучшений освещения, используя несколько или много светодиодов и батарею соответствующего номинала или источник напряжения.

Например, как показано на схеме, шесть светодиодов могут быть соединены вместе, чтобы получился красивый небольшой потолочный светильник для салона вашего автомобиля. Плюс цепи можно подключить через дверной выключатель, так что светодиоды загораются сразу же при открытии любой из дверей.Добавив к нему конденсатор, можно заставить свет прослужить еще пару секунд даже после того, как двери закрыты и соответствующий выключатель выключен.

Еще одно приложение, которое наверняка удивит ваших друзей, — это прикрепление нескольких светодиодов к обычному фрисби. Вы можете сделать это, просверлив несколько отверстий в обычном фрисби и закрепив в них светодиоды, которые затем будут получать питание от кнопочных ячеек, как показано на прилагаемой диаграмме.

Этот самодельный фонарик с яркостью 72000 люмен может освещать внешнюю часть всего здания

Этот светодиодный фонарик с очень высокой яркостью полностью самоделан и изготовлен с использованием компонентов, которые можно купить в Интернете.Он намного ярче, чем автомобильные фары и другие мощные фонари, с ошеломляющей яркостью 72000 люмен и . Ютубер Сэмм Шеперд задокументировал свое путешествие своими руками по созданию этого мега-фонарика.

[Источник изображения: Самм Шеперд через YouTube ]

Что такое люмен?

По сути, Люмен (лм) — это мера общего количества видимого света, исходящего от различных источников света, который может видеть человеческий глаз. Это эквивалентно световому потоку, поэтому чем выше значение люмена, тем ярче будет источник света.Чтобы представить себе люмен в перспективе, вот две диаграммы с преобразованием мощности в люмены и базовый рейтинг бытовых светодиодов в люменах.

[Источник изображения: Integral LED ]

Светодиодный мегафонарик Samm Sheperd с водяным охлаждением имеет яркость 72000 люмен! Удивительный факт о творении Шеперда заключается в том, что оно полностью самодельное. Лучше всего то, что он задокументировал себя, когда строил его, так что другие, кто заинтересован в создании суперяркого факела, могли дать ему шанс.

[Источник изображения: Samm Sheperd через YouTube ]

Как это сделано

Sheperd использовал восемь отдельных светодиодных чипов 100W с номинальной мощностью 9000 люмен, каждый, а затем подключил их параллельно, чтобы достичь большого всего 72000 люмен . Конечно, такая яркость приводит к сильному нагреву фонарика, поэтому ему пришлось включить систему охлаждения с использованием компонентов компьютерного охлаждения, которые он купил в Интернете, что означает, что детали доступны для большинства.Полный список материалов, необходимых для создания этого необычного фонарика, можно найти в видео Шеперда на YouTube, где они перечислены в разделе описания.

После того, как он закончил сборку фонарика, пришло время провести сравнительный тест со средним и мощным фонариком, с обычным фонариком на 500 люменов и ярким светодиодным фонариком на 1050 люменов . Тем не менее, супер-фонарик, сделанный своими руками, — это скорее прожектор или луч, чем фонарик.Сравнительный тест был проведен в середине видео, где два скромных фонарика были полностью затмеваны, поскольку они не освещали столько, сколько фонарик на 72000 люмен.

На вопрос, не перегреется ли фонарик, Шеперд ответил: «Нет, он может работать от источника питания непрерывно со стабильной температурой охлаждающей жидкости». Конечно, вопрос о том, как долго можно использовать устройство от источника питания от батареи, имел первостепенное значение для людей, интересующихся супер крутым фонариком.Шеперд заявил: «Маленькая задняя часть батареи, которую я использую, сделана из батареек, которые у меня уже были, и их хватит на 6 минут». «Легко установить большую батарею», — добавил он.

Самый важный вопрос, который сейчас волнует всех, — возможно, Шеперд сможет коммерчески построить самодельный фонарик для публичной продажи. И хорошая новость в том, что он готов рассмотреть возможность создания большего количества фонарей на 72000 люмен для серьезных покупателей.

«Я рассматриваю это только потому, что так много людей просят, но это будет примерно 700 долларов и полтора месяца, чтобы заказать детали, изготовить их и отправить», — сказал Шеперд.Не такая уж и крутая цена за десятки тысяч люмен переносного света. Другие коммерческие фонари с яркостью всего 5000 люмен продаются по цене 1095 долларов. Единственный кажущийся недостаток фонарика DIY заключается в том, что в настоящее время он работает всего 6 минут, в то время как у обычных светодиодных фонарей время автономной работы составляет пару часов.

Источник: Самм Шеперд через YouTube

СМОТРИ ТАКЖЕ: аэропорт Гатвик использует дополненную реальность, чтобы помочь поймать рейсы

Исследуйте электричество: создайте светодиодный фонарик

Этот простой светодиодный фонарик, сделанный своими руками, быстро и легко собрать из недорогих деталей, которые обычно можно найти дома.Если у вас еще нет всех деталей из приведенного ниже списка, вы можете легко найти их в интернет-магазинах, таких как Amazon, или в магазинах канцелярских товаров, таких как Staples.

Вот что вам понадобится:

  • 1 кусок гофрированного картона размером примерно 1 × 6 дюймов или большой стик для мороженого
  • 2 полоски алюминиевой фольги (одна почти такой же длины, как картон, а вторая немного короче)
  • 1 маленький металлический зажим для папок
  • 1 тонкий, сплошной неизолированный провод длиной около 4 дюймов или тонкий гибкий металлический скрепка для бумаг
  • 1 плоская батарейка на 3 В, например CR2032
  • 1 x белый светодиод
  • Несколько полосок ленты (подойдет обычная лента)
  • Горячий клеевой пистолет и клей

Чтобы собрать фонарик, следуйте инструкциям, содержащимся в видео, встроенном ниже (записанном для нашего стенда на SciFest All Access — не забудьте зайти!) Или по этой ссылке.

Эксперимент / Вопросы:

  1. Что произойдет, если полностью заклеить аккумулятор?
    Светодиод не загорается, когда вы опускаете ножку зажима для папок. Это связано с тем, что лента представляет собой изолятор , предотвращающий прохождение электричества. Металлический зажим и алюминиевая фольга — это проводников , которые пропускают электричество, как провода в вашем доме.
  2. Что будет, если вставить батарею или светодиод обратной стороной?
    Светодиод не загорается.Это связано с полярностью : светодиод (светоизлучающий диод) позволяет электрическому току течь только в одном направлении, от положительного к отрицательному. Переставляя батарею или светодиод, вы пытаетесь направить ток с отрицательного на положительный, поэтому светодиод не загорается. Но что, если вы перевернете аккумулятор и светодиод? Теперь цепь снова переключается с положительного на отрицательный, так что ваш светодиод загорится!

Вот как выглядит фонарик в виде принципиальной схемы . — чертеж электрической цепи с использованием символов (изображений) для обозначения каждой части.Сможете ли вы найти каждую из этих частей на построенном вами фонарике?

На этой схеме показан фонарик с поднятой ножкой зажима для папок. Это называется «разомкнутой цепью», и светодиод не загорается, потому что нет токопроводящего пути для прохождения электричества. Если вы опустите ножку зажима для папок на батарею, вы завершите — или «замкните» — цепь, электричество потечет, и загорится светодиод!

Как сделать фонарик

Знаете ли вы, что первый фонарик, разработанный Конрадом Хьюбертом в 1890-х годах, был почти точно таким же, как тот, который вы собирались сделать в этом эксперименте?

Вам понадобятся материалы:
  • 2 Элементы питания Energizer Max ® D (отдельные батареи — в этом эксперименте вы не будете использовать свой блок питания)
  • Изолированный медный провод звонка номер 22
  • Картонная трубка (бумажное полотенце) разрезать на 5.125 дюймов в длину
  • Лампа фонарика 3 В
  • 2 застежки из латуни (штифты)
  • Маленькая картонная деталь для крепления лампы
  • Скрепка
  • Изолента
  • Бумажный стаканчик для ванной

Как собрать фонарик:

  1. 1. Отрежьте картонную трубку вдоль и расплющите. Вставьте две латунные застежки с прикрепленной скрепкой к одной из застежек.
  2. 2. Отрежьте два провода и зачистите оба конца. К каждой застежке прикрепите по одному проводу и заклейте изолентой.
  3. 3. Вырежьте небольшой кусок картона, чтобы он поместился поверх трубки. Сделайте отверстие в центре картонной детали и вставьте лампочку.
  4. 4. Оберните один из проводов вокруг корпуса лампочки.
  5. 5. Соедините ячейки размера D последовательно и скрепите их изолентой.Поместите ячейки в картонную тубу, оберните тубу вокруг ячеек и закрепите скотчем.
  6. 6. Прикрепите лампу в сборе к верхней части трубки с помощью ленты, убедитесь, что лампа контактирует с положительным полюсом аккумуляторной батареи.
  7. 7. Прикрепите провод с другой стороны трубки к отрицательному выводу аккумуляторной батареи изолентой.
  8. 8. Вырежьте отверстие в нижней части бумажного стаканчика и закрепите его лентой над лампочкой в ​​верхней части фонарика.
  9. 9. Теперь у вас есть рабочий фонарик. Замыкание переключателя скрепки позволяет току течь по цепи и зажигать лампочку.

Создание этого фонарика дало вам пример одного из наиболее важных применений портативной электроэнергии.

.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *