Skip to content

Как набирает прочность бетон по дням: Набор прочности бетоном. Время твердения бетона.Тепловыделение цемента (бетонной смеси).

Содержание

Набор прочности бетоном. Время твердения бетона.Тепловыделение цемента (бетонной смеси).

Набор прочности бетоном. Время твердения бетона. Тепловыделение цемента (бетонной смеси).

В отсутствие воды никакого набора прочности не происходит (нужно поливать). То есть высохший бетон перестает набирать прочность и замерзший бетон перестает набирать прочность (нужно нагревать или использовать присадки-добавки). Если бетон потом нагреть или разморозить он продолжит набирать прочность, но наберет ее тем больше от номинала, чем позже произошла остановка твердения.

Считается, что при температуре 20 °С бетон (при доступе влаги = если не высох) набирает марочную прочность за 28 суток по волшебной формуле:

Прочность бетона на день n = Марочная прочность *(lg(n) / lg(28)) , где n не менее 3 дней

За первые трое суток при нормальных условиях бетон набирает не более 30% марочной прочности.

Через 1-2 недели (7-14 суток) бетон при нормальных условиях набирает 60-80% марочной прочности.

Через 4 недели (28 суток) бетон при нормальных условиях набирает 100% марочной прочности.

Через 3 месяца (90 суток) бетон при нормальных условиях набирает 120% марочной прочности.

В дальнейшем, при доступе влаги, бетон продолжит набирать прочность, но очень медленно.

Снижение температуры сильно замедляет твердение бетона, если не применять специальные добавки. Повышение температуры резко ускоряет твердение бетона, но следут не допускать высыхания бетона. Если бетон греть водяным паром при температуре 80oС в течение 16 часов, то бетон наберет 60-70% марочной прочности (заводская пропарка — изготовление свай и т.д.)

Нагревать бетон свыше 90 oС нельзя.

Теперь последует важное замечание:

Схватывание и твердение цемента это экзотермические процессы, т.е при наборе прочности бетоном выделяется весьма существенное количество тепла, что на практике увеличивает риск высыхания бетона и существенно снижает риск замерзания бетона.

Характерными (оценочными) величинами тепловыделения являются:

200 кДж = 50 ккал на каждый килограмм портландцемента за 7 суток.

200 кДж = 50ккал на каждый килограмм глиноземистого цемента за 1 сутки .

особенности, график и от чего зависит?

Основная характеристика бетона, которая определила его широкое распространение — это высокая прочность. Материал набирает любую прочность в реальных условиях, так как есть много причин, которые способствуют недобору величины, соответствующей бетону определенной марки. Знание этих причин и их особенностей способствует формированию бетонных фундаментов, конструкций с максимальными эксплуатационными показателями.

Процесс набора

Физико-химические реакции гидратации создают новые монолитные соединения, которые придают материалу свойства искусственного камня. Новое качество формируется в течение многих суток (окончательно примерно через полгода) и в идеале прочностные свойства бетонной конструкции должны соответствовать бетону определенного класса и марки. По времени процесс вызревания камня имеет две последовательные стадии: начальная — схватывание, и завершающая — твердение. По его завершении бетон может нагружаться.

Вернуться к оглавлению

Схватывание

Схема возможного расслоения бетонной смеси: а — в процессе транспортирования и уплотнения, б — после уплотнения; 1 — направление, по которому отжимается вода, 2 — вода, 3, 4 — мелкий и крупный заполнители.

Бетоном пользуются не сразу после затвердения, так как может потребоваться некоторое количество времени, чтобы довезти материал до объекта. Смесь должна оставаться подвижной, чему способствует механическое перемешивание раствора в миксере автосмесителя. Тиксотропия позволяет сохранить основные свойства смеси до ее заливки, откладывая старт начальной стадии созревания. Однако следует знать, что если время затянуть или температура поднимется, развивается необратимый процесс «сваривания» раствора, в результате которого занизятся его характеристики.

Длительность схватывания находится в зависимости от температуры воздуха — от 20 мин. до 20 часов. Наибольшая продолжительность данного процесса зимой при температурных значениях около 0 град. Заливка фундамента в этот период будет сопровождаться удлинением интервала начала схватывания от 6 до 10 часов, а сама стадия растянется на 15 – 20 ч.

Оптимально заливать бетон в форму при 20 градусах. Тогда при условии, что раствор затворен за час до заливки, схватывание начнется через один час и завершится через 60 мин. Жаркая погода способствует практически моментальному схватыванию раствора за 10 – 20 мин.

Вернуться к оглавлению

Твердение

Оптимальное течение гидратации при твердении раствора: температурный коридор от 18 до 20 град., влажность близкая к 100%. Отклонения от данных параметров в значительной степени изменяют скорость твердения камня. Полное вызревание бетона длиться несколько лет.

Вместе с тем на этой стадии скорость твердения закономерно изменяется со временем. К примеру, для бетона М300 к концу 3-го дня она достигает 50%, на 14–й день составляет до 90%, а на 28 день — 100%. Далее через три месяца прочность повышается еще на 20%, а через 3 года может стать на 100% больше, чем была к концу 28 суток после затворения.

Вернуться к оглавлению

Особенности набора прочности

Снижение температурных показателей среды ведет к замедлению твердения. Нулевая отметка на термометре останавливает процесс из-за замерзания воды в камне (снижается качество бетона), а подъем значений снова его возобновляет. Смесь начинает высыхать при недостатке или отсутствии влаги, однако это может замедлить и остановить правильное твердение, что воспрепятствует набору заданного свойства бетоном. А вот автоклавное отвердение смесей значительно ускоряется при повышенных значениях температурно-влажностного режима: 80 – 90 град. и 100% влажности, что ведет к ускоренному росту прочностных показателей. За счет влаги в воздухе может сокращаться интервал набора прочности раствором, который уложен открыто.

Бетоны более высоких марок (состоят из большего количества цемента лучшего качества) твердеют и набирают прочность быстрее, поэтому обрабатывать их следует более оперативно. В интервале с 3-х по 10-е сутки после укладки нормативный набор прочности бетона обеспечивается близкими к идеальным условиями выдержки. В теплую погоду раствор укрывается влагоемкими материалами, через которые камень увлажняется круглосуточно 6 – 7 раз, и перекрывается плотной пленкой.

В солнечную погоду он укрывается от прямых лучей. Зимой бетон может искусственно прогреваться изнутри, утепляться, обогреваться тепловыми генераторами, чтобы предотвратить замерзание воды, и изолируется от осадков. Важным параметром для продолжения работ является нормативно-безопасный срок набора прочностных свойств. Таблица 1 показывает зависимость от марки бетона и среднесуточной температуры значений прочностных показателей бетонов через соответствующее количество суток.

Таблица 1

Нормативно-безопасным сроком созревания бетонов можно считать значение 50%, а безопасным — от 72% до 80% от марочного значения, что, к примеру, важно знать при работах на фундаменте.

Вернуться к оглавлению

От чего зависит набор прочности?

Факторы, которые управляют набором прочностных свойств камня, включают: сколько времени прошло после заливки, температурно-влажностный режим выдерживания, качество (активность) и марку цемента, соотношение воды и цемента в растворе, пропорции компонентов в смеси, способ уплотнения, технологию перемешивания, способ и скорость укладки, качество и регулярность увлажнения, наличие пластификаторов (добавок-ускорителей твердения) в смеси зимой и пр. Поднятие марки бетона зависит от увеличения доли и более высокой марки цемента в смеси, пропорций компонентов. Марка прямо влияет на набор прочности бетона. Для низких марок критическая прочность имеет большее значение. Таблица 2 отражает данную закономерность.

Таблица 2

Поэтому прочностью фундамента из бетона высокой марки определяется надежность, долговечность конструкции здания. Камень в холодную погоду приобретает прочность благодаря собственному тепловыделению, но для нормализации графика формирования камня целесообразно применять соответствующие добавки, ускоряющие твердение и снижающие температуру остановки гидратации. С ними смесь набирает марочную прочность уже через 14 суток. Удачным решением также станет изменение составляющих в бетоне. К примеру, глиноземистый цемент набирает прочностные показатели даже в морозы, так как выделяет примерно в 7 раз больше собственного тепла по сравнению портландцементом.

В наборе этого свойства существенную роль играют форма и фракция зерен натуральных наполнителей. Их неправильная форма и повышенная шероховатость обеспечивают лучшие условия сцепления и качество бетона. Известно, что увеличение доли воды в бетонной смеси способно привести к расслоению массы материала. Следствием этого также становится то, что при относительном увеличении доли воды в растворе на 60% от оптимального значения (в/ц = 0,4) происходит недобор прочности на 50% от марочной. Однако при соотношении вода/цемент 1/4 период отвердения (упрочнения) сокращается в два раза.

Чтобы ускорить процесс и минимизировать выдержку бетона, целесообразно применять пескобетоны с низким соотношением вода/цемент. Неуплотненный бетонный раствор имеет шансы вызреть только до 50% от нормативной прочности даже при оптимальном соотношении вода/цемент. Вместе с тем ручное уплотнение способно повысить его прочность на 30 – 40%, а вибротрамбовка повышает прочность до нормативных 95 – 100%.

Вернуться к оглавлению

График набора прочности

Важно знать график набора прочности бетона для прогнозирования последствий изменения температурных условий твердения, которые приводят к увеличению времени выдерживания.

График 1

График 1 показывает на примере бетона М400 через сколько суток смесь при фиксированных температурных значениях набирает определенный процент прочности (за сто процентов взят набор марочной прочности за 4 недели). Температурный режим 30 град. является оптимальным для набора нормативной прочности (97%) за 11 дней, а при показателе в 5 град. значение безопасной прочности не будет достигнуто камнем и за 14 дней. В такой ситуации следует разогревать, утеплять укладку. В соответствии с кривыми определяются сроки распалубки при превышении прочностью 50% марочного значения.

Вернуться к оглавлению

Вывод

В реальности прочностные показатели бетонных конструкций могут изменяться по очень многим причинам. Важно обеспечить оптимальные параметры для реализации по времени графика роста прочностных свойств, соответствующих марке бетона.

Строительный миф №2. Нужно ли после заливки бетона ждать 28 суток?

Вопрос: сколько нужно ждать, пока произойдет затвердения бетона? Как и за какое время бетон набирает прочность? Действительно ли нужно ждать 28 суток после того, как залит бетон? Когда можно нагружать бетонные конструкции?

Каждому застройщику или строителю выгоднее построить конструкцию, здание или сооружение за кратчайшие сроки. Но бытует целый ряд мнений о том, что необходимо после выполнения работ по бетонированию конструкций ждать пока конструкция «затвердеет», чтоб потом приступить к следующему этапу строительства.

Как и за какое время бетон набирает прочность?

Нужно ли после заливки бетона ожидать 28 суток?

Для правильного вывода необходимо проанализировать нормативные документы и определить режим, этапы и сроки строительства.

При выполнении бетонных работ сталкиваются с двумя актуальными вопросами:

  1. Через какое время можно снимать опалубку?
  2. Через какое время можно нагружать железобетонный элемент или конструкцию?

Рассмотрим последовательно эти вопросы.

Для сборных железобетонных изделий очень важно определить отпускную прочность.

Отпускная прочность – это набранная прочность бетона, устанавливаемая нормативами, при которой железобетонное изделие возможно поставлять с завода на строительную площадку.

Величина отпускной прочности устанавливается согласно ГОСТов или других нормативных документов в зависимости от:

  • вида и размера конструкции;
  • состава бетона;
  • условий твердения;
  • температуры окружающей среды и климатических условий региона;
  • сроком и величины загрузки;
  • условия транспортировки.

Ниже, в таблице 1 приводятся в зависимости от вида и класса бетона, усредненные значения отпускной прочности в процентах от проектной.

Таблица 1

Вид бетонаОтпускная прочность (% от проектного класса бетона)
Тяжелый бетон и бетон на пористом заполнителе с классом С10 и выше50 %
Тяжелый бетон класса С7,5 и ниже70 %
Бетон на пористом заполнителе, класс С7,5 и ниже80 %
Бетон всех видов и классов при автоклавном твердении100 %

Итак, отпускная прочность сборных железобетонных изделий в зависимости от целого ряда факторов составляет 50÷100% от проектной. Вывод №1: при достижении отпускной прочности можно уже производить монтаж и затем нагружать железобетонные конструкции, с расчетом на то, что полное нагружение (100%) наступит не позже 28 суток от момента изготовления изделий. Более конкретный порядок и сроки нагружения сборных конструкций оговаривается в ППР (проект производства работ).

Также в строительстве существует такое понятие, как распалубочная прочность.

Распалубочная прочность – это минимальная набранная прочность бетона, при которой возможно извлечь опалубку, не повреждая бетон. Для сборных железобетонных изделий опалубочная прочность должна быть достаточная для безопасной транспортировки. Условия и скорость набора прочности для каждого изделия или конструкции определяются предприятием-изготовителем.

В условиях стройплощадки, при изготовлении монолитных конструкций распалубку, как правило выполняют непосредственно перед началом загружения конструкции.

СНиП 3.03.01-87 устанавливает следующие условия распалубки железобетонных конструкций ( смотри

таблицу 2).

Таблица 2

ПараметрРаспалубочная прочность (% от нормативной, на 28 сут)
Прочность бетона (в момент распалубки конструкций), не ниже:
— теплоизоляционного0,5 МПа
— конструкционно-теплоизоляционного1,5 МПа
— армированного3,5 МПа, но не менее 50 % проектной прочности
— предварительно напряженного14,0 МПа, но не менее 70 % проектной прочности
Распалубка железобетонных конструкций с последующей обработкой бетона (п. 2.34)70 % от проектной прочности

Российский нормативный документ ТР 80-98 «Технические рекомендации по технологии бетонирования безобогревным способом монолитных конструкций с применением термоса и ускоренного термоса» приводит следующие разрешения по распалубки и нагрузки конструкций,

таблица 3.

 Необходимая прочность бетона для распалубки и нагрузки конструкции:

Таблица 3

Строительные конструкцииФактическая нагрузка, % от нормативной
свыше 70%70% и менее
прочность бетона, % от проектной
Боковые щиты опалубки на фундаменте и колоннах, стенах, ригелей и балок допускается при нормальных условиях тверденияСнимать через 6 — 72 ч
Несущие щиты опалубки100См. ниже
Длина пролета несущих железобетонных плит до 3 м10070
Длина пролета несущих железобетонных плит (кроме плит) до 6 м10070
Колонны, несущие конструкции (балки, ригели, плиты) пролетом 6 м и более 10080
Конструкции с напрягаемой арматурой10080

Примечания:

  1. Следует твердо помнить, что полностью на 100 % загружать конструкцию можно только, когда бетон наберет свою полную проектную прочность.
  2. Снимать боковые щиты ненесущей части опалубки можно при условии, когда разность температур между бетоном и наружным воздухом соответствует следующему условию:
  • Dt = 20 °С для конструкций с Мп = 2 – 5;
  • Dt = 30 °С для конструкций с Мп больше 5, где Мп — модуль поверхности конструкции (отношение суммы площадей охлаждаемых поверхностей конструкций в м2 к ее объему в м3), м-1 .

Дальнейшие мероприятия по выполнению опалубочных работ и движение работников по железобетонным конструкциям допускается, когда прочность бетона составляет 1,5 МПа и более. (

СНиП 3.03.01-87, п. 2.17). Также, в этом нормативном документе есть указание (п.2.110), что при использовании промежуточных опор (подпорок) для перекрытия пролетов, при частичной или последовательной снятии опалубки, допустимая распалубочная прочность может быть понижена, а это означает большую оборачиваемость опалубки и уменьшения сроков строительства. Более конкретные мероприятия по раннем снятие опалубки должно определятся исходя из конкретных условий строительства и освещаться в ППР.

Некоторые литературные источники указывают следующие значения для распалубки железобетонных конструкций, табл. 4:

 Таблица 4

КонструкцияМинимальная распалубочная прочность (% от нормативной, на 28 сут)
Железобетонные плиты и своды с длиной пролета до 2 м50%
Железобетонные балки с длиной пролета до 8 м 70%
Все несущие железобетонные конструкции с длиной пролета более 8 м100%
Железобетонные конструкции с жесткой арматурой (колоны, армированные сварными несущими двутавровыми балками)25%

Вывод №2: исходя из всего выше приведенного и анализируя все таблицы по распалубочной прочности бетона и его нагружении, распалубочная прочность находится в пределах 50…80% от проектной. Тогда:

  1. распалубку конструкции допускается проводить, когда фактическая прочность бетона достигнет 70% от проектной, и в этом случае можно постепенно загружать дальше;
  2. распалубку конструкции допускается проводить, при фактической прочности 50% от проектной, только необходимо установить дополнительные опоры для страховки и исключения прогибов. В этом случае также можно постепенно нагружать конструкцию (ставить опалубку, кладку, и т.д.).
Через сколько времени бетон может набрать распалубочную прочность, при которой можно еще и нагружать конструкцию?

Как уже выше вспоминалось, при разных условиях (температура, влажность, атмосферные осадки и т.д.) разный бетон набирают прочность по разному. На рис. 2 приведен график скорости набора прочности в зависимости от температуры ТВО (тепло влажностной обработки).

Из графика видно, что в лабораторных условиях при постоянной температуре 60°С среднюю распалубочную прочность бетон (70%) приобретает через 32 часа (1,3 сут), а при температуре 30°С – приобретает примерно за 4 сут.

Так как на строительных объектах, в течении суток температура окружающего воздуха колеблется, то берут во внимание среднесуточную температуру, которая летом составляет 18…28°С, а осенью достигает и 5…10°С. При таких температурах бетон будет набирать прочность намного медленнее.

Рис. 1. График скорости набора прочности бетона в зависимости от температуры ТВО (тепло влажностной обработки) [1]

На предприятиях по изготовлению бетона и конструкций из него, должны быть графики набора прочности бетона определенного состава. Для примерного определения прочности конкретного бетона, можно воспользоваться графиками набора прочности в зависимости от вида цемента, температуры и класса бетона (рис. 2) из нормативных документов [2, 3].

Ниже приведен рост прочности бетона в зависимости от температуры окружающего воздуха или ТВО, (в % от R28):

а) класс С15–С25 на основе портландцемента марки М400

б) класс С30 на основе портландцемента марки М500

в) класс С15–С25 на основе шлакопортландцемента марки М400

г) класс С40 на основе портландцемента марки М600

д) быстротвердеющий высокоактивный портландцемент (БТЦ)

Графики набора прочности (табл. 5-9)

Набор прочности бетона класса С15 – С25 на портландцементе марки М400 (% от R28):

Таблица 5

Возраст бетона, сут.Температура бетона, °С
-305102030405060
1/21451217283850
1359122335455563
261219254055657580
3818273750657785
512283850657890
715354858758798
142050627287100
2825657785100

Набор прочности бетона класса С30 на портландцементе марки М500 (% от R28):

Таблица 6

Возраст бетона, сут.Температура бетона, °С
-305102030405060
1812182840556570
21622325063758590
3102232456074859298
516324558748596
7194055668292100
142557708092100
2830709090100

Набор прочности бетона класса С15 – С25 на шлакопортландцементе марки М400 (% от R28):

Таблица 7

Возраст бетона, сут.Температура бетона, °С
-305102030405060
1/224720253242
136101630405065
23812183040607590
3513182540557090
58202735556585
710253443657092
14123550608096100
2815156580100

Набор прочности бетона класса С40 на портландцементе марки М600 (% от R28):

Таблица 8

Возраст бетона, сутТемпература бетона, °С
0510203040
181321324559
2172536526575
3233546627483
7425768839098
1458738294100
28718392100

Набор прочности бетона с применением противоморозных добавок:

Таблица 9

Противоморозная добавкаВид вяжущегоТемпература твердения бетона, °СПрочность бетона, % от R28 при твердении на морозе через число суток
7142890
1) Нитрит натрия (в водном растворе), NaNO2портландцемент-5254060100
-1015253570
-155102050
2) Нитрит натрия кристаллический, NaNO2портландцемент-5254060100
-1015253570
-155102050
3) Нитродапшлакопортландцемент-515254590
-1010152560
-1551540

Вывод №3: из графиков и таблиц видно, что бетон на основе портландцемента при среднесуточной температуре 10 и выше набирает 50% прочности от проектной за 5…7 суток, а бетон на шлакопортландцементе набирает при тех же самых условиях – за 14 и более суток. Зимой при отрицательных температурах с применением даже противоморозных добавок (табл.9) бетон набирает проектную прочность за 90 суток и больше. Для ускорения времени набора требуемой прочности при зимнем бетонировании необходимо использовать электропрогрев.

Для быстрого набора прочности, согласно СНиП 3.03.01-87 «Несущие и ограждающие конструкции. 2. Бетонные работы» (п. 2.15) за бетоном нужен соответствующий уход. Уход за бетоном начинается сразу после укладки его в опалубку и продолжают до момента распалубки. Бетон следует хранить от прямого попадания солнечных лучей и атмосферных осадков, ветра, а также создать тепловлажностные условия для его твердения (накрыть пленкой). Рекомендуется бетон изготовленный на портландцементе в течении 7 суток поливать водой, а на основе малоактивных и шлакопортландцементах поливать не менее 14 суток. При температуре воздуха 15°С рекомендуется поливать бетон через 3 часа в течении первых 3 суток. При средней температуре воздуха от +5 до 0°С полив и смачивания бетона не осуществляется. Полная нагрузка (расчетная) железобетонных конструкций допускается только после того, как бетон будет иметь проектную прочность.

Рекомендации по выполнению фундаментов

Отдельно хотелось заострить внимание на фундаменте, так как есть некоторые особенности его работы:

  1. Наилучшее время для строительства фундамента является лето (хороший температурный режим).
  2. Нежелательно, подвергать фундамент длительному простою, т.к. замокание котлована, морозное пучение, попеременное замораживание и оттаивание грунтов основания приводит к его разрушению.
  3. Выше перечисленные факторы приводят к неравномерной усадке фундамента.
  4. Если все-таки есть необходимость оставить фундамент зимовать, необходимо его «законсервировать» — закрыть и защитить от атмосферных осадков, исключить замокания и затопление грунта вблизи фундамента (примерно 0,4…0,5 м).
  5. Так как бетон при благоприятных условиях набирает 50…80% от проектной прочности за 7…14 дней, тогда допускается нагружать фундамент через 7…14 суток, с учетом, что полное нагружение (100%) наступит только после 28 суток с момента заливки фундамента.
  6. При использовании ускорителей твердения при нормальной температуре возможно уже нагружать фундамент и через 5 дней.
  7. Фундамент следует нагружать равномерно, чтобы избежать неравномерной осадки основания.

Для более точной подстраховки для контроля прочности фундаментов или других железобетонных конструкций изготавливают серию стандартных образцов-кубов 150х150х150 или 100х100х100 мм, которые потом испытывают на сжатие.

Литература:

  1.  Как построить дом. Как бетон набирает крепость? Время затвердевания бетона, график набора крепости. Режим доступа: ссылка на статью.
  2. ТР 80-98 Технические рекомендации по технологии бетонирования безобогревным способом монолитных конструкций с применением термоса и ускоренного термоса. МОСКВА – 1998.
  3. ВСН 20-68 Указания на бетонирование в зимнее время дорожных оснований под асфальтобетонные покрытия в г. Москве.

 Автор публикации эксперт GIDproekt

Конев Александр Анатольевич

 

 

набор прочности бетона по времени, часы, сутки.

Таблица — набор прочности бетона по времени, часы, сутки.

Набор прочности бетона (в часах)

Срок твердения, часы Температура твердения бетона
0°С 5°С 10°С 15°С 20°С 25°С 30°С
прочность бетона на сжатие % от 28-суточной
4 6 7 8 10 12 13 14
8 10 12 13 16 18 20 22
12 13 16 18 21 23 25 27
16 16 19 22 24 27 30 32
20 18 21 24 27 31 33 36
24 20 23 27 30 34 37 39
28 22 25 29 32 37 30 42
32 23 27 31 34 38 42 45
36 24 28 32 36 40 43 47
40 25 29 33 37 42 44 48
44 25 29 34 38 43 46 49
48 26 30 34 39 43 47 50

Набор прочности бетона (в сутках)

Срок твердения, сутки Температура твердения бетона
0°С 5°С 10°С 15°С 20°С 25°С 30°С
прочность бетона на сжатие % от 28-суточной
1 20 23 27 30 34 37 39
2 26 30 34 39 43 47 50
3 30 35 41 45 50 52 56
4 34 40 46 50 55 58 63
5 39 44 51 55 60 63 68
6 42 48 54 59 64 68 72
7 45 52 58 63 68 72 76
10 53 60 67 72 77 82 85
14 60 68 74 81 86 690 95
21 70 76 83 91 97 >100 >100
28 75 83 90 100 >100 >100 >100

График набора прочности бетона — таблица по суткам

Ключевым достоинством бетонных конструкций являются их высокие прочностные свойства и надежность. В зависимости от марки материал может использоваться в различных условиях. При этом степень набора прочности зависит от разных факторов.

Процесс набора

Бетон представляет собой популярный каменный материал, который создается на основе смеси воды, вяжущей добавки и заполнителя. В его состав вносятся специализированные добавки, отвечающие за особые свойства и функции.

В процессе гидратации происходит образование надежных монолитных соединений, которые приобретают свойства прочного искусственного камня. Для формирования монолита требуется несколько недель (до 28 суток), а получение заводских качеств занимает до 6 месяцев.

Созревание бетона состоит из 2 этапов:
  1. Схватывание. Является начальной стадией.
  2. Твердение. Финишная стадия.

Зная все нормы созревания, можно определить, сколько лет прослужит монолитная конструкция.

Схватывание

Использовать стройматериал сразу после заливки нельзя. Перед этим необходимо ознакомиться с графиком набора прочности бетона и спецификой каждого этапа его созревания. Нередко смесь доставляется на строительную площадку с помощью специальной техники, поэтому ее поддерживают в подвижном состоянии с помощью автоматизированного оборудования. Технология тиксотропии сохраняет базовые параметры консистенции до момента заливки, приостанавливая естественное созревание.

Но если выдержать смесь дольше допустимого времени или подвергнуть ее воздействию высоких температур, требуемые рабочие свойства будут ухудшены. В таблице набора прочности бетона упоминается, что он схватывается за период от 20 минут до 20 часов. Если работа выполняется при отрицательных температурах в зимнее время, термин увеличится до 6-10 часов.

Для защиты конструкции от деформации необходимо позаботиться о наличии теплой опалубки. Армированные элементы тщательно прогреваются и очищаются от льда. В летний период теплая опалубка малоэффективна.

Еще некоторые эксперты используют для зимних работ специализированные добавки и теплоизолирующие материалы. Выбирая этот вариант, необходимо ознакомиться с их свойствами и инструкцией по применению.

Для нагревания смеси можно использовать такие приспособления:
  1. Пар.
  2. Электроток.
  3. Известь-кипелку.
  4. Экзотермические цементы.
  5. Всевозможные ускорители.

Специалисты рекомендуют приступать к заливке раствора в формы при +20°C. В таком случае схватывание наступит через 1 час и займет не больше 60 минут. В жаркую погоду процесс происходит практически моментально.

Если применяются марки М300 и М200, а окружающая температура держится на отметке +20 °C, схватывающий процесс будет длиться в течение 1 часа.

Зная, сколько бетон набирает прочность, можно грамотно рассчитать время реализации проекта и определить приблизительные финансовые расходы.

Твердение

Следующий этап заключается в затвердевании бетонной смеси под воздействием гидратации. Процесс заключается в формировании из минералов цемента новых соединений. Если в составе раствора отсутствует влага, затвердевание будет замедлено или вовсе приостановлено, из-за чего материал не получит требуемую прочность и начнет растрескиваться.

При нормальном температурном режиме и достаточном количестве жидкости прочность будет постоянно расти. К благоприятным условиям относят температуру +20 °C и показатель влажности воздуха не меньше 90%.

Если такие требования соблюдены, процесс наращивания прочности составит 7-14 суток. За этот термин раствор получает 60-70% заявленной прочности, после чего процесс замедляется.

При выдерживании бетона в воде его прочностные свойства будут более высокими, чем при твердении на воздухе. Сухая среда способствует быстрому испарению влаги и остановке процесса. Это связано с тем, что зерна цементной смеси не успевают вступить в гидратацию. Поэтому, чтобы избежать неприятных последствий, необходимо исключить преждевременное высыхание бетона.

В процессе твердения монолита его объем постоянно меняется. Еще материал дает усадку — в поверхностных зонах она более быстрая, чем во внутренней части. В случае нехватки влажности при твердении на поверхности бетона появятся усадочные трещины. Дефекты возникают также при обильном тепловыделении.

Время набора прочности бетона зависит и от окружающей температуры. При низких отметках процесс замедляется, а при высоких — ускоряется.

Если возводимая конструкция будет подвергаться дополнительным нагрузкам или есть необходимость быстрее демонтировать опалубку, процесс твердения придется ускорить. Для таких задач задействуют специализированные добавки. Их концентрация определяется опытным путем в строительной лаборатории.

Чтобы получить заводскую прочность в сжатые сроки, необходимо правильно обслуживать раствор и поддерживать его во влажном состоянии, защищая от сотрясений, ударов и повреждений. При ненадлежащем уходе материал станет низкокачественным и уязвимым к растрескиванию.

Ключевой причиной нехватки прочности является низкая температура, которая сопровождает строителей при зимнем бетонировании.

Под воздействием холода возникают 2 проблемы:
  1. Замедление гидратации и рост сроков набора.
  2. Вымерзание жидкости из состава бетонной смеси, из-за чего набор прочностных свойств приостанавливается.

При низкой температуре сроки получения прочностных свойств сильно увеличиваются, поэтому к исходному сырью добавляют специальные компоненты.

В зимних условиях инженеры задействуют противоморозные добавки, которые запускают процессы набора и снижают температуру замерзания жидкого вещества.

При необходимости ускорить твердение при высокой температуре или повышенной влажности исходное сырье подвергается прогреву. После заливки смеси поверхность бетона нужно усилить матами или щитами, которые будут удерживать температуру от гидратации и сохранять требуемые условия. Если наполнитель замерзнет, его запрещено использовать для дальнейших работ.

Электрический прогрев бетона востребован на тех строительных площадках, где имеется доступ к трансформаторам с большой мощностью. Выполнение бетонных работ с применением электрического оборудования — лучший способ получить заводскую прочность без потери эксплуатационных качеств материала.

В зимний период бетон укрывают с целью защиты поверхности от потери тепла.

Особенности набора прочности

График твердения бетона зависит от разных факторов. При опускании температурных показателей процесс замедляется, а нулевая отметка термометра приостанавливает его, поскольку жидкость в составе начинает замерзать, а качество материала ухудшается.

При отсутствии требуемого объема влаги бетонная конструкция не может получить заводские эксплуатационные свойства, а при автоклавном отвердении процесс сильно ускоряется. Наличие влаги в воздухе сокращает интервал.

График набора прочности бетона В25 определяется его составом. Составы более высокой марки твердеют быстрее, что заставляет работников приступать к обработке более оперативно. В период с 3 по 10 сутки после заливки материалу нужно обеспечивать благоприятные условия. При теплой погоде раствор укрывают водоотталкивающей пленкой, а сам камень увлажняется каждые сутки по 6-7 раз.

Смесь нужно изолировать от прямых лучей. В зимний период бетон прогревают искусственным путем и утепляют. Для этих целей используют специальное обогревательное оборудование, препятствующее замерзанию жидкости и защищающее конструкцию от осадков. Необходимо придерживаться нормативно-безопасного срока набора, который указывается в диаграммах СНиП.

От чего зависит набор прочности

Среди ключевых факторов, влияющих на интенсивность получения прочности, выделяют:

  1. Марку цементной смеси.
  2. Пропорции воды и цемента.
  3. Пропорции других добавок.
  4. Метод уплотнения.
  5. Температурно-влажностный режим.
  6. Способ и скорость укладки.
  7. Качество и интенсивность увлажнения.

По мере повышения марки бетона нужно менять пропорции компонентов, поскольку от них зависят конечные прочностные свойства.

Фундаменты из высоких марок цементной смеси характеризуются повышенной надежностью, большим сроком службы и прочностью. В холодный период камень становится более прочным из-за способности выделять тепло, однако, чтобы сбалансировать график образования монолита, лучше внести в состав специализированные добавки. Они предназначаются для ускорения твердения и остановки гидратации.

С такими компонентами состав приобретает марочную прочность уже через 2 недели. На набор прочностных свойств влияет тип компонентов состава. Так, глиноземистый цемент может упрочняться даже в сильный мороз, поскольку он способен выделять в 7 раз больше тепла, чем классический портландцемент.

Важное значение отыгрывает форма и фракция зерен органических добавок. Если они обладают неправильной формой и шероховатой поверхностью, это создает благоприятные условия сцепления и повышает качество материала. По мере увеличения доли воды происходит расслоение массы.

Для ускорения процесса и сокращения термина выдержки бетона лучше воспользоваться пескобетонами с минимальным соотношением воды/цемента. Если материал не имеет хорошего уплотнения, в процессе созревания он получит не больше 50% от заявленной прочности. Используя ручные уплотняющие приспособления, можно поднять показатель на 30-40%.

График по суткам

График получения заводской прочности бетона по суткам указывает временной интервал, за который смесь приобретает заводские свойства. В благоприятной среде состав успевает «созреть» за 28 суток, при этом наибольшая эффективность твердения замечается в течение первых 5 дней. Через неделю с момента заливки прочностной показатель достигает 70%. При этом приступать к дальнейшим работам разрешается только после получения 100% значения, т.е. через 28 суток.

Однако при изменении окружающих условий показания графика могут меняться. Чтобы точно определить, за сколько времени бетон полностью затвердеет, следует выполнить контрольные испытания образцов.

В теплую пору процесс оптимизируется с помощью 2 методов:
  1. Выдержка бетона в опалубке.
  2. Созревание смеси после демонтажа опалубочной конструкции.

Если работа выполняется в холодный период, конструкцию нужно дополнительно обогревать и защищать гидроизолирующими материалами. В противном случае процесс полимеризации будет замедлен.

Марка бетона М200-М300 (раствор создавался на базе портландцемента М400-М500)Среднесуточная температура, при которой твердеет бетон, °CИнтервал твердения
1235714
Прочность бетона на сжатие (% от заводского значения)
-3368121520
051218283550
+591927384862
+10122537505872
+20234050657590

Для ускорения процесса и сокращения времени выдержки следует воспользоваться пескобетонами с минимальным соотношением воды к цементу. Если пропорции воды и цемента равны ¼, сроки из графика будут сокращены в 2 раза. Чтобы получить положительный результат, состав можно разбавить пластификаторами.

Нормативные документы, регламентирующие набор прочности бетонной смеси

Ключевым документом, регламентирующим сроки и условия твердения бетона, является ГОСТ 18105-2010. Еще обработка бетона контролируется стандартом ГОСТ 26633-2012. Для промышленного возведения построек используются другие правовые акты.

Прочностные свойства бетонных конструкций зависят от многих факторов и создаются под воздействием различных условий. Задача строителей заключается в подготовке правильной бетонной смеси и обеспечении благоприятных условий для повышения прочности.

График набора прочности бетона – таблица по времени

Возведение конструкций различной конфигурации и назначения предполагает заливку фундамента. Поэтому многие строители, преимущественно начинающие, интересуются тем, каково же время набора прочности бетона. Сразу стоит отметить, что этот процесс зависит от многочисленных моментов, среди которых не только условия окружающей среды, но и составляющие самого раствора, используемого для заливки фундамента.

В этой статье мы попробуем разобраться, как набирает прочность бетон и есть ли методы ускорения этого процесса.

В чем суть процесса?

Условно, он делится на 2 этапа:

  1. Схватывание. Этот этап происходит в течение первых 24 часов после замешивания основы. Время схватываемости раствора зависит от показателей температуры в помещении или на улице. И если обеспечить должные условия, то можно ускорить схватывание бетонной массы.
  2. Твердение. Как только основа схватится, то наступает затвердение. Как ни странно, но затвердевание фундамента продолжается в течении 12-24 месяцев. При этом заявленные производителем значения, при обеспечении благоприятных условий, определяется на 28 день после заливки.

Интересно, что во многих источниках можно найти, от чего зависит кинетика набора прочности – температур, время. влажность, качество ингредиентов. Но мало где найдешь ответ на вопрос, за счет чего бетон набирает прочность? Это происходит в процессе гидратации цемента.

В сухом материале присутствуют 4 основных элемента:

  • аллит;
  • белит;
  • трехкальциевый алюминат;
  • четырехкальциевый аллюмоферрит.

Первым при замесе в реакцию вступает аллит, но это самый хрупкий минерал. Далее идут алюминаты и алюмоферриты. Последним в реакцию вступает белит, он же и дает необходимую прочность. При этом он гидратируется постепенно, ежегодно набирая нужные параметры. Даже спустя 50 лет процесс гидратации идет, соответственно, все это время бетон продолжает набирать прочность.

Процесс гидратации цемента начинается с момента смешения с водой и продолжается в течение долгого времени

Что же касается именно бетона, то его параметры зависят от степени гидратации цемента. Если речь идет о низкой степени, то спустя 4 недели она достигнет искомых 90%. В высокопрочном составе через это же время будет только половина (до 49%), и в дальнейшем с течением времени она будет только нарастать. В среднем за 3-5 лет прирост составляет порядка 60%.

Что влияет на вызревание фундамента

Как было сказано ранее, на то, сколько бетон набирает прочность, влияет целый ряд нюансов, к основным из которых относится:

  • температурные условия окружающей среды;
  • уровень влажности в месте, где производится заливка основы;
  • марка цемента;
  • время.
Температурные условия

Набор прочности бетона в зависимости от температуры окружающей среды, это актуальный вопрос для большинства людей, которые собственными силами занимаются заливкой фундамента. Тут стоит запомнить одно главное правило: чем холоднее на улице или в помещении, где проводится бетонирование поверхности, тем больше время твердения.

Скорость набора прочности бетона в зависимости от температуры

При температуре ниже 0°С укрепление основы приостанавливается и, как следствие, срок набора прочности увеличивается на неопределенное время. Порой достижение заявленных производителем прочностных характеристик происходит спустя несколько лет. Это когда процесс происходит в северных регионах. Такое явление обусловлено тем, что вода, имеющаяся в цементной массе, замерзает. А поскольку за счет влаги обеспечивается необходимая для процесса гидратация, то и затвердевание, так сказать, «замораживается».

Но как только на улице начнет теплеть и станет выше нулевой отметки, твердение продолжится. И так далее. Так выглядит набор прочности бетона в зависимости от температуры.

Теплые погодные условия «активизируют» и ускоряют твердение цементной основы. Скорость твердения бетона в зависимости от температуры прямо пропорциональна увеличению показателей окружающей среды. Так, при 40°С заявленные производителем показатели достигаются через 7-8 дней. Именно по этой причине многие опытные специалисты рекомендуют проводить заливку бетонного фундамента на приусадебном участке в жаркую погоду, за счет чего требуется гораздо меньше времени на организацию всего строительного процесса в целом, нежели в случае с заливкой фундамента в более холодную погоду.

Зимой, как только температура опускается до отметки 0 градусов, процесс гидратации полностью прекращается

Но даже в этом случае не стоит «пережаривать» бетон – пока нижние слои схватятся, верхние начнут трескаться. Это не добавляет ни эстетики, ни твердости. При проведении работ в жаркое время поверхность 2-3 раза в день обильно поливают водой и накрывают целлофаном.

За сколько бетон набирает прочность в зимнее время года? По сути, возведение фундамента зимой – это трудоемкий процесс, который требует использования специального оборудования для регулярного прогрева цементной массы с целью ускорения процесса его затвердевания.

При работе с бетонной массой с целью ускорения ее затвердевания нагрев свыше 90°С недопустим. Это может привести к растрескиванию будущей поверхности.

Для того, чтобы понять каким образом температура влияет на процесс затвердевания, можно изучить график набора прочности бетона. Это позволит визуально разобраться в данном явлении. График набора состоит из линий, которые выстроены на основании данных, собранных для цемента М400 при разном режиме.

График твердения бетона позволяет определить, какое процентное соотношение от марочных показателей будет достигнуто через некоторый временной промежуток. Проще говоря, по этим линиям можно узнать, сколько дней масса набирает марочное значение твердости при той или иной температуре.

График набора прочности по марке цемента

Время

С целью определения оптимального, можно даже сказать, безопасного срока начала проведения строительных работ зачастую берется во внимание таблица набора прочности. По ней можно с легкостью определить за какое время застынет фундамент, приготовленной из той или иной марки цемента. Поэтому опытные специалисты всегда и пользуются подобными информационными таблицами.

Марка цемента

Среднесуточная t цементной основы, °С

Срок затвердевания по суткам

1

2

3

5

7

14

28

Показатели твердости бетонной массы на сжатие (% от заявленной)

М200-300, замешанный на портландцементе марки 400-500

2

3

6

8

12

15

20

25

0

5

12

18

28

35

50

65

+5

9

19

27

38

48

62

77

+10

12

25

37

50

58

72

85

+20

23

40

50

65

75

90

100

+30

35

55

65

80

90

100

В том случае, если нормативно-безопасный срок установлен на отметке в 50%, то самым оптимальным сроком старта строительных работ будет 72-80% от заявленных марочных показателей.

Показатели влажности

Сниженные показатели влажности окружающей среды негативно отражаются на процессе твердения фундаментной базы. При полнейшем отсутствии влаги процесс гидратации практически не происходит, и набор твердости неизбежно останавливается. Именно поэтому очень важно следить за влажностью заливаемого фундамента.

Если в помещении или на улице, где осуществляется заливка или кладка фундамент, повышенная влажность (70-90°), то скорость нарастания прочностных показателей возрастает.

Прогрев до такого высокого температурного режима при минимальных значениях влажности обязательно приведет к засыханию залитой поверхности и снизит скорость твердения. Чтоб избежать таких последствий, необходимо регулярно производить увлажнение. При таких обстоятельствах в жаркую погоду твердение будет происходить очень быстро.

ВИДЕО: Сколько твердеет бетон

Состав и эксплуатационные данные цемента

Если цемент обладает способностью тепловыделения и сразу после заливки он быстро твердеет, то после замерзания в цементной массе воды процесс твердения неизменно остановится. По этой причине во время строительных работ холодное время года лучше отдавать предпочтение смесям, приготовленным на основе противоморозных добавок.

Так, к примеру, глиноземистая масса после заливки выделяет в 7 раз больше теплоэнергии, нежели обычный портландцемент. Благодаря этому замешанная на основе такого цемента строительная смесь способна быстро набирать прочность даже при температуре ниже 0°С. что, собственно, и обусловлено его популярностью использования в холодное время года.

Стоит отметить и то, что марка цемента также влияет на скорость твердения заливки или кладки. Представленная дальше таблица наглядно демонстрирует эти данные.

Марка цемента

Показатели критической твердости (% от заявленной), минимум

Для предварительно напряженных поверхностей

70

М15-150

50

М200-300

40

М400-500

30

Вот, собственно, и все, что нужно знать о затвердевании фундамента. Надеемся, эта информация будет использована вами на практике и поможет достичь поставленной задачи наилучшим образом!

ВИДЕО: Как ускорить затвердевание бетона


прочность бетона график — Строительство и ремонт

Как бетон набирает прочность?

Главной характеристикой бетона является его прочность на сжатие – эта характеристика отражается в его марке. Но марочная прочность достигается не сразу, бетон постепенно набирает прочность в течение четырех недель. Поэтому после заливки бетона необходимо выждать некоторое время. Наиболее интенсивно набор прочности происходит в первые 5-7 дней после заливки – за это время он набирает около 70% своей марочной прочности. В дальнейшем его прочность нарастает и достигает марочной после 28 дней созревания. До этого времени не рекомендуется нагружать бетонную конструкцию, т.е. если это фундамент, то ставить на него дом можно только после того, как он наберет свою марочную прочность прочность. Минимальную прочность бетон набирает через 7 суток, после истечения этого срока можно разбирать опалубку.

График набора прочности бетона от времени показан на рисунке:

График созревания бетона при различных температурах.

На графике показана зависимость прочности бетона от времени при различных температурах его созревания: от 30 до 80 градусов. Прочность показана в процентах от марочной. Однако, это теоретические данные, полученные в лабораторный условиях, на практике же выдержать такие условия нереально: температура в течение суток изменяется и совершенно точно она не будет постоянной и равной 30 градусам. Поэтому при самостоятельном строительстве фундамента лучше перестраховаться и дать бетону выстоять месяц, и только потом разбирать опалубку и продолжать строительство.

В качестве вяжущего вещества в бетоне используется цемент, его химическая реакция с водой приводит к появлению твердых каменистых новообразований, которые и связывают между собой частицы наполнителя – щебня и песка. Начальный период этой реакции называется схватыванием, во время которого в бетоне образуются первоначальные связи между частицами наполнителя. Затем происходит набор прочности, когда эти связи упрочняются. Для того, чтобы эта химическая реакция протекала, необходима вода. Но поскольку созревание бетона – процесс длительный, вода, изначально содержащаяся в бетонной смеси успевает испариться. Для того, чтобы этого не происходило поверхность бетонной конструкции накрывают полиэтиленовой пленкой или рубероидом, а так же поливают ее водой. Важно, чтобы бетон высыхал равномерно по всему объему.

В холодное время года вода, содержащаяся в бетонной смеси, может замерзнуть и созревание бетона прекратится. Более того, замерзая, вода увеличится в объеме и станет разрушать бетон изнутри. При температуре ниже 10 градусов набор прочности очень сильно замедляется. Поэтому при заливке бетонной смеси при низких температурах на протяжении всего созревания ее надо подогревать. Само собой, при самостоятельном строительстве такое невозможно (или по крайней мере очень затруднительно), поэтому заливать бетон своими руками нужно летом. Необходима температура для его созревания – 20-25 градусов или выше.

Срок набора прочности бетона можно уменьшить, используя специальные добавки, ускоряющие этот процесс. Такие быстротвердеющие бетоны набирают прочность за две недели, но при самостоятельном строительстве их использование затруднительно, ведь они не только быстрее созревают, но и быстрее схватываются. Это значит, что после приготовления такой быстротвердеющей бетоной смеси времени на ее заливку будет значительно меньше. Еще один способ достичь ускоренного созревания бетона — это повышение температуры: из графика видно, что чем выше температура, тем быстрее идет нарастание прочности. Однако при самостоятельном строительстве создать такие условия нереально.

К этой статье есть подборка видео (количество видеороликов: 1)

Во время созревания свежеуложенного бетона за ним нужен уход: необходимо обеспечить оптимальную температуру и влажность, чтобы он набрал проектную прочность и не покрылся трещинами при высыхании.

Бетон – это каменный материал, который образуется в результате затвердевания бетонной смеси. Бетонная смесь для заливки монолитного фундамента состоит из смешанных в определенных пропорциях цемента, песка, гравия и воды.

После того, как Вы определились с типом фундамента, местом и глубиной его заложения, провели все земельные работы (вырыли траншею под фундамент, сделали песчано-гравийную подушку), установили опалубку, укрепили ее стенки подпорками, собрали арматурный каркас, установили его в опалубке и надежно его там закрепили, настало время для последнего и самого важного этапа заложения фундамента – его заливки.

Исходными данными для расчета количества бетона для заливки фундамента является тип фундамента (плитный, ленточный, столбчатый) и его конфигурация. Тип фундамента и параметры выбираются в зависимости от несущей способности грунта и нагрузки на фундамент.

Главные характеристики бетона — это его марка и класс прочности. Таблица соотношения между маркой и классом приведена в этой статье.

Процесс набора прочности бетона

Основная характеристика бетона, которая определила его широкое распространение — это высокая прочность. Материал набирает любую прочность в реальных условиях, так как есть много причин, которые способствуют недобору величины, соответствующей бетону определенной марки. Знание этих причин и их особенностей способствует формированию бетонных фундаментов, конструкций с максимальными эксплуатационными показателями.

Процесс набора

Физико-химические реакции гидратации создают новые монолитные соединения, которые придают материалу свойства искусственного камня. Новое качество формируется в течение многих суток (окончательно примерно через полгода) и в идеале прочностные свойства бетонной конструкции должны соответствовать бетону определенного класса и марки. По времени процесс вызревания камня имеет две последовательные стадии: начальная — схватывание, и завершающая — твердение. По его завершении бетон может нагружаться.

Схватывание

Бетоном пользуются не сразу после затвердения, так как может потребоваться некоторое количество времени, чтобы довезти материал до объекта. Смесь должна оставаться подвижной, чему способствует механическое перемешивание раствора в миксере автосмесителя. Тиксотропия позволяет сохранить основные свойства смеси до ее заливки, откладывая старт начальной стадии созревания. Однако следует знать, что если время затянуть или температура поднимется, развивается необратимый процесс «сваривания» раствора, в результате которого занизятся его характеристики.

Длительность схватывания находится в зависимости от температуры воздуха — от 20 мин. до 20 часов. Наибольшая продолжительность данного процесса зимой при температурных значениях около 0 град. Заливка фундамента в этот период будет сопровождаться удлинением интервала начала схватывания от 6 до 10 часов, а сама стадия растянется на 15 – 20 ч.

Оптимально заливать бетон в форму при 20 градусах. Тогда при условии, что раствор затворен за час до заливки, схватывание начнется через один час и завершится через 60 мин. Жаркая погода способствует практически моментальному схватыванию раствора за 10 – 20 мин.

Оптимальное течение гидратации при твердении раствора: температурный коридор от 18 до 20 град., влажность близкая к 100%. Отклонения от данных параметров в значительной степени изменяют скорость твердения камня. Полное вызревание бетона длиться несколько лет.

Вместе с тем на этой стадии скорость твердения закономерно изменяется со временем. К примеру, для бетона М300 к концу 3-го дня она достигает 50%, на 14–й день составляет до 90%, а на 28 день — 100%. Далее через три месяца прочность повышается еще на 20%, а через 3 года может стать на 100% больше, чем была к концу 28 суток после затворения.

Особенности набора прочности

Снижение температурных показателей среды ведет к замедлению твердения. Нулевая отметка на термометре останавливает процесс из-за замерзания воды в камне (снижается качество бетона), а подъем значений снова его возобновляет. Смесь начинает высыхать при недостатке или отсутствии влаги, однако это может замедлить и остановить правильное твердение, что воспрепятствует набору заданного свойства бетоном. А вот автоклавное отвердение смесей значительно ускоряется при повышенных значениях температурно-влажностного режима: 80 – 90 град. и 100% влажности, что ведет к ускоренному росту прочностных показателей. За счет влаги в воздухе может сокращаться интервал набора прочности раствором, который уложен открыто.

Бетоны более высоких марок (состоят из большего количества цемента лучшего качества) твердеют и набирают прочность быстрее, поэтому обрабатывать их следует более оперативно. В интервале с 3-х по 10-е сутки после укладки нормативный набор прочности бетона обеспечивается близкими к идеальным условиями выдержки. В теплую погоду раствор укрывается влагоемкими материалами, через которые камень увлажняется круглосуточно 6 – 7 раз, и перекрывается плотной пленкой.

В солнечную погоду он укрывается от прямых лучей. Зимой бетон может искусственно прогреваться изнутри, утепляться, обогреваться тепловыми генераторами, чтобы предотвратить замерзание воды, и изолируется от осадков. Важным параметром для продолжения работ является нормативно-безопасный срок набора прочностных свойств. Таблица 1 показывает зависимость от марки бетона и среднесуточной температуры значений прочностных показателей бетонов через соответствующее количество суток.

Нормативно-безопасным сроком созревания бетонов можно считать значение 50%, а безопасным — от 72% до 80% от марочного значения, что, к примеру, важно знать при работах на фундаменте.

От чего зависит набор прочности?

Факторы, которые управляют набором прочностных свойств камня, включают: сколько времени прошло после заливки, температурно-влажностный режим выдерживания, качество (активность) и марку цемента, соотношение воды и цемента в растворе, пропорции компонентов в смеси, способ уплотнения, технологию перемешивания, способ и скорость укладки, качество и регулярность увлажнения, наличие пластификаторов (добавок-ускорителей твердения) в смеси зимой и пр. Поднятие марки бетона зависит от увеличения доли и более высокой марки цемента в смеси, пропорций компонентов. Марка прямо влияет на набор прочности бетона. Для низких марок критическая прочность имеет большее значение. Таблица 2 отражает данную закономерность.

Поэтому прочностью фундамента из бетона высокой марки определяется надежность, долговечность конструкции здания. Камень в холодную погоду приобретает прочность благодаря собственному тепловыделению, но для нормализации графика формирования камня целесообразно применять соответствующие добавки, ускоряющие твердение и снижающие температуру остановки гидратации. С ними смесь набирает марочную прочность уже через 14 суток. Удачным решением также станет изменение составляющих в бетоне. К примеру, глиноземистый цемент набирает прочностные показатели даже в морозы, так как выделяет примерно в 7 раз больше собственного тепла по сравнению портландцементом.

В наборе этого свойства существенную роль играют форма и фракция зерен натуральных наполнителей. Их неправильная форма и повышенная шероховатость обеспечивают лучшие условия сцепления и качество бетона. Известно, что увеличение доли воды в бетонной смеси способно привести к расслоению массы материала. Следствием этого также становится то, что при относительном увеличении доли воды в растворе на 60% от оптимального значения (в/ц = 0,4) происходит недобор прочности на 50% от марочной. Однако при соотношении вода/цемент 1/4 период отвердения (упрочнения) сокращается в два раза.

Чтобы ускорить процесс и минимизировать выдержку бетона, целесообразно применять пескобетоны с низким соотношением вода/цемент. Неуплотненный бетонный раствор имеет шансы вызреть только до 50% от нормативной прочности даже при оптимальном соотношении вода/цемент. Вместе с тем ручное уплотнение способно повысить его прочность на 30 – 40%, а вибротрамбовка повышает прочность до нормативных 95 – 100%.

График набора прочности

Важно знать график набора прочности бетона для прогнозирования последствий изменения температурных условий твердения, которые приводят к увеличению времени выдерживания.

График 1 показывает на примере бетона М400 через сколько суток смесь при фиксированных температурных значениях набирает определенный процент прочности (за сто процентов взят набор марочной прочности за 4 недели). Температурный режим 30 град. является оптимальным для набора нормативной прочности (97%) за 11 дней, а при показателе в 5 град. значение безопасной прочности не будет достигнуто камнем и за 14 дней. В такой ситуации следует разогревать, утеплять укладку. В соответствии с кривыми определяются сроки распалубки при превышении прочностью 50% марочного значения.

В реальности прочностные показатели бетонных конструкций могут изменяться по очень многим причинам. Важно обеспечить оптимальные параметры для реализации по времени графика роста прочностных свойств, соответствующих марке бетона.

Набор прочности бетона.

Твердение бетона представляет собой сложное физико-химическое явление, при котором цемент, взаимодействуя с водой, образует новые соединения. Вода проникает вглубь частиц цемента постепенно, в результате все новые его порции вступают в химическую реакцию. Поэтому бетон твердеет постепенно, даже через несколько месяцев твердения внутренняя часть зерен цемента еще не успевает вступить в реакцию с водой. Рост прочности бетона в значительной степени зависит от температуры, при которой происходит твердение. При нормальных условиях твердения нарастание прочности бетона происходит довольно быстро и бетон на портландцементе через 7-14 дней после приготовления набирает 60-70% своей 28-дневной прочности. Затем рост прочности замедляется.

Иногда используют дорогостоящий глиноземистый цемент, который через сутки твердения дает 80-90% 28-дневной прочности. Ускоряют процесс твердения быстротвердеющие портландцементы, а также жесткие бетонные смеси на обычных цементах.

Для ускорения твердения бетона могут применяться добавки-ускорители, вводимые при приготовлении бетонной смеси.

При твердении бетона всегда изменяется его объем. Твердея, бетон дает усадку, которая в поверхностных зонах происходит быстрее, чем внутри, поэтому при недостаточной влажности бетона в период твердения на его поверхности появляются мелкие усадочные трещины. Также, трещинообразование возможно в результате неравномерного разогрева бетона вследствие выделения тепла при схватывании цемента.

Рис. 6.1. Усредненные кривые набора прочности бетона В15-В25 на сжатие на портландцементе М400 — М500 по дням в зависимости от температуры выдерживания.

Точно рассчитать срок набора прочности бетона в конструкции в условиях строительной площадки невозможно, даже при гарантированном качестве товарной смеси, из-за перепадов температур и изменения влажности окружающей среды.

В условиях производства работ в зимнее время для обеспечения требуемого качества бетона проводят дополнительные технологические мероприятия. При отрицательных температурах замерзает содержащаяся в бетоне свободная вода, образуются кристаллы льда большего объема, чем имела вода. Поэтому в порах бетона развивается большое давление, приводящее к разрушению структуры еще не затвердевшего бетона и снижению его конечной прочности. Конечная прочность снижается тем больше, чем в более раннем возрасте замерз бетон. Наиболее опасно замерзание бетона в период схватывания цемента. Для снижения температуры кристаллизации воды в состав бетона вводят противоморозные химические добавки. Для создания благоприятных условий набора прочности бетоном применяют различные способы поддерживания температурно-влажностного режима выдерживания, такие как, электрообогрев, обогрев паром и устройство «термоса». Выбор противоморозных добавок и их оптимальное количество зависят от вида бетонируемой конструкции, степени ее армирования, наличия агрессивных сред и блуждающих токов, температуры окружающей среды. Некоторые добавки могут вызывать коррозию арматуры, что снижает прочность сцепления бетона с профилем арматуры, ухудшать удобоукладываемость и вызывать образование высолов на поверхности конструкций. Противоморозные химические добавки в основном приводят к замедлению набора прочности бетоном по сравнению со скоростью твердения бетона в нормальных условиях.

Процесс набора прочности бетона

Основная характеристика бетона, которая определила его широкое распространение — это высокая прочность. Материал набирает любую прочность в реальных условиях, так как есть много причин, которые способствуют недобору величины, соответствующей бетону определенной марки. Знание этих причин и их особенностей способствует формированию бетонных фундаментов, конструкций с максимальными эксплуатационными показателями.

Процесс набора

Физико-химические реакции гидратации создают новые монолитные соединения, которые придают материалу свойства искусственного камня. Новое качество формируется в течение многих суток (окончательно примерно через полгода) и в идеале прочностные свойства бетонной конструкции должны соответствовать бетону определенного класса и марки. По времени процесс вызревания камня имеет две последовательные стадии: начальная — схватывание, и завершающая — твердение. По его завершении бетон может нагружаться.

Схватывание

Бетоном пользуются не сразу после затвердения, так как может потребоваться некоторое количество времени, чтобы довезти материал до объекта. Смесь должна оставаться подвижной, чему способствует механическое перемешивание раствора в миксере автосмесителя. Тиксотропия позволяет сохранить основные свойства смеси до ее заливки, откладывая старт начальной стадии созревания. Однако следует знать, что если время затянуть или температура поднимется, развивается необратимый процесс «сваривания» раствора, в результате которого занизятся его характеристики.

Длительность схватывания находится в зависимости от температуры воздуха — от 20 мин. до 20 часов. Наибольшая продолжительность данного процесса зимой при температурных значениях около 0 град. Заливка фундамента в этот период будет сопровождаться удлинением интервала начала схватывания от 6 до 10 часов, а сама стадия растянется на 15 – 20 ч.

Оптимально заливать бетон в форму при 20 градусах. Тогда при условии, что раствор затворен за час до заливки, схватывание начнется через один час и завершится через 60 мин. Жаркая погода способствует практически моментальному схватыванию раствора за 10 – 20 мин.

Оптимальное течение гидратации при твердении раствора: температурный коридор от 18 до 20 град., влажность близкая к 100%. Отклонения от данных параметров в значительной степени изменяют скорость твердения камня. Полное вызревание бетона длиться несколько лет.

Вместе с тем на этой стадии скорость твердения закономерно изменяется со временем. К примеру, для бетона М300 к концу 3-го дня она достигает 50%, на 14–й день составляет до 90%, а на 28 день — 100%. Далее через три месяца прочность повышается еще на 20%, а через 3 года может стать на 100% больше, чем была к концу 28 суток после затворения.

Особенности набора прочности

Снижение температурных показателей среды ведет к замедлению твердения. Нулевая отметка на термометре останавливает процесс из-за замерзания воды в камне (снижается качество бетона), а подъем значений снова его возобновляет. Смесь начинает высыхать при недостатке или отсутствии влаги, однако это может замедлить и остановить правильное твердение, что воспрепятствует набору заданного свойства бетоном. А вот автоклавное отвердение смесей значительно ускоряется при повышенных значениях температурно-влажностного режима: 80 – 90 град. и 100% влажности, что ведет к ускоренному росту прочностных показателей. За счет влаги в воздухе может сокращаться интервал набора прочности раствором, который уложен открыто.

Бетоны более высоких марок (состоят из большего количества цемента лучшего качества) твердеют и набирают прочность быстрее, поэтому обрабатывать их следует более оперативно. В интервале с 3-х по 10-е сутки после укладки нормативный набор прочности бетона обеспечивается близкими к идеальным условиями выдержки. В теплую погоду раствор укрывается влагоемкими материалами, через которые камень увлажняется круглосуточно 6 – 7 раз, и перекрывается плотной пленкой.

В солнечную погоду он укрывается от прямых лучей. Зимой бетон может искусственно прогреваться изнутри, утепляться, обогреваться тепловыми генераторами, чтобы предотвратить замерзание воды, и изолируется от осадков. Важным параметром для продолжения работ является нормативно-безопасный срок набора прочностных свойств. Таблица 1 показывает зависимость от марки бетона и среднесуточной температуры значений прочностных показателей бетонов через соответствующее количество суток.

Нормативно-безопасным сроком созревания бетонов можно считать значение 50%, а безопасным — от 72% до 80% от марочного значения, что, к примеру, важно знать при работах на фундаменте.

От чего зависит набор прочности?

Факторы, которые управляют набором прочностных свойств камня, включают: сколько времени прошло после заливки, температурно-влажностный режим выдерживания, качество (активность) и марку цемента, соотношение воды и цемента в растворе, пропорции компонентов в смеси, способ уплотнения, технологию перемешивания, способ и скорость укладки, качество и регулярность увлажнения, наличие пластификаторов (добавок-ускорителей твердения) в смеси зимой и пр. Поднятие марки бетона зависит от увеличения доли и более высокой марки цемента в смеси, пропорций компонентов. Марка прямо влияет на набор прочности бетона. Для низких марок критическая прочность имеет большее значение. Таблица 2 отражает данную закономерность.

Поэтому прочностью фундамента из бетона высокой марки определяется надежность, долговечность конструкции здания. Камень в холодную погоду приобретает прочность благодаря собственному тепловыделению, но для нормализации графика формирования камня целесообразно применять соответствующие добавки, ускоряющие твердение и снижающие температуру остановки гидратации. С ними смесь набирает марочную прочность уже через 14 суток. Удачным решением также станет изменение составляющих в бетоне. К примеру, глиноземистый цемент набирает прочностные показатели даже в морозы, так как выделяет примерно в 7 раз больше собственного тепла по сравнению портландцементом.

В наборе этого свойства существенную роль играют форма и фракция зерен натуральных наполнителей. Их неправильная форма и повышенная шероховатость обеспечивают лучшие условия сцепления и качество бетона. Известно, что увеличение доли воды в бетонной смеси способно привести к расслоению массы материала. Следствием этого также становится то, что при относительном увеличении доли воды в растворе на 60% от оптимального значения (в/ц = 0,4) происходит недобор прочности на 50% от марочной. Однако при соотношении вода/цемент 1/4 период отвердения (упрочнения) сокращается в два раза.

Чтобы ускорить процесс и минимизировать выдержку бетона, целесообразно применять пескобетоны с низким соотношением вода/цемент. Неуплотненный бетонный раствор имеет шансы вызреть только до 50% от нормативной прочности даже при оптимальном соотношении вода/цемент. Вместе с тем ручное уплотнение способно повысить его прочность на 30 – 40%, а вибротрамбовка повышает прочность до нормативных 95 – 100%.

График набора прочности

Важно знать график набора прочности бетона для прогнозирования последствий изменения температурных условий твердения, которые приводят к увеличению времени выдерживания.

График 1 показывает на примере бетона М400 через сколько суток смесь при фиксированных температурных значениях набирает определенный процент прочности (за сто процентов взят набор марочной прочности за 4 недели). Температурный режим 30 град. является оптимальным для набора нормативной прочности (97%) за 11 дней, а при показателе в 5 град. значение безопасной прочности не будет достигнуто камнем и за 14 дней. В такой ситуации следует разогревать, утеплять укладку. В соответствии с кривыми определяются сроки распалубки при превышении прочностью 50% марочного значения.

В реальности прочностные показатели бетонных конструкций могут изменяться по очень многим причинам. Важно обеспечить оптимальные параметры для реализации по времени графика роста прочностных свойств, соответствующих марке бетона.

Процесс набора прочности бетона

Основная характеристика бетона, которая определила его широкое распространение — это высокая прочность. Материал набирает любую прочность в реальных условиях, так как есть много причин, которые способствуют недобору величины, соответствующей бетону определенной марки. Знание этих причин и их особенностей способствует формированию бетонных фундаментов, конструкций с максимальными эксплуатационными показателями.

Процесс набора

Физико-химические реакции гидратации создают новые монолитные соединения, которые придают материалу свойства искусственного камня. Новое качество формируется в течение многих суток (окончательно примерно через полгода) и в идеале прочностные свойства бетонной конструкции должны соответствовать бетону определенного класса и марки. По времени процесс вызревания камня имеет две последовательные стадии: начальная — схватывание, и завершающая — твердение. По его завершении бетон может нагружаться.

Схватывание

Бетоном пользуются не сразу после затвердения, так как может потребоваться некоторое количество времени, чтобы довезти материал до объекта. Смесь должна оставаться подвижной, чему способствует механическое перемешивание раствора в миксере автосмесителя. Тиксотропия позволяет сохранить основные свойства смеси до ее заливки, откладывая старт начальной стадии созревания. Однако следует знать, что если время затянуть или температура поднимется, развивается необратимый процесс «сваривания» раствора, в результате которого занизятся его характеристики.

Длительность схватывания находится в зависимости от температуры воздуха — от 20 мин. до 20 часов. Наибольшая продолжительность данного процесса зимой при температурных значениях около 0 град. Заливка фундамента в этот период будет сопровождаться удлинением интервала начала схватывания от 6 до 10 часов, а сама стадия растянется на 15 – 20 ч.

Оптимально заливать бетон в форму при 20 градусах. Тогда при условии, что раствор затворен за час до заливки, схватывание начнется через один час и завершится через 60 мин. Жаркая погода способствует практически моментальному схватыванию раствора за 10 – 20 мин.

Оптимальное течение гидратации при твердении раствора: температурный коридор от 18 до 20 град., влажность близкая к 100%. Отклонения от данных параметров в значительной степени изменяют скорость твердения камня. Полное вызревание бетона длиться несколько лет.

Вместе с тем на этой стадии скорость твердения закономерно изменяется со временем. К примеру, для бетона М300 к концу 3-го дня она достигает 50%, на 14–й день составляет до 90%, а на 28 день — 100%. Далее через три месяца прочность повышается еще на 20%, а через 3 года может стать на 100% больше, чем была к концу 28 суток после затворения.

Особенности набора прочности

Снижение температурных показателей среды ведет к замедлению твердения. Нулевая отметка на термометре останавливает процесс из-за замерзания воды в камне (снижается качество бетона), а подъем значений снова его возобновляет. Смесь начинает высыхать при недостатке или отсутствии влаги, однако это может замедлить и остановить правильное твердение, что воспрепятствует набору заданного свойства бетоном. А вот автоклавное отвердение смесей значительно ускоряется при повышенных значениях температурно-влажностного режима: 80 – 90 град. и 100% влажности, что ведет к ускоренному росту прочностных показателей. За счет влаги в воздухе может сокращаться интервал набора прочности раствором, который уложен открыто.

Бетоны более высоких марок (состоят из большего количества цемента лучшего качества) твердеют и набирают прочность быстрее, поэтому обрабатывать их следует более оперативно. В интервале с 3-х по 10-е сутки после укладки нормативный набор прочности бетона обеспечивается близкими к идеальным условиями выдержки. В теплую погоду раствор укрывается влагоемкими материалами, через которые камень увлажняется круглосуточно 6 – 7 раз, и перекрывается плотной пленкой.

В солнечную погоду он укрывается от прямых лучей. Зимой бетон может искусственно прогреваться изнутри, утепляться, обогреваться тепловыми генераторами, чтобы предотвратить замерзание воды, и изолируется от осадков. Важным параметром для продолжения работ является нормативно-безопасный срок набора прочностных свойств. Таблица 1 показывает зависимость от марки бетона и среднесуточной температуры значений прочностных показателей бетонов через соответствующее количество суток.

Нормативно-безопасным сроком созревания бетонов можно считать значение 50%, а безопасным — от 72% до 80% от марочного значения, что, к примеру, важно знать при работах на фундаменте.

От чего зависит набор прочности?

Факторы, которые управляют набором прочностных свойств камня, включают: сколько времени прошло после заливки, температурно-влажностный режим выдерживания, качество (активность) и марку цемента, соотношение воды и цемента в растворе, пропорции компонентов в смеси, способ уплотнения, технологию перемешивания, способ и скорость укладки, качество и регулярность увлажнения, наличие пластификаторов (добавок-ускорителей твердения) в смеси зимой и пр. Поднятие марки бетона зависит от увеличения доли и более высокой марки цемента в смеси, пропорций компонентов. Марка прямо влияет на набор прочности бетона. Для низких марок критическая прочность имеет большее значение. Таблица 2 отражает данную закономерность.

Поэтому прочностью фундамента из бетона высокой марки определяется надежность, долговечность конструкции здания. Камень в холодную погоду приобретает прочность благодаря собственному тепловыделению, но для нормализации графика формирования камня целесообразно применять соответствующие добавки, ускоряющие твердение и снижающие температуру остановки гидратации. С ними смесь набирает марочную прочность уже через 14 суток. Удачным решением также станет изменение составляющих в бетоне. К примеру, глиноземистый цемент набирает прочностные показатели даже в морозы, так как выделяет примерно в 7 раз больше собственного тепла по сравнению портландцементом.

В наборе этого свойства существенную роль играют форма и фракция зерен натуральных наполнителей. Их неправильная форма и повышенная шероховатость обеспечивают лучшие условия сцепления и качество бетона. Известно, что увеличение доли воды в бетонной смеси способно привести к расслоению массы материала. Следствием этого также становится то, что при относительном увеличении доли воды в растворе на 60% от оптимального значения (в/ц = 0,4) происходит недобор прочности на 50% от марочной. Однако при соотношении вода/цемент 1/4 период отвердения (упрочнения) сокращается в два раза.

Чтобы ускорить процесс и минимизировать выдержку бетона, целесообразно применять пескобетоны с низким соотношением вода/цемент. Неуплотненный бетонный раствор имеет шансы вызреть только до 50% от нормативной прочности даже при оптимальном соотношении вода/цемент. Вместе с тем ручное уплотнение способно повысить его прочность на 30 – 40%, а вибротрамбовка повышает прочность до нормативных 95 – 100%.

График набора прочности

Важно знать график набора прочности бетона для прогнозирования последствий изменения температурных условий твердения, которые приводят к увеличению времени выдерживания.

График 1 показывает на примере бетона М400 через сколько суток смесь при фиксированных температурных значениях набирает определенный процент прочности (за сто процентов взят набор марочной прочности за 4 недели). Температурный режим 30 град. является оптимальным для набора нормативной прочности (97%) за 11 дней, а при показателе в 5 град. значение безопасной прочности не будет достигнуто камнем и за 14 дней. В такой ситуации следует разогревать, утеплять укладку. В соответствии с кривыми определяются сроки распалубки при превышении прочностью 50% марочного значения.

В реальности прочностные показатели бетонных конструкций могут изменяться по очень многим причинам. Важно обеспечить оптимальные параметры для реализации по времени графика роста прочностных свойств, соответствующих марке бетона.

Процесс набора прочности бетона

Основная характеристика бетона, которая определила его широкое распространение — это высокая прочность. Материал набирает любую прочность в реальных условиях, так как есть много причин, которые способствуют недобору величины, соответствующей бетону определенной марки. Знание этих причин и их особенностей способствует формированию бетонных фундаментов, конструкций с максимальными эксплуатационными показателями.

Процесс набора

Физико-химические реакции гидратации создают новые монолитные соединения, которые придают материалу свойства искусственного камня. Новое качество формируется в течение многих суток (окончательно примерно через полгода) и в идеале прочностные свойства бетонной конструкции должны соответствовать бетону определенного класса и марки. По времени процесс вызревания камня имеет две последовательные стадии: начальная — схватывание, и завершающая — твердение. По его завершении бетон может нагружаться.

Схватывание

Бетоном пользуются не сразу после затвердения, так как может потребоваться некоторое количество времени, чтобы довезти материал до объекта. Смесь должна оставаться подвижной, чему способствует механическое перемешивание раствора в миксере автосмесителя. Тиксотропия позволяет сохранить основные свойства смеси до ее заливки, откладывая старт начальной стадии созревания. Однако следует знать, что если время затянуть или температура поднимется, развивается необратимый процесс «сваривания» раствора, в результате которого занизятся его характеристики.

Длительность схватывания находится в зависимости от температуры воздуха — от 20 мин. до 20 часов. Наибольшая продолжительность данного процесса зимой при температурных значениях около 0 град. Заливка фундамента в этот период будет сопровождаться удлинением интервала начала схватывания от 6 до 10 часов, а сама стадия растянется на 15 – 20 ч.

Оптимально заливать бетон в форму при 20 градусах. Тогда при условии, что раствор затворен за час до заливки, схватывание начнется через один час и завершится через 60 мин. Жаркая погода способствует практически моментальному схватыванию раствора за 10 – 20 мин.

Оптимальное течение гидратации при твердении раствора: температурный коридор от 18 до 20 град., влажность близкая к 100%. Отклонения от данных параметров в значительной степени изменяют скорость твердения камня. Полное вызревание бетона длиться несколько лет.

Вместе с тем на этой стадии скорость твердения закономерно изменяется со временем. К примеру, для бетона М300 к концу 3-го дня она достигает 50%, на 14–й день составляет до 90%, а на 28 день — 100%. Далее через три месяца прочность повышается еще на 20%, а через 3 года может стать на 100% больше, чем была к концу 28 суток после затворения.

Особенности набора прочности

Снижение температурных показателей среды ведет к замедлению твердения. Нулевая отметка на термометре останавливает процесс из-за замерзания воды в камне (снижается качество бетона), а подъем значений снова его возобновляет. Смесь начинает высыхать при недостатке или отсутствии влаги, однако это может замедлить и остановить правильное твердение, что воспрепятствует набору заданного свойства бетоном. А вот автоклавное отвердение смесей значительно ускоряется при повышенных значениях температурно-влажностного режима: 80 – 90 град. и 100% влажности, что ведет к ускоренному росту прочностных показателей. За счет влаги в воздухе может сокращаться интервал набора прочности раствором, который уложен открыто.

Бетоны более высоких марок (состоят из большего количества цемента лучшего качества) твердеют и набирают прочность быстрее, поэтому обрабатывать их следует более оперативно. В интервале с 3-х по 10-е сутки после укладки нормативный набор прочности бетона обеспечивается близкими к идеальным условиями выдержки. В теплую погоду раствор укрывается влагоемкими материалами, через которые камень увлажняется круглосуточно 6 – 7 раз, и перекрывается плотной пленкой.

В солнечную погоду он укрывается от прямых лучей. Зимой бетон может искусственно прогреваться изнутри, утепляться, обогреваться тепловыми генераторами, чтобы предотвратить замерзание воды, и изолируется от осадков. Важным параметром для продолжения работ является нормативно-безопасный срок набора прочностных свойств. Таблица 1 показывает зависимость от марки бетона и среднесуточной температуры значений прочностных показателей бетонов через соответствующее количество суток.

Нормативно-безопасным сроком созревания бетонов можно считать значение 50%, а безопасным — от 72% до 80% от марочного значения, что, к примеру, важно знать при работах на фундаменте.

От чего зависит набор прочности?

Факторы, которые управляют набором прочностных свойств камня, включают: сколько времени прошло после заливки, температурно-влажностный режим выдерживания, качество (активность) и марку цемента, соотношение воды и цемента в растворе, пропорции компонентов в смеси, способ уплотнения, технологию перемешивания, способ и скорость укладки, качество и регулярность увлажнения, наличие пластификаторов (добавок-ускорителей твердения) в смеси зимой и пр. Поднятие марки бетона зависит от увеличения доли и более высокой марки цемента в смеси, пропорций компонентов. Марка прямо влияет на набор прочности бетона. Для низких марок критическая прочность имеет большее значение. Таблица 2 отражает данную закономерность.

Поэтому прочностью фундамента из бетона высокой марки определяется надежность, долговечность конструкции здания. Камень в холодную погоду приобретает прочность благодаря собственному тепловыделению, но для нормализации графика формирования камня целесообразно применять соответствующие добавки, ускоряющие твердение и снижающие температуру остановки гидратации. С ними смесь набирает марочную прочность уже через 14 суток. Удачным решением также станет изменение составляющих в бетоне. К примеру, глиноземистый цемент набирает прочностные показатели даже в морозы, так как выделяет примерно в 7 раз больше собственного тепла по сравнению портландцементом.

В наборе этого свойства существенную роль играют форма и фракция зерен натуральных наполнителей. Их неправильная форма и повышенная шероховатость обеспечивают лучшие условия сцепления и качество бетона. Известно, что увеличение доли воды в бетонной смеси способно привести к расслоению массы материала. Следствием этого также становится то, что при относительном увеличении доли воды в растворе на 60% от оптимального значения (в/ц = 0,4) происходит недобор прочности на 50% от марочной. Однако при соотношении вода/цемент 1/4 период отвердения (упрочнения) сокращается в два раза.

Чтобы ускорить процесс и минимизировать выдержку бетона, целесообразно применять пескобетоны с низким соотношением вода/цемент. Неуплотненный бетонный раствор имеет шансы вызреть только до 50% от нормативной прочности даже при оптимальном соотношении вода/цемент. Вместе с тем ручное уплотнение способно повысить его прочность на 30 – 40%, а вибротрамбовка повышает прочность до нормативных 95 – 100%.

График набора прочности

Важно знать график набора прочности бетона для прогнозирования последствий изменения температурных условий твердения, которые приводят к увеличению времени выдерживания.

График 1 показывает на примере бетона М400 через сколько суток смесь при фиксированных температурных значениях набирает определенный процент прочности (за сто процентов взят набор марочной прочности за 4 недели). Температурный режим 30 град. является оптимальным для набора нормативной прочности (97%) за 11 дней, а при показателе в 5 град. значение безопасной прочности не будет достигнуто камнем и за 14 дней. В такой ситуации следует разогревать, утеплять укладку. В соответствии с кривыми определяются сроки распалубки при превышении прочностью 50% марочного значения.

В реальности прочностные показатели бетонных конструкций могут изменяться по очень многим причинам. Важно обеспечить оптимальные параметры для реализации по времени графика роста прочностных свойств, соответствующих марке бетона.

Процесс набора прочности бетона

Основная характеристика бетона, которая определила его широкое распространение — это высокая прочность. Материал набирает любую прочность в реальных условиях, так как есть много причин, которые способствуют недобору величины, соответствующей бетону определенной марки. Знание этих причин и их особенностей способствует формированию бетонных фундаментов, конструкций с максимальными эксплуатационными показателями.

Процесс набора

Физико-химические реакции гидратации создают новые монолитные соединения, которые придают материалу свойства искусственного камня. Новое качество формируется в течение многих суток (окончательно примерно через полгода) и в идеале прочностные свойства бетонной конструкции должны соответствовать бетону определенного класса и марки. По времени процесс вызревания камня имеет две последовательные стадии: начальная — схватывание, и завершающая — твердение. По его завершении бетон может нагружаться.

Схватывание

Бетоном пользуются не сразу после затвердения, так как может потребоваться некоторое количество времени, чтобы довезти материал до объекта. Смесь должна оставаться подвижной, чему способствует механическое перемешивание раствора в миксере автосмесителя. Тиксотропия позволяет сохранить основные свойства смеси до ее заливки, откладывая старт начальной стадии созревания. Однако следует знать, что если время затянуть или температура поднимется, развивается необратимый процесс «сваривания» раствора, в результате которого занизятся его характеристики.

Длительность схватывания находится в зависимости от температуры воздуха — от 20 мин. до 20 часов. Наибольшая продолжительность данного процесса зимой при температурных значениях около 0 град. Заливка фундамента в этот период будет сопровождаться удлинением интервала начала схватывания от 6 до 10 часов, а сама стадия растянется на 15 – 20 ч.

Оптимально заливать бетон в форму при 20 градусах. Тогда при условии, что раствор затворен за час до заливки, схватывание начнется через один час и завершится через 60 мин. Жаркая погода способствует практически моментальному схватыванию раствора за 10 – 20 мин.

Оптимальное течение гидратации при твердении раствора: температурный коридор от 18 до 20 град., влажность близкая к 100%. Отклонения от данных параметров в значительной степени изменяют скорость твердения камня. Полное вызревание бетона длиться несколько лет.

Вместе с тем на этой стадии скорость твердения закономерно изменяется со временем. К примеру, для бетона М300 к концу 3-го дня она достигает 50%, на 14–й день составляет до 90%, а на 28 день — 100%. Далее через три месяца прочность повышается еще на 20%, а через 3 года может стать на 100% больше, чем была к концу 28 суток после затворения.

Особенности набора прочности

Снижение температурных показателей среды ведет к замедлению твердения. Нулевая отметка на термометре останавливает процесс из-за замерзания воды в камне (снижается качество бетона), а подъем значений снова его возобновляет. Смесь начинает высыхать при недостатке или отсутствии влаги, однако это может замедлить и остановить правильное твердение, что воспрепятствует набору заданного свойства бетоном. А вот автоклавное отвердение смесей значительно ускоряется при повышенных значениях температурно-влажностного режима: 80 – 90 град. и 100% влажности, что ведет к ускоренному росту прочностных показателей. За счет влаги в воздухе может сокращаться интервал набора прочности раствором, который уложен открыто.

Бетоны более высоких марок (состоят из большего количества цемента лучшего качества) твердеют и набирают прочность быстрее, поэтому обрабатывать их следует более оперативно. В интервале с 3-х по 10-е сутки после укладки нормативный набор прочности бетона обеспечивается близкими к идеальным условиями выдержки. В теплую погоду раствор укрывается влагоемкими материалами, через которые камень увлажняется круглосуточно 6 – 7 раз, и перекрывается плотной пленкой.

В солнечную погоду он укрывается от прямых лучей. Зимой бетон может искусственно прогреваться изнутри, утепляться, обогреваться тепловыми генераторами, чтобы предотвратить замерзание воды, и изолируется от осадков. Важным параметром для продолжения работ является нормативно-безопасный срок набора прочностных свойств. Таблица 1 показывает зависимость от марки бетона и среднесуточной температуры значений прочностных показателей бетонов через соответствующее количество суток.

Нормативно-безопасным сроком созревания бетонов можно считать значение 50%, а безопасным — от 72% до 80% от марочного значения, что, к примеру, важно знать при работах на фундаменте.

От чего зависит набор прочности?

Факторы, которые управляют набором прочностных свойств камня, включают: сколько времени прошло после заливки, температурно-влажностный режим выдерживания, качество (активность) и марку цемента, соотношение воды и цемента в растворе, пропорции компонентов в смеси, способ уплотнения, технологию перемешивания, способ и скорость укладки, качество и регулярность увлажнения, наличие пластификаторов (добавок-ускорителей твердения) в смеси зимой и пр. Поднятие марки бетона зависит от увеличения доли и более высокой марки цемента в смеси, пропорций компонентов. Марка прямо влияет на набор прочности бетона. Для низких марок критическая прочность имеет большее значение. Таблица 2 отражает данную закономерность.

Поэтому прочностью фундамента из бетона высокой марки определяется надежность, долговечность конструкции здания. Камень в холодную погоду приобретает прочность благодаря собственному тепловыделению, но для нормализации графика формирования камня целесообразно применять соответствующие добавки, ускоряющие твердение и снижающие температуру остановки гидратации. С ними смесь набирает марочную прочность уже через 14 суток. Удачным решением также станет изменение составляющих в бетоне. К примеру, глиноземистый цемент набирает прочностные показатели даже в морозы, так как выделяет примерно в 7 раз больше собственного тепла по сравнению портландцементом.

В наборе этого свойства существенную роль играют форма и фракция зерен натуральных наполнителей. Их неправильная форма и повышенная шероховатость обеспечивают лучшие условия сцепления и качество бетона. Известно, что увеличение доли воды в бетонной смеси способно привести к расслоению массы материала. Следствием этого также становится то, что при относительном увеличении доли воды в растворе на 60% от оптимального значения (в/ц = 0,4) происходит недобор прочности на 50% от марочной. Однако при соотношении вода/цемент 1/4 период отвердения (упрочнения) сокращается в два раза.

Чтобы ускорить процесс и минимизировать выдержку бетона, целесообразно применять пескобетоны с низким соотношением вода/цемент. Неуплотненный бетонный раствор имеет шансы вызреть только до 50% от нормативной прочности даже при оптимальном соотношении вода/цемент. Вместе с тем ручное уплотнение способно повысить его прочность на 30 – 40%, а вибротрамбовка повышает прочность до нормативных 95 – 100%.

График набора прочности

Важно знать график набора прочности бетона для прогнозирования последствий изменения температурных условий твердения, которые приводят к увеличению времени выдерживания.

График 1 показывает на примере бетона М400 через сколько суток смесь при фиксированных температурных значениях набирает определенный процент прочности (за сто процентов взят набор марочной прочности за 4 недели). Температурный режим 30 град. является оптимальным для набора нормативной прочности (97%) за 11 дней, а при показателе в 5 град. значение безопасной прочности не будет достигнуто камнем и за 14 дней. В такой ситуации следует разогревать, утеплять укладку. В соответствии с кривыми определяются сроки распалубки при превышении прочностью 50% марочного значения.

В реальности прочностные показатели бетонных конструкций могут изменяться по очень многим причинам. Важно обеспечить оптимальные параметры для реализации по времени графика роста прочностных свойств, соответствующих марке бетона.

Почему мы проверяем прочность бетона на сжатие через 28 дней?

🕑 Время считывания: 1 минута.

Прочность бетона обычно проверяется через 28 дней на прочность кубиков или цилиндров. Обсуждается причина испытания бетона на прочность через 28 дней.

Почему мы проверяем прочность бетона на сжатие через 28 дней? Бетон со временем набирает прочность после заливки. Чтобы бетон набрал 100% прочность, требуется много времени, и время для этого пока неизвестно.Скорость набора прочности бетона на сжатие увеличивается в течение первых 28 дней заливки, а затем замедляется. В таблице ниже показана прочность на сжатие, полученная бетоном через 1, 3, 7, 14 и 28 дней в зависимости от марки используемого нами бетона.
Возраст Прочность в процентах
1 день 16%
3 дня 40%
7 дней 65%
14 дней 90%
28 дней 99%
Из таблицы выше видно, что бетон набирает 16% прочности за один день, 40% за 3 дня, 65% за 7 дней, 90% за 14 дней и 99% прочности за 28 дней.Таким образом, очевидно, что бетон быстро набирает прочность в первые дни после заливки, то есть на 90% всего за 14 дней. Когда его прочность достигла 99% за 28 дней, бетон продолжает набирать прочность после этого периода, но эта скорость увеличения прочности на сжатие очень меньше по сравнению с 28 днями. После 14 дней заливки бетона бетон набирает только 9% в следующие 14 дней. Итак, скорость набора силы снижается. У нас нет четкого представления о том, когда бетон набирает прочность, 1 год или 2 года, но предполагается, что бетон может набрать свою окончательную прочность через 1 год.Итак, поскольку прочность бетона составляет 99% через 28 дней, она почти близка к его конечной прочности, поэтому мы полагаемся на результаты испытания прочности на сжатие через 28 дней и используем эту прочность в качестве основы для нашего проектирования и оценки. Хотя есть также некоторые экспресс-методы испытаний бетона на сжатие, которые показывают связь между методами экспресс-испытаний и 28-дневной прочностью. Этот экспресс-тест проводится там, где время на строительство ограничено, и необходимо знать прочность конструктивного элемента для выполнения дальнейших строительных работ. Подробнее: Бетон — определение, марки, компоненты, производство, конструкция и изделия Прочность бетонных кубов на сжатие Планирование испытаний бетона на прочность, долговечность и повреждения на месте

Взаимосвязь между семидневной и 28-дневной прочностью | Журнал Concrete Construction

Вопрос: Перед укладкой бетона для последней опоры фундамента с пробуренной опорой бригадир решил долить воду в автобетоносмеситель.Инспектору не понравился вид разводненного бетона, и он взял испытательные цилиндры, которые представляли тот самый пирс. Спецификации требуют 28-дневной силы 3000 фунтов на квадратный дюйм. После того, как лаборатория сломала семидневные цилиндры, цилиндр от пирса с добавленной водой сломался при давлении 1980 фунтов на квадратный дюйм. В других семидневных цилиндрах давление достигало 2620 фунтов на квадратный дюйм. Инженер обеспокоен тем, что бетон не будет соответствовать указанной прочности. Я понимаю, что добавление воды было неправильным решением, но я не хочу удалять пирс, если он достаточно прочен.Достигнет ли он указанных 3000 фунтов на квадратный дюйм?

Ответ: Как показывает этот случай, часто бывает полезно экстраполировать 28-дневные силы из семидневных. Конечно, количество прироста силы варьируется между семидневными и 28-дневными тестами. Тип цемента и условия отверждения — это два фактора, которые влияют на ожидаемый прирост прочности. Concrete, разработанная Mindness and Young, дает общее правило: отношение 28-дневной к 7-дневной силе составляет от 1,3 до 1,7 и, как правило, меньше единицы.5, или семидневная сила обычно составляет от 60% до 75% от 28-дневной силы и обычно превышает 65%. Цилиндр, который сломался при давлении 1980 фунтов на квадратный дюйм, составляет 66% от указанных 3000 фунтов на квадратный дюйм. Согласно правилу Mindness and Young, он должен соответствовать указанной силе через 28 дней. Скорее всего, смесь была рассчитана не на 3000 фунтов на квадратный дюйм, а на более высокую прочность на сжатие, чтобы учесть изменчивость. Добавляя дополнительную воду в смесь, вы увеличиваете водоцементное соотношение, что, в свою очередь, снижает прочность. Опоры, установленные до добавления воды, вероятно, будут иметь прочность выше указанных 3000 фунтов на квадратный дюйм.Однако рассматриваемый пирс, скорее всего, будет соответствовать указанной прочности. Если по прошествии 28 дней цилиндры по-прежнему не соответствуют указанной прочности, возьмите стержни для проверки прочности перед выполнением дорогостоящего удаления сваи.

лет для силовых испытаний | Журнал Concrete Construction

Q .: Почему сильные стороны связаны с временными периодами в 7 дней и 28 дней?

A .: Можно, пожалуй, сказать, что причины исторические — что эти периоды времени были установлены в первые дни испытаний цемента и бетона и сохраняются с тех пор.Однако, похоже, есть веские причины для выбора этих временных периодов. Одно из практических соображений при выборе возраста тестирования — избегать возраста, приходящегося на выходные. При выборе возраста, например, 7 и 28 дней, возраст для испытаний будет приходиться на тот же день недели, что и день изготовления образцов для испытаний — обычно это не выходные дни.

Исходя из этого, начиная с числа, кратного 7, как хорошего возраста, вопрос становится

.

Какие кратные?

Кривая зависимости прочности на сжатие от возраста обычно имеет вид, показанный на рисунке.Как можно видеть, к возрасту 7 дней обычно достигается достаточная прочность, чтобы дать некоторое представление о том, набирает ли бетон прочность с удовлетворительной скоростью; так что 7 дней — это полезный возраст для тестирования. (Возраст 14 дней также иногда используется, когда требуется точная запись формы кривой силы.) Возраст 28 дней дает хороший ключ к пониманию силы, которая будет достигнута к концу периода наиболее быстрого набора силы (см. рисунок), поэтому 28 дней является полезным кратным 7 дням для тестирования.Следовательно, бетонные смеси обычно пропорциональны прочности, которую они могут развить за 28 дней.

Интересно, что теперь, когда стали использоваться высокопрочные бетоны (от 6000 до 10 000 фунтов на квадратный дюйм), высокопрочные смеси обычно пропорциональны, чтобы соответствовать их расчетной прочности через 56 или 91 день вместо 28 дней, поскольку полная прочность обычно не достигается. Одна из проблем с испытаниями через 28 дней или позже заключается в том, что если бетон не соответствует указанной 28-, 56- или 91-дневной прочности, он мог быть частью конструкции в течение задолго до того, как станет известно о его дефиците.Эта проблема привела к тому, что некоторые полагаются на ускоренные методы испытаний на прочность.

Роль отверждения бетона

Отверждение играет важную роль в повышении прочности и долговечности бетона. Отверждение происходит сразу после укладки и отделки бетона и включает поддержание желаемых условий влажности и температуры как на глубине, так и у поверхности в течение продолжительных периодов времени. Правильно затвердевший бетон имеет достаточное количество влаги для постоянной гидратации и развития прочности, стабильности объема, устойчивости к замерзанию и оттаиванию, а также устойчивости к истиранию и образованию накипи.

Продолжительность адекватного времени отверждения зависит от следующих факторов:

  • Пропорции смеси
  • Указанная прочность
  • Размер и форма бетонного элемента
  • Окружающие погодные условия
  • Условия воздействия в будущем

Плиты на земле ( например, тротуары, тротуары, автостоянки, проезды, полы, облицовка каналов) и конструкционный бетон (например, настилы мостов, опоры, колонны, балки, плиты, небольшие опоры, монолитные стены, подпорные стены) требуют минимального периода отверждения семь дней при температуре окружающей среды выше 40 градусов по Фаренгейту 1 .

Комитет 301 Американского института бетона (ACI) рекомендует минимальный период выдержки, соответствующий достижению бетоном 70 процентов указанной прочности на сжатие 2 . Часто указываемое семидневное отверждение обычно соответствует примерно 70 процентам указанной прочности на сжатие. 70-процентный уровень прочности может быть достигнут раньше, когда бетон затвердевает при более высоких температурах или при использовании определенных комбинаций цемента и добавок. Точно так же может потребоваться больше времени для различных комбинаций материалов и / или более низких температур отверждения.По этой причине Комитет 308 ACI рекомендует следующие минимальные периоды выдержки 3 :

  • Цемент ASTM C 150 Тип I семь дней
  • Цемент ASTM C 150 Тип II десять дней
  • Цемент ASTM C 150 Тип III три дня
  • Цемент ASTM C 150 типа IV или V 14 дней
  • Цемент ASTM C 595, C 845, C 1157 переменный

Влияние продолжительности отверждения на развитие прочности на сжатие представлено на рисунке 1.

Рисунок 1.Время отверждения во влажном состоянии и увеличение прочности на сжатие

Более высокие температуры отверждения способствуют раннему увеличению прочности бетона, но могут снизить его 28-дневную прочность. Влияние температуры отверждения на развитие прочности на сжатие представлено на рисунке 2.

Рисунок 2. Влияние температуры отверждения на прочность на сжатие

Существует три основных функции отверждения :

1) Сохранение воды для затворения в бетоне на начальном этапе его затвердевания

Пруд и погружение
Пруд обычно используется для отверждения плоских поверхностей при выполнении небольших работ.Следует соблюдать осторожность, чтобы поддерживать температуру воды для отверждения не более чем на 20 градусов по Фаренгейту ниже, чем у бетона, чтобы предотвратить растрескивание из-за термических напряжений. Погружение в основном используется в лаборатории для отверждения испытательных образцов бетона.

Распыление и туманообразование
Распыление и туманообразование используются, когда температура окружающей среды значительно выше нуля, а влажность низкая. Запотевание может минимизировать растрескивание из-за пластической усадки, пока бетон не достигнет окончательного схватывания.

Пропитанные влажные покрытия
Влажные покрытия, пропитанные водой, следует использовать после того, как бетон достаточно затвердеет, чтобы предотвратить повреждение поверхности.Их нужно держать постоянно влажными.

Формы, оставленные на месте
Формы, оставленные на месте, обычно обеспечивают удовлетворительную защиту формованных бетонных поверхностей от потери влаги. Формы обычно оставляют на месте до тех пор, пока это позволяет график строительства. Если формы изготовлены из дерева, их следует поддерживать во влажном состоянии, особенно в жаркую и сухую погоду.

2) Снижение потерь воды при смешивании с поверхности бетона

Покрытие бетона непроницаемой бумагой или пластиковыми листами
Непроницаемые бумажные и пластиковые листы могут быть нанесены на тщательно увлажненный бетон.Бетонная поверхность должна быть достаточно твердой, чтобы предотвратить повреждение поверхности при укладке.

Нанесение мембранообразующих отвердителей
Мембранообразующие отвердители используются для замедления или уменьшения испарения влаги из бетона. Они могут быть прозрачными или полупрозрачными с белой пигментацией. Составы с белыми пигментами рекомендуются для жарких и солнечных погодных условий для отражения солнечного излучения. Отвердители следует наносить сразу после окончательной отделки.Отвердитель должен соответствовать ASTM C309 4 или ASTM C1315 5 .

3) Ускорение набора прочности за счет тепла и дополнительной влаги

Острый пар
Острый пар при атмосферном давлении и пар высокого давления в автоклавах — это два метода отверждения паром. Температура пара для острого пара при атмосферном давлении должна поддерживаться на уровне около 140 градусов по Фаренгейту или ниже, пока не будет достигнута желаемая прочность бетона.

Нагревательные змеевики
Нагревательные змеевики обычно используются в качестве закладных элементов вблизи поверхности бетонных элементов. Их назначение — защитить бетон от промерзания при бетонировании в холодную погоду.

Электрообогреваемые формы или опоры
Электрообогреваемые формы или опоры в основном используются производителями сборного железобетона.

Бетонные покрытия
Бетонные изоляционные покрытия используются для покрытия и изоляции бетонных поверхностей, подверженных отрицательным температурам в период отверждения.Бетон должен быть достаточно твердым, чтобы предотвратить повреждение поверхности при покрытии бетонными покрытиями.

Другие формы отверждения включают внутреннее влажное отверждение с использованием легких заполнителей или абсорбирующих полимерных частиц. Для массивных бетонных элементов (обычно толщиной более 3 футов) обычно разрабатывается план терморегулирования, помогающий контролировать термические напряжения. Дополнительную информацию можно найти в отчете Комитета 308 ACI Руководство по отверждению бетона 3 . Для специальных бетонов рекомендуется обращаться к другим отчетам ACI следующим образом:

  • Огнеупорный бетон ACI 547.1R
  • Огнеупорный бетон ACI 547.1R
  • Изоляционный бетон ACI 523.1R
  • Расширяющийся цементный бетон ACI 223
  • Бетон, уплотненный роликами ACI 207.5R
  • Архитектурный бетон ACI 303R
  • Торкрет-бетон 5410 ACI 506.2 R
  • Вертикальная скользящая форма ACI 313

Отверждение в холодную или жаркую погоду требует дополнительного внимания. В холодную погоду некоторые процедуры включают в себя отапливаемые помещения, средства для уменьшения испарения, отвердители и изолирующие одеяла.Температура свежего бетона должна быть выше 50 градусов по Фаренгейту. Период отверждения бетона для холодной погоды больше стандартного периода из-за снижения скорости набора прочности. Ожидается, что прочность на сжатие бетона, выдержанного и поддерживаемого при температуре 50 градусов по Фаренгейту, будет набирать прочность вдвое быстрее, чем у бетона, выдержанного при температуре 73 градуса по Фаренгейту. В жаркую погоду отверждение и защита имеют решающее значение из-за быстрой потери влаги из свежего бетона. Фактически отверждение начинается до укладки бетона путем смачивания поверхности основания водой.Для укладки бетона в жаркую погоду можно использовать солнцезащитные и ветровые стекла, а также замедлители запотевания и испарения. Поскольку бетон набирает прочность в жаркую погоду быстрее, период отверждения может быть сокращен. Дополнительную информацию можно найти в стандартах ACI 306.1, для бетонирования в холодную погоду , ACI 306R, для бетонирования в холодную погоду , ACI 305.1, «Спецификация для бетонирования в жаркую погоду» и ACI 305R, для бетонирования для жаркой погоды

Отверждение бетонных образцов для испытаний

Отверждение бетонных образцов для испытаний обычно отличается от отверждения бетона, заложенного во время строительства.Американское общество испытаний и материалов (ASTM) разработало два стандарта для изготовления и выдержки бетонных образцов. ASTM C192 6 предназначен для лабораторных проб, а ASTM C31 7 предназначен для полевых проб. Оба документа содержат стандартизированные требования к изготовлению, отверждению, защите и транспортировке бетонных образцов для испытаний в полевых или лабораторных условиях, соответственно.

ASTM C192 предоставляет процедуры для оценки различных смесей в лабораторных условиях.Обычно его используют на начальном этапе проекта или в исследовательских целях.

ASTM C31 используется для приемочных испытаний, а также может использоваться в качестве инструмента принятия решения при снятии формы или опоры. В зависимости от предполагаемого назначения стандарт определяет два режима отверждения: стандартное отверждение для приемочных испытаний и отверждение в полевых условиях для снятия опалубки / опалубки. Изменение стандартного отверждения образцов для испытаний может существенно повлиять на измеренные свойства бетона. По данным Национальной ассоциации производителей готовых бетонных смесей 8 (NRMCA), прочность бетона, отвержденного на воздухе в течение одного дня с последующими 27 днями влажного отверждения, будет примерно на 8 процентов ниже, чем для бетона, отвержденного влажным способом в течение всего периода.Снижение прочности составляет 11 процентов и 18 процентов для образцов бетона, первоначально отвержденных на воздухе в течение трех и семи дней, соответственно. Для тех же комбинаций отверждения воздух / влажность, но температура отверждения на воздухе 100 градусов по Фаренгейту, 28-дневная прочность будет примерно на 11%, 22% и 26% соответственно.

Ссылки

Стив Косматка и др., Проектирование и контроль бетонных смесей, 15-е издание, EB001, Технический бюллетень PCA EB 001, Portland Cement Association, Skokie, IL 2002

Спецификации для конструкционного бетона , ACI 301 (www.Concrete.org)

Руководство по отверждению бетона , ACI 308R-01 (www.concrete.org)

ASTM C309, Стандартные технические условия для жидких мембранообразующих смесей для отверждения бетона (www.astm.org )

ASTM C1315, Стандартные спецификации для жидких мембранообразующих смесей, обладающих особыми свойствами для отверждения и герметизации бетона (www.astm.org)

ASTM C192 / C192M, Стандартная практика изготовления и отверждения бетонных образцов для испытаний в Лаборатория (www.astm.org)

ASTM C31 / C31M, Стандартная практика изготовления и отверждения бетонных образцов для испытаний в полевых условиях (www.astm.org)

Все, что вам нужно знать о прочности бетона

Бетон многие считают прочным и долговечным материалом, и это справедливо. Но есть разные способы оценки прочности бетона.

Возможно, что еще более важно, каждое из этих прочностных свойств придает бетону различные качества, что делает его идеальным выбором в различных случаях использования.

Здесь мы рассмотрим различные типы прочности бетона, почему они важны и как они влияют на качество, долговечность и стоимость бетонных проектов. Мы также демонстрируем разницу в прочности между традиционным бетоном и новой инновационной технологией бетона — бетоном со сверхвысокими характеристиками (UHPC).

Терминология: Прочностные свойства бетона и почему они важны

Прочность бетона на сжатие

Это наиболее распространенное и общепринятое измерение прочности бетона для оценки характеристик конкретной бетонной смеси.Он измеряет способность бетона выдерживать нагрузки, которые уменьшают размер бетона.

Прочность на сжатие испытывают путем разрушения цилиндрических образцов бетона в специальной машине, предназначенной для измерения этого типа прочности. Он измеряется в фунтах на квадратный дюйм (psi). Тестирование проводится в соответствии со стандартом C39 ASTM (Американское общество испытаний и материалов).

Прочность на сжатие важна, поскольку это главный критерий, используемый для определения того, будет ли конкретная бетонная смесь соответствовать потребностям конкретной работы.

Бетон, фунт / кв. Дюйм

фунтов на квадратный дюйм (psi) измеряет прочность бетона на сжатие. Более высокое значение psi означает, что данная бетонная смесь прочнее, поэтому обычно она дороже. Но эти более прочные бетоны также более долговечны, то есть служат дольше.

Идеальный бетонный фунт на квадратный дюйм для данного проекта зависит от различных факторов, но абсолютный минимум для любого проекта обычно начинается от 2500 до 3000 фунтов на квадратный дюйм. Каждая бетонная конструкция имеет обычно приемлемый диапазон фунтов на квадратный дюйм.

Бетонные опоры и плиты на грунте обычно требуют плотности бетона от 3500 до 4000 фунтов на квадратный дюйм. Подвесные плиты, балки и фермы (часто встречающиеся в мостах) требуют от 3500 до 5000 фунтов на квадратный дюйм. Традиционные бетонные стены и колонны, как правило, имеют диапазон от 3000 до 5000 фунтов на квадратный дюйм, в то время как для дорожного покрытия требуется от 4000 до 5000 фунтов на квадратный дюйм. Бетонным конструкциям в более холодном климате требуется более высокое давление на квадратный дюйм, чтобы выдерживать большее количество циклов замораживания / оттаивания.

Прочность на сжатие обычно проверяется через семь дней, а затем снова через 28 дней для определения psi.Семидневный тест проводится для определения раннего прироста силы, а в некоторых случаях его можно проводить уже через три дня.

Но конкретный фунт на квадратный дюйм основан на результатах 28-дневного испытания, как указано в стандартах Американского института бетона (ACI).

Прочность бетона на разрыв

Прочность на растяжение — это способность бетона противостоять разрушению или растрескиванию при растяжении. Это влияет на размер трещин в бетонных конструкциях и степень их возникновения.Трещины возникают, когда растягивающие усилия превышают предел прочности бетона.

Традиционный бетон имеет значительно более низкую прочность на разрыв по сравнению с прочностью на сжатие. Это означает, что бетонные конструкции, испытывающие растягивающее напряжение, должны быть усилены материалами с высокой прочностью на разрыв, такими как сталь.

Непосредственно проверить прочность бетона на разрыв сложно, поэтому используются косвенные методы. Наиболее распространенными косвенными методами являются прочность на изгиб и разделенная прочность на растяжение.

Прочность бетона на раздельное растяжение определяют с помощью испытания на раздельное растяжение бетонных цилиндров. Испытание следует проводить в соответствии со стандартом ASTM C496.

Прочность бетона на изгиб

Прочность на изгиб используется как еще один косвенный показатель прочности на разрыв. Он определяется как мера неармированной бетонной плиты или балки, способная противостоять разрушению при изгибе. Другими словами, это способность бетона противостоять изгибу.

Прочность на изгиб обычно составляет от 10 до 15 процентов прочности на сжатие, в зависимости от конкретной бетонной смеси.

Существует два стандартных теста ASTM, которые используются для определения прочности бетона на изгиб — C78 и C293. Результаты выражаются в модуле разрыва (MR) в фунтах на квадратный дюйм.

Испытания на изгиб очень чувствительны к подготовке, обращению с бетоном и его отверждению. Испытание следует проводить, когда образец влажный. По этим причинам результаты испытаний прочности на сжатие чаще используются при описании прочности бетона, поскольку эти числа более надежны.

Дополнительные факторы

Прочие факторы, влияющие на прочность бетона, включают:

Соотношение вода / цемент (Вт / см)

Относится к соотношению воды и цемента в бетонной смеси.Более низкое соотношение воды и цемента делает бетон более прочным, но также затрудняет работу с ним.

Необходимо соблюдать правильный баланс для достижения желаемой прочности при сохранении удобоукладываемости.

Дозировочный

Традиционный бетон состоит из воды, цемента, воздуха и смеси песка, гравия и камня. Правильная пропорция этих ингредиентов является ключом к достижению более высокой прочности бетона.

Бетонную смесь со слишком большим количеством цементного теста легко залить, но она легко потрескается и не выдержит испытания временем.И наоборот, при слишком малом количестве цементного теста получается шероховатый и пористый бетон.

Смешивание

Оптимальное время перемешивания важно для прочности. Хотя прочность имеет тенденцию увеличиваться со временем перемешивания до определенного момента, слишком долгое перемешивание может фактически вызвать испарение избыточной воды и образование мелких частиц в смеси. В результате бетон становится труднее работать и становится менее прочным.

Не существует золотого правила для оптимального времени перемешивания, так как оно зависит от многих факторов, таких как: тип используемого миксера, скорость вращения миксера, а также конкретные компоненты и материалы в данной партии бетона.

Методы отверждения

Чем дольше бетон остается влажным, тем он прочнее. Для защиты бетона необходимо соблюдать меры предосторожности при отверждении бетона при очень низких или высоких температурах.

Неопровержимые факты: традиционный бетон против UHPC

Доступна новая технология производства бетона, которая имеет более высокие прочностные характеристики, чем традиционный бетон, во всех диапазонах прочности. Этот инновационный материал называется бетоном со сверхвысокими характеристиками (UHPC), и благодаря его исключительной прочности и долговечности он уже внедряется во многих инфраструктурных проектах штата и федерального правительства.

UHPC очень похож на традиционный бетон по составу. Фактически, примерно от 75 до 80 процентов ингредиентов одинаковы.

Что делает UHPC уникальным, так это интегрированные волокна. Эти волокна добавляются в бетонную смесь и составляют от 20 до 25 процентов конечного продукта.

Волокна варьируются от полиэстера до стержней из стекловолокна, базальта, стали и нержавеющей стали. Каждое из этих интегрированных волокон создает все более прочный конечный продукт, причем сталь и нержавеющая сталь обеспечивают наибольший прирост прочности.

Вот более подробное сравнение UHPC с традиционным бетоном:

  • Прочность на разрыв —UHPC имеет предел прочности на разрыв 1700 фунтов на квадратный дюйм, в то время как у традиционного бетона обычно измеряется от 300 до 700 фунтов на квадратный дюйм.
  • Прочность на изгиб —UHPC может обеспечить прочность на изгиб более 2000 фунтов на квадратный дюйм; Традиционный бетон обычно имеет прочность на изгиб от 400 до 700 фунтов на квадратный дюйм.
  • Прочность на сжатие — Повышенная прочность на сжатие UHPC особенно важна по сравнению с традиционным бетоном.В то время как традиционный бетон обычно имеет прочность на сжатие в диапазоне от 2500 до 5000 фунтов на квадратный дюйм, UHPC может иметь прочность на сжатие до 10 раз больше, чем у традиционного бетона.

Всего через 14 дней отверждения UHPC имеет прочность на сжатие 20 000 фунтов на квадратный дюйм. Это число увеличивается до 30 000 фунтов на квадратный дюйм при полном отверждении в течение 28 дней. Некоторые смеси UHPC даже продемонстрировали прочность на сжатие 50 000 фунтов на квадратный дюйм.

Другие преимущества UHPC включают:

  • Устойчивость к замораживанию / оттаиванию — Исследования показали, что UHPC выдерживает более 1000 циклов замораживания / оттаивания, в то время как традиционный бетон начинает разрушаться всего за 28 циклов.
  • Ударопрочность —UHPC может поглощать в три раза больше энергии, чем обычный бетон. При ударной нагрузке UHPC был вдвое прочнее обычного бетона и рассеивал до четырех раз больше энергии. Это делает материал отличным кандидатом для сейсмостойких мостов и зданий.
  • Влагостойкость — Из-за более высокой плотности, чем у традиционного бетона, воде труднее проникать в UHPC.
  • Пластичность —UHPC может быть растянут на более тонкие секции под действием растягивающего напряжения, в отличие от обычного бетона.
  • Более длительный срок службы —UHPC служит более 75 лет по сравнению с 15–25 годами для традиционного бетона.
  • Более легкий — Несмотря на то, что UHPC более прочный, требуется меньше материала, поэтому торцевая конструкция легче по весу, что снижает требования к опорам и опорам.

Неудивительно, что UHPC используется во многих американских инфраструктурных проектах для ремонта стареющих мостов и дорог страны. Материал увеличивает срок службы мостов, снижая общую стоимость жизненного цикла этих конструкций.UHPC предъявляет более низкие требования к техническому обслуживанию, учитывая его увеличенный срок службы, что еще больше способствует снижению затрат на срок службы.

Идеальное применение для UHPC:

При оценке конкретной бетонной смеси для проекта важно знать различные прочностные свойства этой смеси. Знание этих цифр и того, какие свойства прочности бетона обеспечивают проекту, является ключом к выбору правильной бетонной смеси.

Бетонные инновации, такие как UHPC, превосходят традиционный бетон во всех областях прочности, что делает его разумным выбором для любых бетонных проектов.Снижение затрат на техническое обслуживание и увеличенный срок службы UHPC обеспечивает беспроигрышную надежность и более низкие затраты на жизненный цикл.

Фотография предоставлена ​​Peter Buitelaar Консультационная компания и дизайн FDN в Эйндховене, Нидерланды.

Поведение при повышении прочности на сжатие и прогнозирование цементно-стабилизированного щебня при низкотемпературном отверждении

Для материалов на основе цемента температура отверждения определяет скорость прироста прочности и значение прочности на сжатие.В этой статье используется смесь щебня, стабилизированная 5% цемента. Три сценария отверждения с контролируемой температурой в помещении и один сценарий естественного отверждения на открытом воздухе разработаны и реализованы для изучения сценария развития прочности закона прочности на сжатие, и они включают стандартное температурное отверждение (20 ° C), постоянное низкотемпературное отверждение (10 ° C), дневное взаимодействие отверждение при температуре (от 6 ° C до 16 ° C) и одно отверждение при естественной температуре на открытом воздухе (при температуре воздуха от 4 ° C до 20 ° C).Наконец, на основе метода зрелости модель оценки зрелости и силы получается путем использования и анализа данных, собранных в ходе внутренних испытаний. Модель доказана с высокой точностью на основании подтвержденных результатов, полученных на основе данных наружных испытаний. Это исследование обеспечивает техническую поддержку строительства цементно-стабилизированного щебня в регионах с низкими температурами, что способствует процессу строительства и контролю качества.

1. Введение

Цементно-стабилизированный щебень представляет собой низкодозированную смесь, стабилизированную цементным основанием, и его дозировка цемента составляет 5% или около того; он обычно используется в качестве основного слоя дорожного покрытия в Китае [1].Хорошо известно, зависит ли прочность на сжатие материалов на основе цемента в значительной степени от процесса отверждения, в котором особенно важны как температура, так и время отверждения [2, 3]. Для обычных лабораторных испытаний прочности на сжатие отверждение обычно проводится в условиях постоянной температуры 20 ° C во многих национальных спецификациях [4–6]. Но для проекта строительства дорожного покрытия фактическая температура отверждения на открытом воздухе зависит от погоды. Спецификация требует, чтобы при строительстве выдерживалась температура более 5 ° C [4].Однако в северных сезонных замороженных районах, таких как китайская провинция Хэйлунцзян, несмотря на то, что температура в апреле превышает 5 ° C, температура сильно меняется и очень нестабильна. Из-за большой разницы температур между днем ​​и ночью и того факта, что обычно не достигает 20 ° C во время отверждения, прочность на сжатие иногда не может соответствовать требованиям, что приводит к ослаблению керна. Поскольку сила не может быть подтверждена, нельзя разумно организовать следующий процесс [7].Исходя из этого особого температурного режима, существует острая необходимость в изучении законов увеличения прочности на сжатие при таких различных условиях низкотемпературного отверждения. В связи с этим в данной статье разработаны несколько экспериментов в помещении и на открытом воздухе для проведения такого исследования.

Было предпринято множество исследований для изучения влияния температуры отверждения на материалы на основе цемента, такие как грунт, стабилизированный портландцементом, легкий цементированный грунт, песок, угольная летучая зола и смеси извести [8–10].Что касается температуры отверждения, во многих исследованиях сообщалось о высокой температуре, и большинство результатов показали, что отверждение при высокой температуре может увеличить начальную прочность на сжатие [11, 12]. Прочность на сжатие и предел прочности на растяжение морских грунтов, стабилизированных цементом, которые использовались в качестве материалов для строительства дорог, были изучены при температурах отверждения от 40 ° C до 60 ° C в исследовательской работе Ванга [13]. Escalante-Garcia et al. [14] проверили прочность на сжатие гидратации при пяти температурах в диапазоне от 10 ° C до 60 ° C, и результаты показали, что высокая температура может улучшить начальную прочность на сжатие, но на самом деле может снизить прочность в долгосрочной перспективе.Wang et al. [15] провели испытания цемента на основе сульфоалюмината кальция при различных температурах отверждения (например, от 0 ° C до 80 ° C) с целью изучения влияния эволюции гидратации на прочность на сжатие. Результаты показали, что прочность на сжатие в раннем возрасте увеличивается с повышением температуры, но уменьшается в диапазоне температур от 40 ° C до 80 ° C, а прочность на сжатие в основном зависит от степени гидратации.

О низкотемпературном отверждении в литературе сообщалось о нескольких исследованиях.Прайс [16] показал, что прочность бетонной смеси при низкой температуре развивается значительно медленнее, чем при комнатной температуре. Husem et al. [17] проверили прочность на сжатие обычного и высококачественного бетона при стандартном отверждении (при 23 ± 2 ° C) и другом низкотемпературном отверждении (при 10, 5, 0 и –5 ° C, соответственно). Результаты показали, что прочность при 10 ° C и менее 10 ° C была ниже, чем при стандартном отверждении. Kim et al. [18] исследовали развитие прочности для историй отверждения при температуре 5 ° C, 20 ° C и 40 ° C, которые показали, что прочность бетона при низкой температуре была меньше, чем прочность при стандартной температуре изначально, но была почти такой же со временем.Marzouk et al. [19] провели испытания при пяти температурах в диапазоне от -10 ° C до 20 ° C в течение 3 месяцев и обнаружили, что существует пропорциональная зависимость между прочностью на сжатие и температурой.

Кроме того, с точки зрения прогнозирования прочности, многие литературные источники показали, что теория зрелости подходит и лучше для прогнозирования прочности, чем некоторые другие методы [20, 21]. В 1951 году Саул и др. [22] впервые предложили концепцию «зрелости», которая была определена как произведение времени отверждения и температуры.В знаменитой функции зрелости «Медсестра-Сол» было указано, что при одинаковой зрелости и сила будет примерно такой же. Хорошо известно, что модель зрелости Медсестра-Сол постоянно совершенствовалась и изменялась позже, и для прогнозирования силы были приняты различные математические модели. Например, в модели Читамбира эквивалентный возраст был предложен в качестве индекса, который сочетал в себе возраст и температуру отверждения [23]. Существует линейная зависимость между двойной логарифмической прочностью и логарифмической зрелостью при различных температурах отверждения.Jeong et al. [24] откалибровали соотношение относительной прочности и зрелости по фактору влажности.

Обзор существующей литературы показал, что, хотя было проведено много исследований по другим материалам на основе цемента, меньше исследований было предпринято для 5% стабилизированного цементом щебня. Многие исследования были посвящены влиянию температуры отверждения на прочность. Однако большинство из них были ориентированы на высокие температуры, и, кроме того, почти все отверждение (будь то при высокой или низкой температуре) проводилось при переменной постоянной контролируемой температуре в лабораторной камере.Важно отметить, что при таком отверждении не учитывались чередующиеся изменения температуры в течение реальных дней и ночей (как в строительном проекте), и не проводились испытания в естественных условиях на открытом воздухе. Таким образом, цель данного исследования состоит в том, чтобы сосредоточить внимание на законе увеличения прочности 5% цементно-стабилизированной щебеночной смеси при низкой температуре, которая соответствует фактической температуре строительного проекта. Теория зрелости будет использоваться для прогнозирования прочности на сжатие.Будет выбрана соответствующая функция, и соответствующие параметры будут откалиброваны и получены путем использования и анализа экспериментальных данных. Результаты исследований обеспечат техническую поддержку строительства цементно-стабилизированного щебня в регионах с низкими температурами, что благоприятно сказывается на качестве строительства и управлении процессом.

2. Описательный анализ температур в районе Харбина

Город Харбин, провинция Хэйлунцзян, Китай, расположен на северной широте 44 ° 04′∼ 46 ° 40 ′, в основном равнине, относящейся к континентальному муссонному климату северной умеренной зоны. и температура быстро меняется весной и осенью.Годовое количество осадков достигает 400–600 мм, коэффициент влажности находится в пределах 0,25–1,25, а средний максимум вечной мерзлоты составляет 120–240 см.

Распределение температуры от 15 th до 30 th апреля с 2012 по 2014 год в Харбине показано на Рисунке 1. Тенденция высокой и низкой температуры в период строительства в основном схожа. Большинство высоких температур распределяются в диапазоне от 15 ° C до 20 ° C, а большинство низких температур находятся в диапазоне от 5 ° C до 10 ° C.Средняя высокая температура составляет 16 ° C, а средняя низкая температура — 6 ° C.


На рисунке 2 показаны данные о суточной температуре с 15 -го до 30 -го апреля 2014 г. в городе Харбин. Данные других лет следуют аналогичной схеме. Примерно с 2:00 до 4:00 температуры были самыми низкими, с 5:00 температура начала стабильно повышаться в течение 9 часов с высокой скоростью, в 12:00 — 14:00 температуры достигли максимума, а затем температуры начали непрерывно снижаться. в течение 15 часов по относительно низкой цене.


3. Планы тестирования в помещении и на открытом воздухе

В соответствии с законом изменения температуры были разработаны три варианта тестирования в помещении и один тест на открытом воздухе. Температуры трех испытаний в помещении были определены в соответствии с данными за почти 3 года в Харбине, как показано на Рисунке 3, а испытания на открытом воздухе начались 17 -го числа апреля 2015 года.


Образцы цилиндров диаметром 150 мм. Размер × 150 мм с 5% -ным содержанием щебня, стабилизированного цементом, были приготовлены в соответствии со схемой приготовления смеси из стабилизированного щебня.Ежедневно проводились испытания прочности на неограниченное сжатие при трех различных температурах отверждения.

Случай 1. (стандартное температурное отверждение): стандартное отверждение полностью соответствовало требованиям спецификации операции, при которой температура составляла 20 ° C. Испытание на безусловное сжатие проводилось с 3 -го -го дня до 7 -го -го дня. Прочность на сжатие 7 th день (т.е. стандартная прочность 7 th ) использовалась в качестве эталона для справки.

Случай 2. (отверждение при постоянной низкой температуре): температура отверждения составляла 10 ° C, которая была определена в соответствии со средними высокими и средними низкими температурами, взвешенными по времени в течение почти трех лет. Прочность на сжатие была проверена, и испытания не прекращались до тех пор, пока прочность на сжатие не превысила стандартную прочность 7 th .

Случай 3. (отверждение при дневной температуре взаимодействия): температура была изменена в испытательной камере для имитации больших колебаний дневной и ночной температур.Как показано на рисунке 3, высокая температура поддерживалась на уровне 16 ° C с 7:00 до 15:00 в течение 8 часов, а низкая температура составляла 6 ° C с 16:00 до 6:00 в течение 14 часов. С 6:00 до 7:00 температура повысилась с 6 ° C до 16 ° C, а с 15:00 до 16:00 температура снизилась с 16 ° C до 6 ° C. Кроме того, прочность на сжатие будет продолжать проверяться после 7 th дней до тех пор, пока прочность не превысит стандартную прочность 7 th .

Случай 4. (отверждение при естественной температуре наружного воздуха): согласно данным прогноза погоды, испытание началось 17 апреля 2015 года.Образцы помещали в яму для испытаний. Был смоделирован основной слой дорожного покрытия и методы отверждения, а прочность на сжатие была испытана с 7 -го -го дня до тех пор, пока прочность не превысила стандартную прочность 7 -го . Конкретный рабочий процесс и метод измерения температуры обсуждаются ниже.
Сначала вырыли яму глубиной 15 см, а дно выровняли. Затем образцы были аккуратно помещены в яму, и промежуток был заполнен мелким заполнителем и уплотнен.Верх был покрыт белым геотекстилем для сохранения влаги, а вода разбрызгивалась на поверхность каждый день в полдень. Фотографии размещения образцов показаны на рисунке 4.
Три образца использовались для измерения температуры. На каждом образце четыре датчика температуры были встроены в верхнюю, среднюю внешнюю, нижнюю и центральную части тела, которые использовались для измерения температуры различных частей каждого образца. На рис. 5 схематически показано расположение датчиков температуры, среди которых центральный датчик был встроен в процесс производства образца, а три внешних датчика были позже закреплены на поверхности.Изображения, показывающие центральные датчики и средние внешние датчики, приведены на рисунке 6. Во время периода отверждения на открытом воздухе для измерения температуры использовался переносной термометр, и частота измерения составляла 1 показание / час.


4. Характеристики материала и методы испытаний
4.1. Характеристики цемента

В эксперименте использовался цемент Harbin TIANE 425 #. Технические показатели цемента приведены в таблице 1. Обратите внимание, что дозировка цемента составляет 5% от массы заполнителя.

Значение

Индекс Время начального схватывания Время окончательного схватывания 3D прочность (МПа)
Прочность на сжатие Прочность на изгиб

1 ч 3 мин 2 ч 40 мин 21,3 4,8

4.2. Aggregate Grade

Используемые агрегаты были четырех размеров: 2 см – 3 см, 1 см – 2 см, 0,5 см – 1 см и 0 см – 0,5 см. Используемый гравий соответствовал требованиям «Технических условий для строительства дорожного покрытия (JTJ034-2000)». Совокупный состав композита представлен в таблице 2.


Размер экрана (мм) 26,5 19 9,5 4,75 2,36 0,6 0.075

Композитный сорт 97,7 77,0 48,0 28,6 21,0 10,5 2,2

4,3. Испытание на уплотнение

Для подготовки к изготовлению образца максимальная плотность в сухом состоянии и оптимальное содержание воды в смеси были определены путем испытаний на уплотнение. В соответствии с процедурами, описанными в «Методике испытаний стабилизированных материалов для неорганического связующего для дорожного строительства (JTG E51-2009)», оптимальное содержание воды составляло 6.8%, а максимальная плотность в сухом состоянии составляла 2,144 г / см 3 .

4.4. Испытание на неограниченное сжатие

Образцы были изготовлены и хранились в камере для отверждения. В соответствии с требованиями, температуры отверждения в трех случаях контролировались на уровне 20 ° C и 10 ° C и в диапазоне от 6 ° C до 16 ° C. Образцы были подвергнуты испытаниям на безусловное сжатие в соответствии с разработанным планом испытаний.

5. Результаты и обсуждение
5.1. Результаты испытаний в помещении

На рис. 7 показан закон увеличения прочности на сжатие для трехкомпонентных испытаний в помещении.Что касается стандартной температуры отверждения, равной 20 ° C (Случай 1), прочность увеличивается с увеличением времени отверждения, и скорость прироста изначально высока, но постепенно снижается до 7 -го дня. Прочность составляет 3,5 МПа, что соответствует требованиям стандарта. В условиях постоянной низкой температуры 10 ° C (Случай 2) прочность на сжатие непрерывно увеличивается с увеличением времени отверждения, но скорость прироста меньше, чем при стандартных условиях отверждения. Прочность на сжатие — 2.2 МПа на 7 -й день , что составляет лишь 62,9% от стандартной прочности 7 -го . Прочность на сжатие не достигает стандартной прочности 7 th до 14 th день. При дневной температуре взаимодействия от 6 ° C до 16 ° C (Случай 3) прочность на сжатие также увеличивается с увеличением времени отверждения, но скорость прироста меньше, чем при стандартном отверждении, а также немного меньше, чем что в условиях постоянного низкотемпературного отверждения.Прочность на сжатие составляет 2,1 МПа в день 7 th , что составляет только 60% от стандартной прочности 7 th при стандартных условиях отверждения. Прочность на сжатие не достигает стандартной прочности 7 th до 14 th дня.


5.2. Результаты испытаний на открытом воздухе
5.2.1. Закон переноса температуры образцов в естественной окружающей среде на открытом воздухе

На рисунке 8 показана кривая дневной температуры в каждом положении образцов 20 апреля 2015 г.Видно, что изменение температуры в образцах было аналогично изменению температуры воздуха, а диапазон колебаний в верхней части был больше, чем в средней и нижней частях. Разница между центральным и средним внешним видом была небольшой, что указывало на небольшой перенос температуры в горизонтальном направлении. Закон переноса температуры образцов в естественной среде на открытом воздухе представлен следующим образом: (1) С 6 часов утра температура начала повышаться, и разница температур между верхней, средней и нижней частями также постепенно увеличивалась.(2) В 11:00 — 14:00 разница температур между верхней и нижней частью достигла максимума 8 ° C, в то время как разница между верхней и средней температурой была около 6 ° C, а разница температур средней и нижней составляла около 2 ° C. С. Это ясно указывало на то, что температура демонстрировала нелинейную картину в направлении глубины. Другими словами, тепло, полученное поверхностью, было самым значительным; затем тепло заметно уменьшилось, когда оно перешло в середину, и почти не существовало до дна.(3) В 13 часов дня верхние температуры достигли максимума, а в 14 часов средняя и нижняя температуры достигли максимума днем. После этого температура всех частей постепенно снижалась, при этом температура верхней части падала с максимальной скоростью, а средняя и нижняя температуры медленно понижались. (4) С 20 часов вечера до почти 5 часов утра или около того температуры в каждой позиции были в основном то же самое, в котором разница температур между верхней, средней и нижней частями находится в пределах 2 ° C.


Данные «Температура × Время» использовались в качестве индекса для анализа статуса отверждения в каждой позиции образцов. Кумулятивная сумма «Температура × Время» для каждого положения образцов в естественной окружающей среде была рассчитана для 7 -го дней и показана в Таблице 3. «Температура × Время» для стандартного отверждения 7 -го дней была рассчитано как 3360 ° C · ч.

900 19

Дни отверждения в месте (г) Верхний Средний Нижний Центральный

7 2057 1727 1690
8 2360 1987 1641 1946
9 2660 2247 1853 2200
10 2965 2515 2068 2462
11 3265 2779 2280 2719
12 3569 3045 2498 2979
13 3877 3315 2720 ​​ 3246

Как видно из Таблицы 3, когда отверждение продолжалось до 12 -го суток, значение «Температура × Время» в верхнем положении достигло 3569 ° C · ч, что превысило стандартное отверждение на 7 чт сутки 3360 ° С · час.Однако она составляла всего 2498 ° C · ч в нижнем положении и 2979 ° C · ч в центральном положении. Основываясь на теории зрелости, можно считать, что прочность на сжатие в верхнем положении достигла стандартной прочности 7 th , а в среднем и нижнем положениях не достигла стандартной прочности 7 th . Это также может быть хорошим объяснением того, почему на строительной площадке иногда может произойти сбой керна, когда только верхняя часть является твердой, а нижняя часть довольно рыхлая, как показано на Рисунке 9.


5.2.2. Закон увеличения прочности при отверждении при естественной температуре на открытом воздухе

На рисунке 10 показан закон увеличения прочности при отверждении при естественной температуре на открытом воздухе. Прочность на сжатие увеличивается с увеличением количества дней выдержки. Прочность на 7-й день составляла 2,2 МПа, что составляло всего 62,9% от стандартного отверждения, и достигала 7 th стандартной прочности, когда количество дней достигло 13.


6. Сравнение закона увеличения прочности и определение прочности при созревании. Модель
6.1. Сравнение закона увеличения прочности при четырех условиях отверждения

На рисунке 11 представлены сравнения кривых увеличения прочности на сжатие при различных условиях отверждения. Можно сделать следующие выводы: (1) Во всех четырех случаях прочность на сжатие увеличивалась с увеличением времени отверждения. Скорость отверждения при низкой температуре была ниже, чем при отверждении при стандартной температуре отверждения. Коэффициенты усиления можно отсортировать в порядке убывания (от высокого к низкому): отверждение при стандартной температуре> отверждение при естественной температуре на открытом воздухе> отверждение при постоянной низкой температуре> отверждение при дневной интерактивной температуре, в котором разница между двумя последними была незначительной.(2) Кривые увеличения прочности для четырех случаев соответствовали логарифмической кривой с видом функции. После калибровки модели было обнаружено, что средний коэффициент усиления для стандартной температуры составлял a = 1,0152, для постоянной низкой температуры 10 ° C он составлял a = 1,4635, для дневной интерактивной температуры он составлял a. = 1,5 · 106, а для естественной температуры наружного воздуха средний коэффициент усиления составил a = 1,6 · 107. (3) Для достижения той же силы, равной 3.При 5 МПа количество дней, необходимых для каждого из этих четырех случаев, было показано следующим образом: 7 дней для стандартной температуры, 14 дней для постоянной низкой и дневной температуры взаимодействия и 13 дней для температуры наружного воздуха. (4) 7 th day стандартная прочность достигла 3,5 МПа, в то время как остальные три составляли 2,2 МПа, 2,1 МПа и 2,2 МПа, соответственно, что составляло только 62% или около того. (5) Среди трех случаев низкотемпературного отверждения Кривые постоянной низкой температуры и естественной температуры наружного воздуха были такими же до 11 -го дней, оба из которых также были очень близки к случаю дневной температуры взаимодействия, хотя дневное интерактивное улучшение было самым медленным среди этих трех случаев.Теория зрелости будет использована для объяснения этого результата в следующем разделе.


6.2. Оценка и прогноз модели зрелости-прочности

Смесь щебня, стабилизированная цементом, состоит в основном из цемента, рассортированного щебня и воды. По составу аналогичен цементобетону. Единственная разница заключается в дозировке цемента. Теория зрелости широко используется для прогнозирования прочности цементного бетона. Таким образом, с точки зрения состава материала функция прогнозирования может быть установлена ​​на основе теории зрелости для прогнозирования прочности на сжатие 5% -ной цементно-стабилизированной смеси щебня.Поскольку цементно-стабилизированный щебень можно рассматривать как цементный бетон с низкой дозой цемента, есть четыре функции, которые можно использовать на основе существующих исследований цементного бетона, включая степенную функцию, логарифмическую функцию, экспоненциальную функцию и гиперболическую функцию [25 ].

Зрелость трех экспериментов в помещении была рассчитана и показана в таблицах 4 и 5. Взаимосвязь между зрелостью и силой в трех случаях показана на рисунке 12. Кажется, что логарифмические функции являются лучшими прогностическими кривыми во всех трех случаях. и, следовательно, он использовался в качестве предпочтительной функции для цементно-стабилизированной щебеночной смеси.Кроме того, путем объединения данных по всем трем случаям и разработки единой прогнозной модели параметры a = 1,9358 и b = 12,183 были получены путем аппроксимации данных по прочности на сжатие и зрелости, а коэффициент корреляции составил R 2 = 0,9907. Короче говоря, модель прогнозирования зрелости и прочности 5% цементно-стабилизированной щебеночной смеси была.


дней 3 дня 4 дня 5 дней 6 дней 7 дней

Отверждение на стойке 1440 1920 2400 2880 3360

11 d 9 0011 3042

дней 7 d 8 d 9 d 10 d 12 d 13 d 14 d

Корпус 2 1680 1920 2160 2400 2640 2880 3120 3360
Корпус 3 1638 1872 2106 2340 2574 2808 3276


Для случаев естественного отверждения на открытом воздухе данные центрального положения использовались для расчета зрелости. Следует отметить, что один час использовался в качестве диапазона температур, затем накапливались в один день и снова накапливались по дням, чтобы получить стоимость погашения.Используя полученную функцию для прогнозирования прочности на сжатие при отверждении на открытом воздухе, результаты были показаны в таблице 6. Обратите внимание, что эти результаты были очень близки к испытанной прочности, а коэффициент корреляции достиг 99,865%, что ясно указывает на высокий точность модели. Согласно модели, прочность на сжатие при низкотемпературном отверждении может быть спрогнозирована с учетом зрелости, что дает справочную информацию для расчета прочности и определения графика строительного проекта для инженерных приложений.


дней 7 дней 8 дней 9 дней 10 дней 11 дней 12 дней 13 дней

Срок погашения (° C · ч) 1690 1946 2200 2462 2719 2979 3246
Испытанное значение (МПа) 2.200 2.500 2.700 2,900 3,100 3,300 3,500
Прогнозируемое значение (МПа) 2,205 2,478 2,715 2,933 3,125 3,302 3,468
0 900
7. Заключение

В настоящем исследовании обсуждается закон увеличения прочности на сжатие 5% -ного цементного щебня при низкотемпературном отверждении, с особым акцентом на отверждение при различных температурах, которые аналогичны различным температурам воздуха в реальный мир.

В этой статье были проведены эксперименты при трех вариантах отверждения при температуре в помещении и одном естественном отверждении на открытом воздухе. Экспериментальные результаты показали, что прочность на сжатие увеличивалась с увеличением времени отверждения во всех четырех случаях и что скорость увеличения при низкой температуре была меньше, чем при стандартной температуре. Коэффициенты усиления можно отсортировать в порядке убывания: отверждение при стандартной температуре> отверждение при естественной температуре на открытом воздухе> отверждение при постоянной низкой температуре> отверждение при дневной интерактивной температуре.Стандартная прочность достигла 3,5 МПа на 7 -й день , в то время как остальные составляли только 62% или около того. Численные результаты также показали, что для достижения той же прочности 3,5 МПа количество дней, необходимых для каждого случая низкой температуры, составляло 14 дней как для постоянной низкой, так и дневной температуры взаимодействия и 13 дней для температуры наружного воздуха.

Согласно температурным данным и информации о прочности, собранной в ходе нескольких испытаний в помещении, была создана оценочная модель для прогнозирования прочности на основе теории зрелости.Доказано, что модель обладает способностью прогнозировать с высокой точностью на основе подтвержденных результатов, полученных на основе данных наружных испытаний.

По мере развития направления исследований в будущем характеристики, связанные с прочностью на сжатие в долгосрочной перспективе, также могут быть исследованы с большим количеством данных, собранных с течением времени.

Доступность данных

Данные, использованные для подтверждения выводов этого исследования, можно получить у соответствующего автора по запросу.

Конфликт интересов

Авторы заявляют об отсутствии конфликта интересов.

Благодарности

Авторы выражают искреннюю благодарность Национальной программе ключевых исследований и разработок Китая (2017YFF0205600) за финансовую поддержку.

Прочность 28 дней — INFINITY ДЛЯ ЦЕМЕНТНОГО ОБОРУДОВАНИЯ

Бетонные конструкции спроектированы исходя из 28-дневной прочности цилиндров на раздавливание. 28-дневная прочность цилиндра фактически представляет собой характеристическую прочность бетона. Испытание бетонных цилиндров в возрасте 28 дней является обязательным в соответствии почти со всеми требованиями строительных норм.

Бетон обладает такими преимуществами, как прочность, доступность, долговечность, гибкость и экономичность. В случае проектирования бетонной конструкции важным элементом является прочность бетона на сжатие. Прочность бетона на сжатие в течение 28 дней обычно считается расчетной. Для обеспечения такой прочности необходимо подождать значительное время, т.е. 28 дней. Он становится обязательным, потому что он также представляет собой процесс контроля качества смешивания, укладки, уплотнения, отверждения бетона и т. Д.Проектирование бетонной смеси — это процесс, в котором используются рекомендации по кодам и опыт соответствующего инженера. Из-за некоторой ошибки в конструкции смеси или ее приготовлении на месте результаты испытаний могут не соответствовать расчетной прочности, тогда повторение всего процесса становится обязательным, что может быть дорогостоящим и трудоемким.

какое время отверждения бетона?

сколько времени требуется для высыхания бетона

сколько времени требуется для высыхания бетона?

Время схватывания бетона?

Время высыхания бетона?

каков процент увеличения прочности бетона от 7 до 28 дней?

насколько увеличивается прочность бетона через 28 дней

бетон не перестает твердеть.но по прошествии 28 дней процесс упрочнения будет очень медленным и игнорироваться менее 1%

таблица времени выдержки бетона

каковы основные испытания бетона на прочность?

  • Испытание на оседание перед отправкой с бетонного завода и по прибытии на место.
  • Испытание на прочность при сжатии.
  • Тест на водопроницаемость.
  • Экспресс-тест на проникновение хлорид-иона.
  • Тест на водопоглощение.
  • Испытание на первичную абсорбцию поверхности.

www.iti.northwestern.edu/cement/monograph/Monograph5_1.html

какова минимальная прочность бетона на сжатие через 28 дней?

Марка бетона или характеристическая прочность куба fck характеризуется его кубической прочностью на сжатие. Таким образом, куб для марки M25 должен показывать прочность 25 н / мм2. Но когда мы обсуждаем критерий приемки, стандартное отклонение для M25 составляет 5 согласно IS 456-2000.

Итак, критерий приемки — fck +0.2 или 658 кН. В идеале, чтобы быть в пределах разрешения IS

, какой процент максимальной прочности бетона через 28 дней?

99%

Калькулятор прочности бетона?

, пожалуйста, посетите этот сайт

https://www.calculator.net/concrete-calculator.html

что мне делать, если сборная колонна, которая уже установлена, затем 28-дневный тест куба не прошел?


Какие-либо корректирующие действия?

Если 28-дневные испытания не дадут указанной прочности на сжатие, у вас есть несколько вариантов, которые следует рассмотреть.

Первый вариант — взять образцы керна в соответствии с разделом 1905.6.6 IBC и разделом 5.6.5 ACI 318, который был разработан для исследования результатов испытаний на низкую прочность. После того, как образцы керна проанализированы и вы выполните шаги, указанные в ACI 5.6.3.3, если вы находитесь в пределах 500 фунтов на квадратный дюйм, но ниже требуемого f’c, вам необходимо предпринять шаги для увеличения прочности бетона. Если вы упадете ниже предела в 500 фунтов на квадратный дюйм, вы должны удовлетворить пропускную способность конструкции. Шаги четко изложены в ACI 5.6.5.

Имейте в виду, что важно выполнять шаги для ACI. Хотя снятие, замена и ремонт дефектной секции кажется самым безопасным путем, процедуры ACI все же следует выполнять в первую очередь. Затем, если будет определено, что бетон действительно недостаточен и существует проблема с безопасностью жизни, вы полностью задокументируете свои действия — выявление и устранение проблемы.

Следующий вариант — связаться с ответственным инженером-конструктором для получения дальнейших инструкций. Если дополнительные 56-дневные цилиндры были отлиты, испытаны и достигли требуемой проектной прочности, то ответственный инженер-строитель должен принять или нет 56-дневные испытания как показатель того, что бетон достиг своей проектной прочности.

Другие варианты, которые следует учитывать:
-Взятие дополнительных образцов керна для анализа
-Проведение нагрузочного теста
-Предоставление альтернативных вариантов ремонта и усиления конструкции
-Отклонить деталь и конструкцию полностью »

какие факторы (например, температура или влажность) повлиять на скорость отверждения?

На скорость затвердевания бетона влияет множество факторов, включая, помимо прочего, следующие:

— Температура окружающей среды во время смешивания
— Температура окружающей среды во время заливки
— Температура окружающей среды во время процесса твердения
— Температура воды в смеси
— Отношение воды к вяжущим материалам (Вт / см)
— Пропорции смеси
— Влагосодержание заполнителей
— Любые химические или минеральные добавки, используемые в бетонной смеси, включая продукты, специально предназначенные для увеличения или уменьшить скорость отверждения бетона.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *