Skip to content

Генераторы на неодимовых магнитах: генератор на неодимовых магнитах своими руками видео + схема

Содержание

Генератор на неодимовых магнитах

Неодимовые магниты применяются не только в сувенирной продукции. Материал нашел применение во многих областях электротехники из-за качественного сцепления между отдельными деталями.

Ветрогенератор тока своими руками

С помощью этого материала можно создать мощный автономный источник электрической энергии – тихоходный магнитный генератор.  Такие конструкции обладают высоким КПД. Для запуска необходима энергия ветра, воды или др.

Неодимовые магниты применяются во многих областях электротехники

Преимущества установок:

  • экономия электрической энергии;
  • возможность подключать портативные электронные устройства и электроинструменты;
  • возможность изготовления своими руками.

Генератор на неодимовых магнитах используют для:

  • подзарядки аккумуляторных батарей авто;
  • подключения низковольтных бытовых электроприборов и портативной компьютерной техники;
  • создания автономных источников электрической энергии для дачных и садовых домиков.

Трехфазный генератор на неодимовых магнитах


Ветрогенераторы на альтернативных источниках приобрели широкую популярность за счет своей надежности, высокого КПД и практичности.

Благодаря внедрению в конструкцию неодимовых магнитов (принцип магнитной левитации) стало возможно сооружать более совершенные вертикальные модели, которые используют свободное инерционное вращение лопастей.

Новые модели не содержат редукторы, т.к. многополюсность установки обеспечивает необходимое напряжение при малом числе оборотов, а применение лопастей улучшенной формы позволяет выдавать полную мощность установки уже при скорости ветра 4 м/c.

Конструкции современных вертикальных ветрогенераторов не имеют повышенной нагрузки на подшипники, из-за чего возникало большое трение и снижение общего КПД установки.

Ветрогенератор тока своими руками – мотор для конструкции

Где можно использовать ветрогенератор:

  • садовые и дачные дома, квартиры;
  • здания и сооружения;
  • магазины, небольшие промышленные установки, рекламные щитки и др.

Преимущества ветрогенераторов на постоянных магнитах:

  • минимальные потери на трение;
  • длительный срок эксплуатации;
  • отсутствие шума при работе и вибрации;
  • снижение экономических затрат на установку;
  • отсутствие необходимости постоянного обслуживания установки;
  • существует ряд моделей с инвертором для зарядки аккумуляторной батареи.

Покупка ветрогенераторов оправдана при больших нагрузках и постоянной эксплуатации электроустановки. Для частных домов, а также для электроснабжения маломощных потребителей целесообразно сооружать ветрогенератор своими руками.

Ветрогенератор состоит из нескольких основных узлов: статора и ротора (3-6 лопастей), на который действуют ветровые нагрузки. При вращении ротора появляется магнитное поле и ЭДС. Трехфазные модели абсолютно бесшумны при любых погодных условиях.

Самодельные конструкции изготавливают одного типа – аксиального. При наличии необходимых деталей самостоятельно изготовить магнитный генератор не сложно.

Мало,- и среднемощные модели изготавливают с длиной лопасти до трех метров.

Ветрогенератор на постоянных магнитах, изготовленный своими руками, может быть выполнен с одинарным или двойным креплением для мощных моделей (большой мотор), также в них дополнительно применяют ферритовые магниты.

Монтаж ротора


Если для создания ветрогенератора используются детали от автомобиля, необходимо их подготовить. Ступицы очистить от краски, грязи, и смазки, обезжирить стальной щеткой. По завершении работ поверхность ступицы также следует заново окрасить для увеличения срока эксплуатации. На диск от авто необходимо установить и приклеить неодимовые магниты, обычно 30 шт. При необходимости получить более мощную установку, требуется большее количество магнитов.

Число полюсов для однофазных установок равно числу магнитов, для трехфазной нагрузки – это соотношение три к четырем.

Катушки для статора ветрогенератора

Детали автомобиля ступица с дисками тормоза – мощные сбалансированные конструкции, на основе которых можно изготовить долговечную ветрогенераторную установку.

Неодимовые магниты в установке


Для стандартной модели используют плоские магниты диаметром 25мм, высотой не более 8мм в количестве 20 шт. на каждом диске. Количество для каждой установки определяется чертежом ступицы. На поверхности не должно оставаться полых промежутков.

Монтаж заключается в приклеивании магнитов по кругу, чередуя полюса. После застывания конструкцию необходимо залить эпоксидной смолой. Края диска обрамляют шпоном, пластилином или плотным картоном. Для монтажа следует применять качественный клей, который необходимо проверить на прочность.

В конструкции ветрогенератора неодимовые магниты – самая важная и дорогая деталь. Поэтому к выбору количества и размеров следует подходить ответственно.

Количество фаз


Изготавливают оборудование двух типов:

  • Однофазные. Сооружаются для обеспечения электроэнергией маломощных установок. Главным недостатком этого типа является чрезмерные шумы из-за непостоянства нагрузки и скачкообразности амплитуды статора.
  • Трехфазные. При этом обеспечивается постоянство нагрузки: при падении тока в одной фазе, на другой происходит его возрастание (компенсация фаз). Благодаря бесшумной работе генератора ветрогенератор имеет больший срок эксплуатации. Эффективность трехфазных моделей до 50% больше, чем нескольких однофазных при тех же условиях работы.

Трехфазные тихоходные ветрогенераторы предпочтительнее, т.к. такие конструкции более устойчивы к ветровым нагрузкам и внешним вибрациям.

Намотка катушки


Для эффективной работы генератора необходимо произвести расчет статорных катушек.

Намотка катушек производится проводами большого сечения для того, чтобы снизить сопротивление на генераторе. Для этого используют специальные оправы или станки. Вытянутость катушки обеспечивает большее количество витков проволок. Ширина отверстия подбирается не менее ширины магнитов. Толщина статора соответствует толщине магнитов.

Форма магнитов произвольная:

  • прямоугольная, поле которых вытянуто по длине;
  • круглая, в которых поле сосредоточено в центре.

Тихоходные модели обеспечивают напряжение 12 В уже со 100 оборотов лопастей в минуту. При этом такая модель должна иметь около 1200 витков, равномерно распределенных по плоскости кольца.

Измерение тока в моделях, сделанных своими руками, производится без нагрузки. Реальный показатель, который будет производить установка, меньше, в связи с потерями на диодном мосту и проводах.

Большее число полюсов увеличивает частоту тока и мощность установки. Расчет количества витков должен соответствовать необходимым параметрам системы.

После изготовления статора необходимо приступить к изготовлению мачты и установке платформы.

Мачта, винт и платформа ветряка

Винт ветряка выполняется из ПВХ-труб диаметром 160 мм, также встречаются конструкции из алюминиевых сплавов и стали. Оптимальное количество лопастей – 6 шт.

Высота стандартной мачты ветряка – 6 м. Установка на более высокой отметке позволяет обеспечить большую скорость движения лопастей. На высоту мачты также влияет местная застройка. Необходимо обеспечить установку конструкции на высоте, при которой движению лопастей не будут препятствовать стены зданий и ветки деревьев. Если установка предполагается на открытой незастроенной площадке, высота может быть небольшая.

Установка ветрогенератора на мачту

Под мачту необходимо вырыть котлован, установить стальную трубу большого диаметра, на которую дальше будет установлена платформа (приварена). Поднимать вертикально мачту необходимо ручной лебедкой, т.к. вес металлической конструкции с оборудованием достаточно большой.

Трубу следует забетонировать. Для обслуживания ветрогенератора необходимо использовать таль.

Повышение мощности ветрогенератора

  1. Включение в схему дополнительных магнитов. На поверхность существующих доклеить равное или меньшее количество магнитов.
  2. Правильное конструирование лопастей ветряка. Неточности могут привести к увеличению сопротивления на лопатках и снижению эффективности установки.
  3. Для усиления магнитопотока в катушку устанавливают пластины трансформатора. Незначительное залипание полностью компенсируется повышением КПД установки. Метод позволяет увеличить мощность установки на 60%.

Видео. Генератор своими руками.

Ветрогенератор на неодимовых магнитах зарекомендовал себя как автономный источник электрической энергии. При правильных расчетах и конструировании КПД установки достаточно высок и позволяет успешно переключить часть нагрузки электроприборов.

Существует много вариантов моделирования, лучшим из них является ветрогенератор от Александра Седова, в котором потребленную мощность возможно увеличить до 4 раз (при потреблении 50 Вт на выходе установки можно получить до 200 Вт).

Оцените статью:

Использование неодимовых магнитов для генераторов


Не для кого не секрет, что неодимовые магниты используются совершенно в разных областях жизнедеятельности человека. Магниты применяют в качестве основных деталей различных механизмов и устройств, в производстве и изготовлении приборов, генераторов и т.д.

Генератор и магнит

Собрать самостоятельно генератор не так сложно, как кажется на первый взгляд. Основой генератора станет неодимовый магнит, который позволит получить высокую мощность. Сегодня невозможно найти более мощного магнита, чем неодимовый, так как он отличается достаточно сильными характеристиками при своем компактном размере. Еще одно огромное преимущество неодимовых магнитов – это их разнообразие по габаритам, массе и силе. Именно это преимущество позволяет подобрать неодимовый магнит точно по заданным параметрам.

Купить неодимовый магнит для создания генератора можно по доступным ценам в интернет-магазине supermagnit.net. Здесь можно подобрать любую необходимую форму: прямоугольный, в форме диска, прута, кольца и т.д. Если самостоятельно собирать генератор, лучше всего подойдут магниты в форме прямоугольника (бруска) благодаря расположению магнитного поля внутри них, которое проходит вдоль длинной стороны магнита. Такой магнит будет значительно стабильнее и намного удобнее при установке в конструкцию.

Ветрогенератор

Постоянные неодимовые магниты прекрасно подходят для ветрогенераторов по ряду причин:

  • Высокая мощность неодимового магнита в 10 раз превосходит аналогичный ферритовый.
  • Неодимовый магнит не требует для своей работы сторонней силы, он работает сразу. Таким образом, при появлении ветра, ветрогенератор сразу вырабатывает энергию.
  • Несмотря на компактность неодимового магнита, его мощность будет достаточно высокой, что позволяет создавать мощные генераторы небольшого размера.

Прежде чем купить неодимовый магнит для генератора, важно определиться со всеми параметрами. Если сравнивать неодимовый и ферритовый магниты, то цена второго будет значительно ниже, однако, как уже было сказано выше, ферритовый магнит по своим характеристикам сильно уступает неодимовому магниту.

Собирая генератор, важно учитывать все нюансы сборки: полярность, схему и чередование полюсов магнитов. Чтобы генератор работал в разных климатических условиях и широком диапазоне температур, лучше выбрать неодимовый магнит, который прослужит значительно дольше ферритового.


Ветрогенератор на неодимовых магнитах: чертежи, расчет, своими руками

Неодимовый магнит – это редкоземельный металл, обладающий стойкостью к размагничиванию и способностью намагничивать некоторые материалы. Используется при изготовлении электронных устройств (жесткие диски компьютеров, металлодетекторы и т.д.), медицине и энергетике.

Неодимовые магниты используются при изготовлении генераторов, работающих в различных видах установках, вырабатывающих электрический ток.

В настоящее время генераторы, изготовленные с использованием неодимовых магнитов, широко используются при изготовлении ветровых установок.

Основные характеристики

Содержание статьи

Для того, чтобы определиться в целесообразности изготовления генератора на неодимовых магнитах, нужно рассмотреть основные характеристики данного материала, которыми являются:

  • Магнитная индукция В — силовая характеристика магнитного поля, измеряется в Тесла.
  • Остаточная магнитная индукция Br — намагниченность, которой обладает магнитный материал при напряжённости внешнего магнитного поля, равной нулю, измеряется в Тесла.
  • Коэрцитивная магнитная сила Hc — определяет сопротивляемость магнита к размагничиванию, измеряется в Ампер/метр.
  • Магнитная энергия (BH)max -характеризует, насколько сильным является магнит.
  • Температурный коэффициент остаточной магнитной индукции
    Tc of Br
    – определяет зависимость магнитной индукции от температуры окружающего воздуха, измеряется в процентах на градус Цельсия.
  • Максимальная рабочая температура Tmax — определяет предел температуры, при которой магнит временно теряет свои магнитные свойства, измеряется в градусах Цельсия.
  • Температура Кюри Tcur — определяет предел температуры, при которой неодимовый магнит полностью размагничивается, измеряется в градусах Цельсия.

В состав неодимовых магнитов, кроме неодима входит железо и бор и зависимости от и их процентного соотношения, получаемое изделие, готовый магнит, различается по классам, отличающимся по своим характеристикам, приведенным выше. Всего выпускается 42 класса неодимовых магнитов.

Достоинствами неодимовых магнитов, определяющими их востребованность, являются:

  • Неодимовые магниты обладают наиболее высокими магнитными параметрами Br, Нсв, Hcм , ВН.
  • Подобные магниты имеют более низкую стоимость в сравнении с подобными металлами, имеющими в своем составе кобальт.
  • Обладают способностью работать без потерь магнитных характеристик в температурном диапазоне от – 60 до + 240 градусов Цельсия, с точкой Кюри +310 градусов.
  • Из данного материала возможно изготовить магниты из любой формы и размеров (цилиндры, диски, кольца, шары, стержни, кубы и др.).

Ветрогенератор на неодимовых магнитах мощностью 5,0 кВт

В настоящее время отечественные и зарубежные компании все более широко используют неодимовые магниты при изготовлении тихоходных генераторов электрического тока. Так ООО «Сальмабаш», г. Гатчина Ленинградской области, выпускает подобные генераторы на постоянных магнитах мощностью 3,0-5,0 кВт. Внешний вид данного устройства приведен ниже:

Корпус и крышки генератора изготавливаются из стали, в дальнейшим с покрытием лакокрасочными материалами. На корпусе предусмотрены специальные крепления, позволяющие закрепить электрический аппарат на несущей мачте. Внутренняя поверхность обработана защитным покрытием, предотвращающим коррозию металла.

Статор генератора набран из электротехнических пластин стали.

Обмотка статора — выполнена эмаль-проводом, позволяющим устройству работать продолжительное время с максимальной нагрузкой.

Ротор генератора имеет 18 полюсов и установлен в подшипниковых опорах. На ободе ротора размещены неодимовые магниты.

Генератор не требует принудительного охлаждения, которое осуществляется естественным путем.

Технические характеристики генератора мощностью 5,0 кВт:

  • Номинальная мощность – 5,0 кВт;
  • Номинальная частота – 140,0 оборотов/минуту;
  • Рабочий диапазон вращения – 50,0 – 200,0 оборотов/минуту;
  • Максимальная частота – 300,0 оборотов/минуту;
  • КПД – не ниже 94,0 %;
  • Охлаждение – воздушное;
  • Масса – 240,0 кг.

Генератор оснащен клеммной коробкой, посредством которой осуществляется его подключение к электрической сети. Класс защиты соответствует ГОСТ14254 и имеет степень IP 65 (пылезащищенное исполнение с защитой от струй воды).

Конструкция данного генератора приведена на рисунке, приведенном ниже:

где: 1-корпус, 2- крышка нижняя, 3- крышка верхняя, 4- ротор, 5- неодимовые магниты, 6- статор, 7- обмотка, 8- полумуфта, 9- уплотнения, 10,11,12- подшипники, 13- клеммная коробка.

Плюсы и минусы

К достоинствам ветрогенераторов, изготовленных с использование неодимовых магнитов можно отнести следующие характеристики:

  • Высокий КПД устройств, достигаемый за счет минимизации потерь на трение;
  • Продолжительные сроки эксплуатации;
  • Отсутствие шума и вибрации при работе;
  • Снижение затрат на установку и монтаж оборудования;
  • Автономность работы, позволяющая осуществлять эксплуатацию без постоянного обслуживания установки;
  • Возможность самостоятельного изготовления.

К недостаткам подобных устройств можно отнести:

  • Относительно высокая стоимость;
  • Хрупкость. При сильном внешнем воздействии (ударе), неодимовый магнит способен лишиться своих свойств;
  • Низкая коррозийная стойкость, требующая специального покрытия неодимовых магнитов;
  • Зависимость от температурного режима работы – при воздействии высоких температур, неодимовые магниты теряют свои свойства.

Как сделать своим руками

Ветровой генератор на основе неодимовых магнитов отличается от прочих конструкций генераторов тем, что легко может быть изготовлен самостоятельно в домашних условиях.

Как правило за основу берут автомобильную ступицу или шкивы от ременной передачи, которые предварительно очищаются, если это бывшие в употреблении запасные части и подготавливаются к работе.

При наличии возможности изготовить (выточить), специальные диски, лучше остановиться на этом варианте, т.к. в этом случае не придется подгонять геометрические размеры наматываем ых катушек к размерам используемых заготовок.

Неодимовые магниты следует приобрести, для чего можно воспользоваться сетью интернет или услугами специализированных организаций.

Один из вариантов изготовления генератора на неодимовых магнитах, с использованием дисков, специально изготовленных для этих целей, предлагает к рассмотрению Яловенко В.Г. (Украина). Данный генератор изготавливается в следующей последовательности:

  1. Из листовой стали вытачиваются два диска диаметром 170,0 мм с устройством центрального отверстия и шпоночного паза.
  2. Диск делится на 12 сегментов, для на его поверхности выполняется соответствующая разметка.
  3. В размеченные сегменты клеятся магниты, таким образом, чтобы их полярность чередовалась. Для избегания ошибок (по полярности), необходимо перед наклейкой, выполнить их маркировку.
  4. Подобным образом изготавливается и второй диск. В результате получается следующая конструкция:

  1. Поверхность исков заливается эпоксидной смолой.
  2. Из провода (эмаль-провода) марки ПЭТВ или аналога, сечением 0,95 мм2, наматывается 12 катушек по 55 витков в каждой.
  3. На листе фанеры или бумаге, изготавливается шаблон, соответствующий диаметру используемых дисков, на котором также производится разбивка на 12 секторов.

Катушки укладываются в размеченные сегменты, где фиксируются (изолента, скотч и т.д.) и расключаются последовательно между собой (конец первой катушки соединяется с началом второй и т.д.). в результате получается следующая конструкция

 

  1. Из дерева (доска и т.д.) или фанеры, изготавливается матрица, в которой можно залить эпоксидной смолой уложенные по шаблону катушки. Глубина матрицы должна соответствовать высоте катушек.
  2. Катушки укладываются в матрицу и заливаются эпоксидной смолой. В результате получается следующая заготовка:

  1. Из стальной трубы диаметром 63,0 мм изготавливается ступица с узлом крепления вала, изготавливаемого генератора. Вал монтируется на подшипники, устанавливаемые внутри ступицы.
  2. Из такой же трубы изготавливается поворотный механизм, обеспечивающий ориентацию генератора в соответствии с потоками ветра.
  3. На вал одеваются изготовленные запасные части. В результате получается следующая конструкция, плюс поворотный механизм:

  1. Конструкция должна жестко крепить статор (заготовка с обмотками, залитыми эпоксидной смолой), с одной стороны, и не затруднять вращение ротора (диски с недимовыми магнитами).
  2. Из трубы (полиэтилен, пропилеи и т.д.), используемой для прокладки сетей водопровода или канализации, изготавливаются лопасти ветрового генератора. Для этого труба нарезается нужной длины, после чего разрезается и заготовкам придается соответствующая форма.
  3. Изготавливается хвостовок ветровой установки. Для этого может быть использован любой листовой материал (фанера, металл, пластик), после чего хвостовик крепится к собираемой конструкции, со стороны противоположной креплению лопастей. В результате получается следующая конструкция:

  • Собранная установка монтируется в предусмотренном для этого месте.
  • К выводам генератора подключается нагрузка.

Конструкция ветрового генератора на неодимовых магнитах может быть различной, все зависит от имеющихся запасных частей и технический возможностей человека, решившего изготовить подобное устройство самостоятельно.


Вероятно, Вам также понравятся следующие материалы:Супермаховик- альтернативный накопитель энергии


Спасибо, что дочитали до конца! Не забывайте подписываться на канал, Если статья Вам понравилась!

Делитесь с друзьями, оставляйте ваши комментарии

Добавляйтесь в нашу группу в ВК:        

ALTER220 Портал о альтернативную энергию

и предлагайте темы для обсуждений, вместе будет интереснее!!!

Самодельный ветряк с аксиальным генератором на неодимовых магнитах

Живу я в маленьком городке Харьковской обл. частный дом, небольшой участок.
Сам я, как говорит сосед, ходячий генератор идей, так как практически всё в своем
хозяйстве сделано своими руками. Ветер хоть и небольшой, но практически постоянно дует, и тем самым соблазняет использовать свою энергию.

После нескольких неудачных попыток с тракторным самовозбуждающимся генератором идея создания ветрогенератора засела в мозгу еще сильнее.
Начал искать и после двух месяцев поисков в интернете, множества скачанных файлов, прочтенных форумов и советов я окончательно определился с постройкой ветрогенератора.

За основу была взята конструкция Бурлака Виктора Афанасьевича с небольшими конструктивными изменениями.
Основной задачей была постройка ветрогенератора своими руками из того материала, который есть, с минимумом затрат. Поэтому каждый, кто попытается сделать подобную конструкцию должен исходить из того материала, который у него есть, главное желание и понять принцип работы.
Для изготовления ротора использовал листовой кусок метала толщиной 20 мм. (что было) с которого по моим чертежам кум выточил и разметил на 12 частей два диска диаметром 150 мм. и еще один диск под винт который разметил на 6 частей диаметром 170 мм.

Генератор будет на неодимовых магнитах

Купил через Интернет 24 шт. дисковых неодимовых магнита размером 25х8 мм, которые приклеил к дискам, (очень выручила разметка). Осторожно, не подставляете пальцы, неодимовые магниты очень мощные! (Возможно применение в данной схеме магнитных секторов дало бы лучшие результаты. Примечание администрации.)
Перед тем как приклеить неодимовые магниты к стальному диску маркером нанесите на них обозначение полярности, это очень поможет вам избежать ошибок при установке. После размещения неодимовых магнитов (12 шт. на диск и чередуйте полярность), до половины залил их эпоксидной смолой.

Кликните по картинке что бы посмотреть в полном размере.

Для изготовления статора использовал эмаль-провод ПЭТ-155 диаметром 0,95 мм (купил на частном предприятии Хармедь). Намотал 12 катушек по 55 витков каждая, толщина обмоток получилась 7 мм. Для намотки изготовил несложный разборный каркас. Намотку катушек делал на самодельном намоточном станке (делал ещё во времена застоя).

Затем разместил 12 катушек по шаблону и зафиксировал их положение изолентой на тканевой основе. Выводы катушек распаял последовательно начало с началом, конец с концом. Я использовал 1-фазную схему включения.

Для изготовления формы под заливку катушек эпоксидной смолой склеил две прямоугольные заготовки 4-х мм фанеры. После высыхания получилась прочная 8 мм заготовка. С помощью сверлильного станка и приспособления (балерина) вырезал в фанере отверстие диаметром 200 мм, а из вырезанного диска вырезал центральный диск диаметром 60 мм. Заранее заготовленные ДСП заготовки прямоугольной формы обтянул плёнкой и по краях закрепил стиплером, затем по разметке разместил вырезанный центр (обтянутый скотчем), а также вырезанную заготовку, обмотанную скотчем.

Форму до половины залил эпоксидной смолой, на дно положил стеклоткань, затем катушки, сверху стеклоткань, долил эпоксидную смолу, немного выждал и сверху сдавил вторым куском ДСП также обтянутым пленкой. После застывания извлёк диск с катушками, обработал, покрасил, просверлил отверстия.
Ступицу, а также основу поворотного узла изготовил с буровой трубы НКТ с внутренним диаметром 63 мм. Были изготовлены гнёзда под 204 подшипник и приварены к трубе. С задней стороны тремя болтами прикручена крышка с прокладкой из маслостойкой резины, с передней стороны прикручена крышка с сальником. Внутрь, между подшипниками, через специальное отверстие залил автомобильное полусинтетическое масло. На вал надел диск с неодимовыми магнитами, причем поскольку паз под шпонку сделать не было возможности на валу сделал углубления на половину диаметра шарика с 202 подшипника т.е. 3,5 мм, а на дисках высверлил паз 7 мм. сверлом предварительно выточив баночку и запрессовал её в диск. После извлечения баночки в диске получился ровный, красивый паз под шарик.

Далее закрепил статор тремя латунными шпильками, вставил промежуточное кольцо с расчетом чтобы статор не затирало и надел второй диск с неодимовыми магнитами (магниты на дисках должны иметь противоположную полярность, т.е. притягиваться) Здесь очень осторожно с пальцами!

Изготовление турбины и мачты ветрогенератора

Винт изготовил с канализационной трубы диаметром 160 мм.

Кстати неплохой получается винт. Поэтому принципу изготовлена последняя турбина из алюминиевой трубы 1,3 м. (смотрите выше)

Разметил трубу, болгаркой вырезал заготовки, по концах стянул болтами и електро-рубанком обработал пакет. Затем раскрутил пакет и каждую лопасть обработал отдельно, подгоняя вес на электронных весах.

Защита от ураганного ветра выполнена по классической зарубежной схеме, т. е. ось вращения смещена от центра. Вот ссылка на сайт www.otherpower.com/otherpower_wind.html

Желающие узнать больше здесь найдут все интересующие вопросы, причем совершенно бесплатно! Мне этот сайт помог очень здорово особенно с чертежами хвоста. Вот пример чертежей с этого сайта.

Свой хвост ветряка я подгонял методом подпиливания.

Вся конструкция насажена на два 206 подшипника, которые закреплены на оси с внутренним отверстием под кабель и приваренной к двухдюймовой трубе. Подшипники плотно входят в корпус ветроустановки, что позволяет без каких либо усилий и люфтов свободно поворачиваться конструкции. Кабель проходит внутри мачты к диодному мосту.(выше смотрите чертежи)

на фото первоначальный вариант

Для изготовления ветро-головки, не учитывая двух месяцев поиска решений, ушло полтора месяца, сейчас у нас февраль месяц, снег и холод похоже за всю зиму, поэтому основных испытаний еще не проводил, но даже на этом расстоянии от земли автомобильная лампочка 21 ватт перегорела. Жду весны, готовлю трубы под мачту. Эта зима пролетела у меня быстро и интересно.

Видео можно просмотреть здесь:

Небольшая модернизация ветрогенератора

Прошло немного времени с того момента когда разместил на сайте свой ветряк, но весна так толком и не пришла, землю копать чтобы замуровать стол под мачту еще нельзя — земля мёрзлая да и грязь везде, поэтому времени для испытаний на временной 1,5 м. стойке было предостаточно, а теперь подробней.
После первых испытаний винт случайно зацепил трубу, это я пытался зафиксировать хвост, чтобы ветряк не уходил из под ветра и посмотреть какая будет максимальная мощность. В итоге мощность успел зафиксировать примерно ватт 40, после чего винт благополучно разлетелся в щепки. Неприятно, но наверное полезно для мозгов. После этого я решил поэкспериментировать и намотал новый статор, ротор с неодимовыми магнитами оставил без изменений. Для этого изготовил новую форму под заливку катушек. Форму тщательно смазал автомобильным литолом, чтобы лишнее не пристало. Катушки генератора теперь немного уменьшил по длине, благодаря чему в сектор теперь поместилось 60 витков 0,95 мм. толщина намотки 8 мм. (в конечном итоге статор получился 9 мм), причем длина провода осталась прежней.

Винт теперь сделал с более прочной трубы 160 мм. и трехлопастным, длина лопасти 800 мм.
Новые испытания сразу показали результат, теперь ветрогенератор выдавал до 100 ватт, галогенная автомобильная лампочка в 100 ватт горела в полный накал, и чтобы её не спалить на сильных порывах ветра лампочку отключал.

Замеры на автомобильном аккумуляторе 55 А.ч.
Теперь окончательные испытания на мачте, результат опишу позже.

Ну, вот уже середина августа, и как я обещал, попытаюсь закончить эту страничку. Сначала то, что пропустил

Мачта один из ответственных элементов конструкции, требует особого внимания.

Один из стыков (труба меньшего диаметра входит внутрь большей) и поворотный узел

Теперь остальное, турбина ветрогенератора
3-х лопастная турбина (рыжая канализационная труба диаметром 160 мм.)

Начну с того, что сменил несколько турбин и остановился на 6-ти лопастной, сделанной из алюминиевой трубы диаметром 1,3 м. хотя большую мощность давал винт с ПВХ трубы 1,7 м.

Котроллер для генератора

Основная проблема была в том чтобы заставить заряжаться АКБ от малейшего вращения втурбины и вот здесь на помощь пришел блокинг генератор который даже при входном напряжении в 2 v дает заряд АКБ — пускай маленьким током, но лучше чем разряд, а на нормальных ветрах вся энергия на АКБ поступает через VD2 (смотрите по схеме), и идет полноценный заряд.

Конструкция собрана прямо на радиаторе полунавесным монтажом
Контроллер заряда тоже использовал самодельный, схема простая, слепил как всегда с того, что было под рукой, нагрузкой служит два витка нихромового провода (при заряженном АКБ и сильном ветре нагревается до красна) Все транзисторы ставил на радиаторы (с запасом), хотя VT1 и VT2 практически не греются, а вот VT3 на радиатор ставить обязательно! (при продолжительном срабатывании контролёра VT3 греется прилично)

Схема Контроллера генератора

фото готового Контроллера ветрогенератора

Схема подключения ветряка к нагрузке выглядит так:

Фото готового системного блока ветрогенератора

Нагрузкой у меня как и планировалось, является свет в туалете и летнем душе + уличное освещение (4 светодиодные лампы которые включаются автоматически через фотореле и освещают двор целую ночь, с восходом солнца опять срабатывает фотореле которое отключает освещение и идет заряд АКБ. И это на убитой АКБ (в прошлом году снял с авто) на фото снято защитное стекло (в верху фотодатчик).
Фотореле купил готовое для сети 220 V и переделал своими руками на питание от 12 V (перемкнул входной конденсатор и последовательно стабилитрону подпаял резистор в 1К)

Теперь самое ГЛАВНОЕ!

По своему опыту советую для начала сделать небольшой ветряк, набраться опыта и знаний и понаблюдать что можно поиметь с ветров вашей местности, ведь можно потратить кучу денег, сделать мощный ветрогенератор, а силы ветра не хватит чтобы получать те же 50 ватт и будет ваш ветряк типа подводной лодки в гараже.

Характеристика ветра. Шкала Бофорта

Основной характеристикой ветра является его скорость. Единицей измерения принято считать расстояние, пройденное частицами воздушных масс за единицу времени. В системе измерений СИ скорость ветра измеряется метрами, пройденными воздушными массами за 1 секунду — м/с.
Прибор, при помощи которого осуществляется измерение скорости ветра, называется АНЕМОМЕТР. Но оценить скорость ветра приблизительно можно и по внешним сравнительным признакам, приведенным в таблице Бофорта.

Баллы по шкале Бофорта Характеристика силы ветра Скорость ветра м/сек. Скорость ветра км/час Объективное проявление
0 Штиль 0-0,2 0-06,7 Дым поднимается вертикально
1 Тихий 0,3-1,5 1,08-5,4 Дым начинает отклоняться от вертикального положения, флюгеры, даже самые чувствительные, не вращаются
2 Легкий 1,6-3,3 5,76-11,9 Движение ветра ощущается лицом, шелест листьев, приводятся в движение флюгеры, ветрогенераторы входят в рабочий режим
3 Слабый 3,4-5,4 12,24-19,4 Листья и самые тонкие ветки деревьев колышутся, развеваются флаги, установленные на высоте
4 Умеренный 5,5-7,9 19,8-28,4 Ветер поднимает пыль и мелкие бумажки, приводит в движение тонкие ветви деревьев
5 Свежий 8-10,7 28,8-38,5 Качаются тонкие стволы деревьев диаметром 2-4 см, на морских волнах появляются гребешки, ветрогенераторы выходят на максимальную мощность
6 Сильный 10,8-13,8 38,8-49,9 Качаются толстые сучья деревьев диаметром 6-8 см, слышен шум ветра в телеграфных проводах
7 Крепкий 13,9-17,1 50,04-61,6 Качаются стволы деревьев в верхней их части, идти против ветра неприятно
8 Очень крепкий 17,2-20,7 61,92-74,5 Ветер ломает сухие сучья деревьев, идти против ветра очень трудно
9 Шторм 20,8-24,4 74,8-87,8 Небольшие повреждения, ветер срывает незакрепленные дымовые колпаки и ветхую черепицу
10 Сильный шторм 24,5-28,4 88,2-102,2 Разрушения кровельных покрытий и неукрепленных конструкций, ослабленные деревья вырываются с корнем, автоматическое отключение ветрогенераторов
11 Жестокий шторм 24,5-32,6 102,6-117,4 Большие разрушения на значительном пространстве
12 Ураган 32,7 и выше 117,7 и выше Огромные разрушения, серьезно повреждены здания, строения и дома, деревья вырваны с корнями.

Простейший анемометр. Квадрат сторона 12 см. на 12 см. На нитке 25 см. привязан теннисный шарик.

Мы никогда не задумываемся насколько сильным бывает даже маленький ветерок, но стоит посмотреть с какой скоростью иногда раскручивается турбина и сразу понимаешь какая это мощь.

Процесс модернизации ветряка закончен, так он выглядит на данном этапе. На видео его рабочий режим (снимал фотокамерой, поэтому видна дискретность винта, на самом деле он крутится как подорванный). На очень малых ветрах работает блокинг-генератор.

Всем удачи!!!


Яловенко В.Г.

Статья размещена с разрешения автора, оригинал здесь: http://valerayalovencko.narod2.ru/

Генераторы PMG Windkraft

Генератор — устройство преобразующее механическую энергию в электрическую. В качестве механической энергии может выступать энергия ветра, воды, топлива. Все электростанции используют в своем составе генераторы: атомные электростанции, теплоэлектростанции, гидроэлектростанции, бензиновые и дизельные электростанции и так же ветроэлектростанции.

 Все современные электрогенераторы можно разделить на два основных вида: генераторы с возбуждением и без возбуждения. Для генераторов с возбуждением, необходим внешний источник электроэнергии, который дает возбуждение (включает в работу электромагнит). Данный вид генераторов имеет не высокую цену. Но существенным недостатком таких генераторов является не высокий КПД и  присутствие щеток скольжения, что требует частого обслуживания генератора.

 Второй тип генераторов — с возбуждением от постоянных магнитов. Им не нужен внешний дополнительный источник электроэнергии. В генераторе на роторе установлены магниты, при вращении которых, генерируется электроэнергия. Данная конструкция практически не требует частого обслуживания, так как не имеет в своем составе щеток скольжения. Поэтому данный генератор очень надежный и может длительное время работать не прерывно. Единственное, что требует обслуживания — это подшипники. Так же особенность генератора на постоянных магнитах, что он начинает генерировать электроэнергию сразу же, когда только начинается вращение. Поэтому данные генераторы выгодно применять в мобильных установках, небольших ветрогенераторах для работы в полевых условиях. К недостаткам можно отнести относительно высокую стоимость и не стабильное напряжение на выходе. Необходимо дополнительно применять системы стабилизации напряжения или контролеры заряда для аккумуляторных батарей.

 Наша компания занимается производством генераторов на постоянных магнитах для применения в ветрогенераторах, гидроэлектростанциях, бензо- газо- и дизельных установках.

 Благодаря применению мощных неодимовых магнитов и  современных разработках нам удалось добиться КПД генератора 92,5% и практически убрать магнитное залипание магнитов ротора к статорному железу.

 Под заказ клиента возможно изготовление генератора с выходным напряжением от 15В до 380В. Так же возможно изготовление низкооборотистых генераторов от 60 об/мин.

 Всем нашим клиентам предлагаем услуги по  монтажу дополнительного оборудования для стабилизации выходного напряжения или зарядки аккумуляторных батарей. Есть возможность подготовки и продажи готовых комплектов «под ключ»

 Преимущества наших генераторов:

1. КПД более 90%

2. Применяются неодимовые магниты с рабочей температурой до 150 °C

3. Ремонтопригодность: полюса магнитов закреплены специальными винтами. При необходимости есть возможность заменить полюс генератора не прибегая к дорогостоящему ремонту. Кроме того, крепление с помощью винтов более надежно, чем клея.

4. Каждый ротор отбалансирован на стенде, что продлит «жизнь» подшипников и самого генератора.

5. Применяются  качественные, оригинальные подшипники NSK/SKF.

6. Вал генератора изготавливается из нержавеющей стали.

7. Под заказ клиента возможно изготовить генератор с не стандартными характеристиками: напряжение, мощность, обороты, крепление. 

Приминение генераторов на постоянных магнитах:

— ветрогенераторы

— гидроэлектростанции

— дизельные, бензиновые установки

— установка на привод от сельхозтехники

Мощность Обороты
20 об/мин 
30 об/мин
300Вт 100 об/мин
200 об/мин
400 об/мин
50 об/мин
500Вт 150 об/мин
200 об/мин
50 об/мин
60 об/мин
100 об/мин
1 кВт 150 об/мин
200 об/мин
250 об/мин
300 об/мин
400 об/мин
500 об/мин
1000 об/мин
150 об/мин
1,5 кВт 300 об/мин
500 об/мин
50 об/мин
100 об/мин
2 кВт 150 об/мин
300 об/мин
50 об/мин
70 об/мин
100 об/мин
3 кВт  150 об/мин
200 об/мин
500 об/мин
750 об/мин
50 об/мин
100 об/мин
5 кВт 150 об/мин
200 об/мин
250 об/мин
500 об/мин
40 об/мин
60 об/мин
10 кВт 100 об/мин
150 об/мин
300 об/мин
400 об/мин
100 об/мин
20 кВт 300 об/мин
400 об/мин
100 об/мин
30 кВт 300 об/мин
400 об/мин

Изготовление ветрогенератора, создание ротора генератора на неодимовых магнитах

Представляю вашему вниманию фото отчёт о изготовлении ветрогенератора с генератором на неодимовых магнитах, это так называемый дисковый аксиальный генератор. Автор данного материала по изготовлению ветрогенератора Ян Корепанов, адрес его канала на yutube Строительство ветрогенераторов Ян Корепанов. Это только первая часть изготовления ветрогенератора, в котором будет описан процесс изготовления дисков для генератора и наклейки неодимовых магнитов.

Изготовление генератора началось с изготовления дисков ротора, и наклейки магнитов на них, с последующей заливкой магнитов полиэфирной смолой. Магниты диски размером 30×10 мм, всего их 24 штуки, будет по 12 штук на дисках. Но перед началом строительства было прочитано много информации в интернете, и как оказалось нет чёткой и ясной картины как-же делать дисковые генераторы и ветрогенераторы в целом. Везде пишут по разному и говорят что так нужно делать. Опыта в этом деле не было, но сделать самому ветрогенератор очень хотелось, и по некоторым рекомендациям с форума началась работа над ветрогенератором

>

Основа генератора это автомобильная ступица, на которой будут крепится и вращаться диски с магнитами, и будет закреплён статор с катушками внутри него. Ступица использовалась от автомобиля Опель. Диски выточены у токаря, толщина дисков 10мм.

Под магниты на дисках сделано небольшое углубление на 0,5 мм, это сделано для того чтобы магниты не сдвинулись и чётко разместились по окружности. Также в первом диске сделаны отверстия для крепления к ступице болтами. Во втором диске будет 8 отверстий, четыре для крепления к ступице, и ещё четыре для плавного соединения и разъединения дисков так-как магниты имеют сильное притяжение и при соединении дисков можно остаться без пальцев.

>

Далее подготовка дисков к наклейке магнитов. Диски предварительно обезжирены растворителем и магниты будут клеятся на эпоксидный двухкомпонентный клей предназначенный для склеивания металла. Для точного размещения магнитов на дисках сделан шаблон, который накладывается на металлический диск, и в шаблоне сделаны отверстия под магниты.

На дисках и шаблоне сделаны отметки чтобы не перепутать ничего и правильно положить шаблон. На первом диске магниты чередуются полюсами так-же как и на втором. Но сделано так чтобы когда диски крепятся на ступице то магниты на противоположных дисках будут притягиваться друг к другу, то-есть они будут противоположными полюсами друг к другу. На первом диске где магнит южным полюсом, на втором диске магниты наклеивается северным.

>

Чтобы не перепутать магниты при наклейке на шаблоне маркером нанесены отметки север и юг, и вначале магниты наклеиваются одним полюсом, а потом вторым. Клей выдавливался прямо на диск в том месте где должен приклеиваться магнит, и размешивался прямо по месту с помощью отвёртки. И так магнит за магнитом оклеился первый диск.

>

Спустя немного времени, когда клей схватился был снят шаблон с магнитов чтобы начать наклейку магнитов на втором диске. Когда второй диск был готов то начался следующий этап — это заливка магнитов полиэфирной смолой. Магниты заливаются смолой для большей прочности, чтобы они уже никуда не делись и не отвалились, хотя многие их просто приклеивают и не заливают.

>

Стол перед заливкой был проверен по уровню чтобы избежать неровной заливки, иначе диски будут давать вибрацию из-за смещения веса. Как видно по фото в центр дисков были поставлены кружки из под старых вёдер из под шпатлёвки. А снаружи чтобы смола не растеклась диски обёрнуты упаковочной жёсткой лентой. Все стыки и щели промазаны силиконовым герметиком.

>

Диаметр дисков примерно 280 мм, толщина изначально 10мм, но под магнитами небольшая выборка, и диски проточены до блеска, в итоге под магнитами толщина металла 8мм. Расстояние между магнитов на диске по окружности 32-33 мм, это чуть больше чем диаметр магнита, магниты напомню размерами 30*10 мм.

Следующий этап изготовления ветрогенератора это изготовление основы для крепления генератора, хвоста и поворотной оси. За основу были взяты части от автомобиля, об этом в следующей части Изготовление рамы ветрогенератора, поворотная ось и крепление генератора

Использование постоянных магнитов в генераторах энергии.

Вы когда-нибудь держали в руках неодимовые магниты? Тогда представляете с какой неимоверной силой они притягиваются и отталкиваются друг от друга. Ну и естественно, наш пытливый ум начинает искать способы использования этой силищи. Каких только не придумано механизмов и конструкций, двигателей и альтернаторов.

В процессе творческого пути изобретатели сталкивались порой с новыми необычными эффектами и открытиями. Что бы вы понимали масштабность этой темы мы предлагаем краткий экскурс по наиболее нашумевшим проектам.

Начнем эту обширную тему с истории развития электромагнитного генератора Джона Серла (John Roy Robert Searl). В детстве Сёрл много болел и находился наедине с собой, что, как он считает, и послужило возникновению у него неординарного типа мышления, позволившего не попасть под догмы образовательной системы. С детства он видел вещие сны, которые в будущем послужили необходимыми ключами для создания его изобретений. Особенно его притягивали «магические квадраты». Джон Сёрл обнаружил, что его «обыкновенные» магические квадраты обладают необыкновенными свойствами. Для пытливого взора изобретателя и естествоиспытателя они стали, как говорит он сам, «окном в природу». Все в природе построено на строжайших закономерностях, убежден профессор, но мы их не видим. Мы не можем их увидеть, потому что получили стандартное образование, из-за чего просто ослепли. Или надели шоры. Заполнив свое сознание стереотипами, мы утратили саму способность удивляться, искать не предвзято, перестали видеть. И воспринимаем реальность не такой, какая она есть, а такой, какой нас научили ее воспринимать.

Джон в возрасте 14 лет поступил учеником электромонтера на завод в английском городе Бирмингеме. Работая с постоянными магнитами для электросчетчиков, он в 1946 году открыл новый эффект электромеханики, о котором в школе не рассказывают. В быстро вращающемся диске появлялась радиальная электродвижущая сила с вертикальным вектором. Для увеличения эффекта, Джон сначала намагничивал диски, а затем стал использовать постоянные магниты. Однажды его модель, состоящую из нескольких соединённых вместе колец, испытывали во дворе. При малых оборотах, в кольцах появилась большая радиальная разность потенциалов, что проявилось по характерному треску электрических разрядов и запаху озона. Затем произошло совсем необычное: блок колец оторвался от раскручивающего их мотора и завис на высоте 1,5 метра, постоянно увеличивая обороты вращения. Вокруг вращающегося объекта появилось розовое свечение – показатель активизации воздуха при падении давления. Объект начал подниматься. Наконец, вращение достигло такой скорости, что объект быстро исчез из виду в вышине. Вдохновлённый своими результатами, Джон, в период с 1950 по 1952 год создал и испытал свыше десятка моделей левитирующих дисков. В дальнейшем он научился управлять «разгоном» этих дисков. Уверенный в том, что общество будет с благодарностью принимать его открытия, он в 1963 году разослал приглашения на презентацию своей модели «летающей тарелки» в Королевский Дом и высшим министерским чинам. Но никто на приглашения не откликнулся. Обескураженный Джон на некоторое время перестал работать, потом, в 1967 году обратился к английским учёным, но те лишь высмеяли «неуча-электрика».

Как обычно, признание к изобретателю пришло из-за рубежа. Сначала от японцев, а значительно позже и от ученых других стран. В 1968 году произошло событие, которое, задержало развитие этих научных исследований. 30 июля 1968 года Джон испытывал аппарат «Р-11» весом почти 500 кг. При демонстрации аппарат опять перестал управляться, а затем взлетел и скрылся из виду на большой высоте в небе. Власти оперативно «отреагировали» на это событие. Местные электрики предъявили изобретателю счет за использование электроэнергии в течении прошлых 30 лет, хотя Джон имел собственную электростанцию. Он не имел возможности уплатить огромную сумму, поэтому его арестовали, судили, и посадили в тюрьму на 15 месяцев. Все оборудование и приборы уничтожили, а дом сожгли. В 1980-е годы о нем было много шума в прессе, как об «отце летающих тарелок». Потом все разговоры об этом талантливом изобретателе прекратились, как будто кто-то дал такую команду.

В настоящее время, Джон Серл открыт для контактов, о нем снимают фильмы и пишут книги. Он действительно заслуживает того, чтобы изучить его теорию и технологию. Необходимо отметить, что Джон Серл сделал фундаментальное открытие природы магнетизма, которое заключается в том, что добавление небольшой составляющей слабого переменного тока (примерно 100 милиампер) высокой частоты (около 10 MГц) в процессе изготовления постоянных магнитов придает им новые и неожиданные свойства. На основе этих магнитов Джон создал свои генераторы. Полагаю, что суть данной технологии состоит в создании магнитного материала, имеющего прецессию магнитных моментов. Основной интерес разработчика был в создании «летающих дисков», и это у него получалось с большим успехом, так как в его генераторах, кроме эффекта самовращения, создается эффект осевой активной силы. К продаже генераторов энергии, Серл и его коллеги готовы давно, иногда они давали рекламу, но до серийного выпуска развитие их проекта не дошло. Возможно, отсутствие серийного производства – это компромисс за то, что они сейчас еще имеют возможность продолжать исследования. На фото показана фотография небольшой экспериментальной установки в современной лаборатории Джона Серла. Слева на фото ролики не вращаются, а справа на фото показаны вращающиеся ролики. Фото публикуется с разрешения Джона Серла. Он прислал письмо в январе 2011 года, с пожеланиями успехов в исследованиях.


Один из современных генераторов Серла.

В интернете есть много фильмов с его презентациями и пояснениями о том, «как это работает». Официально, проектами занимается компания DISC Direct International Science Consortium Inc. Они ставят задачи коммерческого освоения космоса, в том числе. Технические подробности данного изобретения имеют аналогии с другими проектами. Эффект Серла, обнаруженный в магнитных взаимодействиях, проявляется в необычном поведении роликов, находящихся в области постоянного поля кольцевого магнита с осевой намагниченностью. Ролик, установленный на свое место «на орбите», после небольшого толчка влево или вправо, начинает движение по орбите с вращением вокруг своей оси, причем с постоянным увеличением орбитальной скорости. Этот эффект может быть объяснен явлением «запаздывания взаимодействия», которое, при перемагничивании, в особых материалах, возникает даже на небольших скоростях взаимного движения магнитов. Команда последователей Джона Серла продолжает его проекты, создавая новые конструкции и применяя современные материалы.

Для более детального обсуждения конструкции, можно обратиться к схеме Рощина и Година, которые в 1992 году в Институте Высоких Температур, Москва, построили и успешно испытали аналогичный генератор. Проект назывался «Астра». Схема экспериментальной установки показана на рисунке.


Установка «Астра», авторы Годин и Рощин, 1992 год

В данной конструкции, периферийные магниты (ролики с осевой намагниченностью) вращаются вокруг центрального магнита, имеющего форму кольца с осевой намагниченностью. Вращение создает электродвигатель с внешним питанием. Некоторые отличия от проектов Серла состоят в том, что магниты, в данном случае, не являются свободными, а установлены на общем роторе (элемент 3), хотя ролики также имеют свободу вращения вокруг своей оси. Диаметр магнитной системы рабочего тела конвертора Година и Рощина в проекте «Астра» был около 1 метра. При оборотах более 500 оборотов в минуту, начиналось самовращение, и машина переключалась от первичного привода на генератор с нагрузкой до 7 киловатт. Интересно, что в процессе работы также отмечалось наличие осевой вертикальной силы, и создается радиальное электрическое поле. В затемненном помещении, вокруг работающего генератора наблюдается коронный разряд в виде голубовато-розового свечения и характерный запах озона. При этом, облако ионизации охватывает статор и ротор, и имеет тороидальную форму. Вокруг установки отмечаются концентрические «магнитные стены», то есть области изменения величины магнитного поля и температуры среды. Расстояние между данными «магнитными стенами» было около 50–60 см, толщина «стен» примерно 5–8 см. Температура внутри «стен» была ниже окружающей примерно на 6–8 градусов. Концентрические «магнитные стены» и сопутствующие тепловые эффекты начинали проявляться, заметным образом, примерно с 200 об/мин, и линейно нарастали по мере увеличения числа оборотов.

Подробнее, читайте о данном проекте в статье В. Година и С. Рощина «Экспериментальное исследование нелинейных эффектов в динамической магнитной системе», журнал Новая Энергетика. Метод запатентован в России: «Устройство для выработки механической энергии и способ выработки механической энергии», Рощин В.В., Годин С.М., патент РФ 2155435 от 27.10.1999 г. Несмотря на это, есть серьезные критические замечания, а также сомнения в корректности постановки и данного эксперимента и оценке его результатов.

Следующий пример конструкции магнитного мотора, который в 2010 году был показан на Всемирной Выставке в Шанхае, и его видели около 70 миллионов человек, это изобретение Ванга (Wang). Проект развивался более 40 лет.

На фото рис. 113 показано устройство небольшой мощности с вращающимся ротором, и ротор отдельно. Автор на фото показан еще «в молодости», он держит в руках мотор мощностью 1 кВт. Внутри мотора применяется феррофлюид, то есть магнитная жидкость.

Проект другого мотора на магнитах, был нам известен как «планируемый к продажам на рынке мотор ПЕРЕНЕДЕВ», серийное производство которого планировалось в Европе. Патент получен WO/2006/045333 04.05.2006, хотя его схема очень напоминает бразильский патент BR 8900294 (A), автор которого Malafaia Mauro Caldeira. Отметим, что бразильский патент был выдан после того, как автор Калдейра предоставил рабочий образец в патентный офис. Автор Майк Бреди (Mike Brady) широко рекламировал возможности его мотора PERENDEV, но за много лет мы не нашли позитивных откликов от покупателей. В 2009 мы пытались организовать визит к нему для проверки и покупки моторов мощностью 100 кВт. Однако демонстрация мотора под нагрузкой, так сказать «товар в действии», раз за разом откладывалась. Новости 2010 года прибавили пессимизма: Майкл Бреди был отправлен в Германию на суд, так как он не обеспечил поставки оплаченного товара, и его клиенты были «разочарованы». Патент Майкла Бреди WO2006045333A1 и схема его мотора известны. Магниты статора и ротора расположены под углом, в положении взаимного отталкивания. Многие попытки разных энтузиастов данного направления конструирования повторить конструкцию ПЕРЕНДЕВ были успешны, но надо отметить, что серийное производство так и не началось.

Поэтому мы можем предположить, что версия «чисто магнитного мотора» в исполнении фирмы ПЕРЕНДЕВ была не совсем удачной. 16 машин небольшой мощности (5–6 кВт), проданных в Европе для бета-тестирования, имели недостатки в эксплуатации (магниты размагничивались). Поэтому мощные машины 100 кВт и 300 кВт планировались к производству с использованием электромагнитов. Поведение Майкла Бреди по отношению к заказчикам было явно некорректным. Вместо организации широкой демонстрации своих изобретений, он предпочитал работать в скрытной манере, хотя заявки в публикациях давал многообещающие. В таких случаях, происходит спекуляция на повышенном спросе. Инвесторы и покупатели таких машин, учитывая возможность хорошо заработать при выводе нового продукта на рынок, готовы поверить и платить аванс. Я полагаю, что нормальный путь развития новых технологий идет через академическую среду, то есть при организации открытых демонстраций технологии, экспертной проверке и нормальном техническом сопровождении продаваемой продукции (гарантии возврата денег, гарантии по техобслуживанию), все сертификаты, включая электро– и пожаробезопасность, а также медицинские сертификаты. Согласитесь, что покупать такую продукцию, даже если она работает, может быть опасно по причине возможных неизвестных медико-биологических эффектов. Магнитные моторы, например, создают низкочастотные электромагнитные поля, которые трудно экранировать.


Рассмотрим пример нормального пути развития аналогичной технологии. Для этого, перейдем к более известной в 2010 году конструкции – мотору фирмы Steorn. Заявленная мощность в прототипе мотора и генератора Стеорн (Steorn) не превышает несколько ватт. Компания Стеорн работает в Ирландии, уровень специалистов в ней очень серьезный, академический. Используется дорогостоящее оборудование для измерений параметров работы их экспериментальных устройств. За 6 лет работы в компанию привлекли 8 миллионов Евро инвестиций. На продаже лицензий, то есть «ноу-хау», они уже заработали более 4,5 миллионов Евро. Необходимо отметить, что тема изучается «со всех сторон», и, первоначально планировали создать прототип мотора на постоянных магнитах. Схема очень похожа на вариант ПЕРЕНДЕВ. Сегодня фирма Steorn демонстрируют прототип с аккумулятором, тороидальными катушками и импульсным питанием, причем аккумулятор постоянно подзаряжается в ходе работы генератора. Компания серьезно подошла к изучению проблемы: на первом этапе, убедительно показала экспертам, что взаимодействие магнитов, при наличии частичного экранирования, может давать превышение мощности на выходе над потребляемой мощностью. Эксперты записывались в очередь, чтобы иметь возможность посетить лабораторию (более 300 визитов в год). Версия «чисто магнитного мотора» ОРБО не получила развития. Версия мотора-генератора Steorn 2010 года — на оси установлены два ротора. Нижний ротор с магнитами выполняет функции мотора, причем катушки статора в нем имеют вид тороидальных катушек. Верхний ротор с магнитами и катушки в статоре являются обычным электрогенератором.

В демонстрационной версии, авторами из компании Steorn показано, что работу мотора – генератора обеспечивает один небольшой аккумулятор, причем, после разгона и достижения номинальных оборотов, ток идет не из аккумулятора, а на заряд аккумулятора. Расход меньше, чем генерируемая мощность. В качестве перспективной технологии, компания Steorn разрабатывает генератор на аналогичных принципах, но без вращения. В нем, тороидальный сердечник, периодические меняющий магнитное состояние до уровня насыщения, обуславливает изменение магнитного потока в области генераторной катушки, что создает электродвижущую силу и мощность в нагрузке.


Известна компания в Австралии, которая много лет развивает похожий магнитный мотор ЛЮТЕК (LUTEC). Эффективность генераторов ЛЮТЕК более 400 %, они способны работать в автономном режиме. Разработка фирмы «LUTEC» хорошо защищена патентами, и уже проданы лицензии почти во всем страны мира, начата подготовка к серийному производству автономных источников электроэнергии. Первичный запуск, как и в схеме Адамса, требует наличия аккумуляторов. В процессе работы, аккумуляторы подзаряжаются.

Моторы-генераторы Джозефа Ньюмана, США (Joseph W. Newman), один из его патентов был получен в ЮАР, South African Patent Application # 831,296, в нем достаточно ясно показан принцип генерации энергии.


На первый взгляд, в конструкции Ньюана и Бедини применяется все та же пара: магнит и катушка, а они ничем не отличается от первых «игрушек» Майкла Фарадея. Кстати, он так и сказал на первой демонстрации его электромотора в Королевской Академии Наук Великобритании. В ответ на вопрос: «Какое применение найдет это изобретение?» Майкл Фарадей ответил: «Не уверен, наверное, в каких-либо игрушках». С этих игрушек и началась эпоха электромоторов.

Итак, в чем отличие моторов Ньюмана от других похожих конструкций? Обычно, у Ньюмана на катушке две обмотки: выше и ниже оси вращения. Одна из катушек выполняет роль привода ротора, вторая катушка является генераторной обмоткой. Один из вариантов такой конструкции и большой мотор-генератор Ньюмана имеет диаметр более метра. Ньюман в своих книгах указывает на то, что для успешной работы его мотора необходим особый режим, а катушки мотора и генератора должны содержать много витков. Можно допустить, что причиной эффективной работы такого генератора может быть эффект задержки реакции индуцированного поля на движение ротора, который мы ранее рассматривали (задержка перемагничивания). Без этого нюанса ротор должен тормозиться полем индуцированного тока и высокой эффективности не будет. Результаты Ньюмана достаточно убедительны, например, в 2004 его мотор показал непрерывную работу под нагрузкой, обеспечивая мощность 10 кВт в течении 8 часов.

Другой известный генератор с магнитами, известен как генератор Эклина-Брауна. Джон Эклин (John W. Ecklin) описал свою схему в патенте США № 3,879,622.


В первоначальном варианте, генератор Эклина производит механическую работу при периодическом экранировании силы отталкивания магнитов. Известны работы Калинина и Идельбаева, по созданию конструкции автономного источника энергии с постоянными магнитами и движущимся или вращающимся экранирующим «шунтом». В других конструкциях, аналогичный метод применяют для создания электродвижущей силы, получения тока и мощности в полезной нагрузке. Основная особенность генератора Эклина-Брауна в том, что конструктивно удается уменьшить мощность привода, требуемую для вращения оси. Обычно, привод должен преодолеть точку максимального притяжения магнита и ротора. В генераторе Эклина-Брауна применяются два экранирующих элемента, справа и слева на оси. Они повернуты относительно друг друга на 90 градусов, и когда одна пластина входит в зазор между магнитами, другая пластина выходит из зазора. Это устраняет проблему торможения ротора в точке максимального сближения магнита и пластины.

Развитие этой идеи на новом уровне происходит в работах Даниеля Куалле (Dan Qualle). В данной схеме, включение электрической нагрузки в цепь генераторной катушки, почти не оказывает влияния на первичный привод, и ток потребления привода не растет. Из схемы прохождения магнитных потоков понятна особенность индуцирования тока в генераторных катушках: ротор периодически меняет условия суммирования магнитных полей от магнитов статора, которые расположены навстречу друг другу одинаковыми полюсами. Таким образом, входя в зазор между магнитом и полюсом катушки, ротор не увеличивает поток магнитной индукции в области катушки, и ее магнитное поле индуцированного тока не тормозит ротор. Индукционный эффект организован таким образом, чтобы не мешать созданию изменений поля. Например, «шунт» входит в зазор слева от катушки, в ней увеличивается поток магнитной индукции от правого магнита, и, соответственно, в ответ на это изменение создается индукционный ток. В другой фазе вращения, «шунт» входит в зазор справа от катушки, поле левого магнита проникает в сердечник катушки, она реагирует соответственно.

Вариант реализации генератора по схеме Куалле, который был изготовлен и проверен в 2010 году, в Санкт-Петербурге, ЗАО «Резонанс». Привод (электромотор) на фото не показан. Кольцевые магниты расположены одинаковыми полюсами друг к другу. При испытаниях было доказано, что нагрузка (ток в цепи генераторной катушки) незначительно влияет на скорость вращения ротора.

Дан Куалле, и другие авторы, называют такие разработки «no-Lentz effect» то есть «генератор без эффекта Ленца». Правило Ленца, которое мы знаем, как закон индукции Фарадея, действительно, можно конструктивно обойти, чтобы получить возможность вращения ротора генератора под нагрузкой без торможения. Более того, в ряде конструкций предлагается получать ускорение ротора полем индуцированного тока. Такие задачи решаются различными методами.

Данная тема активно развивается, например, в США известен автор – разработчик Алан Франкуер (Alan Francouer), и его генератор «The Interference disk electric generator». Слово «интерференция», в данном случае, означает «прерывание». Первый генератор такого рода, работающий автономно, Аллан построил еще в 2001 году.

Отметим, что его «шунт» цельнометаллический, поэтому мы имеем различие в концепции схемы и принципах работы данной машины. Катушки в генераторе Франкуера расположены между двумя «звездочками», которые шунтируют магнитный поток постоянных магнитов. Аллан предлагает 10-лучевые «звездочки» и 12 магнитов, причем левый и правый шунт, как и в схеме Эклина-Брауна, сдвинуты по фазе. Тем самым, обеспечивается плавное вращение ротора, без торможения в месте максимального сближения с полюсом магнита. Подробнее, о работах Франкуера, можно прочитать в журнале «Новая Энергетика» или в Интернет.

Рассмотрим еще одно интересное изобретение, в данном случае, японское. Патент США № 5,594,289, 14 января 1997 года, автор Кохей Минато, Япония. На роторе закреплено множество постоянных магнитов, расположенных одинаковыми полюсами в направлении вращения ротора.

Каждый из закрепленных на роторе постоянных магнитов расположен под углом относительно радиального направления ротора. Возле внешней окружности ротора, вплотную к нему, расположены электромагниты, в которых, периодически создается мощный импульс поля. Внедрение этого изобретения уже приносит автору и его партнерам большую прибыль, так как они начали производство вентиляторов, потребляющих в три раза меньше энергии, чем обычные вентиляторы той же производительности потока воздуха.

Фото вентилятора с приводом по схеме 

Интересно отметить, что были попытки организовать сделку по приобретению данной технологии и развитию производства в России. В 2006 были проведены переговоры, уже готовились документы для поездки в Японию для демонстрации технологии, но Минато и его компаньоны выдвинули условия по приобретению у них большой партии обычных вентиляторов. Кроме того, они отметили, что технология привода «повышенной эффективности» относится к «стратегическим интересам страны», и продаваться не будет. В общем, переговоры отложили на неопределенное время.

 

По принципу действия схемы магнитного мотора автора Кохей Минато, можно добавить, что в ней избыточная энергия (автор заявлял 300 %) обусловлена сочетанием геометрии магнитов ротора и эффекта импульсного «ударного» взаимодействия, которое мы отмечали во многих конструкциях. Очевидно, что и в этом случае, мы имеем дело с передачей взаимодействия через эфир, поскольку магнитное поле может рассматриваться, как потоки эфирной среды. Избыточная энергия обусловлена изменениями энергии среды. При «медленном» нарастании «толкающего» импульса, эффективность работы снижается до 100 % и менее.

В таком случае, простая конструкция с коленвалом и поршнем, на котором укреплен магнит, тоже имеет перспективы развития и получения автономного режима. В случае мощного импульса тока, поле электромагнита отталкивает магнит, закрепленный на «поршне» с силой, которая зависит от величины магнитных полей тока и магнита. Затраты тока первичного источника будут минимальны при малой длительности импульса. Источником избыточной энергии, как и в случае с мотором Кохей Минато, является эфирная среда, поскольку взаимодействие передается через среду.

Рассмотрим другое изобретение, которое нашло свое применение, и есть надежда его внедрения. Речь идет о магнитном моторе Флина (Flynn), подробнее на сайте www.flynnresearch.net

Суть принципа переключения магнитного потока по методу Флина показана на рисунке. Подавая сигнал управления на катушки, магнитный поток от постоянных магнитов переключается из одной ветки магнитопровода в другую, что производит полезную механическую работу в моторе.


Принцип «параллельных путей потока»

На левом рисунке показана ситуация, когда тока в обмотке нет. Оба подвижных элемента слева и справа притягиваются одинаково, с силой, условно равной единице. На правом рисунке показана ситуация, при наличии тока в обмотке. В левой части конструкции, поле тока обмотки и поле постоянного магнита складываются, притягивая подвижный элемент с силой, условно равной четырем. В правой части конструкции, подвижный элемент не испытывает силового воздействия. При изменении направления тока, ситуация для левого и правого подвижного элемента, соответственно, меняется. Авторы утверждают, что эффективность их моторов, работающих по такой схеме, вдвое выше, чем у обычных моторов (вентильных приводов). Компания FlynnResearch имеет контракты от многих заказчиков на моторы повышенной эффективности, мощностью от 5 ватт до 10 кВт, в том числе от военных заказчиков. Технология «параллельных магнитных путей», предложенная Флином, развивается другими исследователями. Например, автор Хильденбанд (Jack Hilden-Brand) построил мотор по схеме Флина. Мощность на входе не более 180 ватт, мощность на выходе – около 380 ватт. Серьезные планы по внедрению магнитных моторов на транспорте, для автомобилей, в первую очередь, имеют американская компания Millennial Motors, Inc., и австралийская фирма Cycclone Inc., которая еще в 2003 году поставила магнитный мотор на автомобиль и показала его в действии телерепортерам. Характерно, что после этого уровня проекта, его развитие идет почти незаметно для публики и новых сообщений нет.

Необходимо отметить, что существуют и российские разработки в данной области, например, группа под руководством Георгия Михайловича Корнилова, Ростов-на-Дону, разрабатывает высокоэффективный мотор с магнитами и переключением потока. По данным 2011 года, при 1200 ватт на входе, мощность на валу мотора достигает 3 кВт.

Создан прототип мощностью 5 кВт, и планируются конструкторские работы по созданию мотора мощность 100 кВт. Об эффективности таких моторов можно говорить после их испытаний, хотя авторы планируют получать механической мощности на валу в несколько раз больше мощности, затрачиваемой в цепях управления. Такие моторы, в сочетании с обычными электрогенераторами, смогут стать основой автономных электростанций.

Американские эксперименты в области линейного магнитного ускорения, примерно с 1997 года, проводит Грег Ватсон (Greg Watson), устройства с шариком называются SMOT. В продаже есть наборы для экспериментов, включая «большую железную дорогу» размером с комнату, по «рельсам» которой двигается шарик, поднимаясь и опускаясь от цикла к циклу. Ускорение шарика подбирается таким, чтобы ему хватало энергии пройти «одну ступень» и попасть в точку старта следующей ступени. Эксперимент интересный, но непрактичный. Градиент магнитного поля при минимальных расстояниях (зазоре между магнитом и ускоряемым телом), дает намного больше мощности и перспектив коммерциализации. Известный пример такой схемы – мотор Текко (Kure Tekkosho Co. «Permanent Magnet Prime Mover», патент Японии № 55144783)

Впервые, данная схема появилась в журнале Popular Science 1979 год. В роторе имеется постоянный магнит, а расстояние от полюса магнита до статора меняется. Магниты ротора и статора отталкиваются. В роторе используется мощный кобальтовый магнит, а в статоре – менее мощные неэлектропроводящие ферритовые магниты. Видимо, это уменьшает потери на индукционные токи Фуко в статоре. Этот принцип называется «магнитный градиент». За счет данного градиента, на участке движения ротора с ускорением, при изменении расстояния от полюса ротора до магнитов статора, создается крутящий момент, без затрат от внешнего источника энергии. В точке минимального зазора в статоре расположен электромагнит, который в импульсном режиме помогает ротору пройти «мертвую точку», и снова начать цикл ускорения.

Конструктивные особенности, а именно, масса ротора, сила магнита, импульсное управление электромагнитом и другие нюансы очень важны при конструировании. Например, малая масса ротора не позволит в полной мере накопить кинетическую энергию, создаваемую при ускорении ротора в градиентном магнитном поле. Ротор должен иметь свойства маховика. История изобретения интересна тем, что автор не мог найти поддержку в своей стране, и поехал в США. Его патент и демонстрации мотора в действии привлекли внимание. После некоторых событий, автор был возвращен в Японию.

Другой ротор с градиентом, известный как магнитный мотор Соукупа (George Soukup) Германия, или V-gate в США, (Calloway V-gate) представлен многими авторами в различных вариантах конструкции.

На фото ротор немецкого изобретателя Соукупа. В роли нагрузки, автор использовал винт пропеллера. Статор представляет собой несколько магнитов, соединенных последовательно в столбик. В конструкции Соукупа, статор имеет несколько «столбиков» магнитов.

Конструкция похожего мотора с градиентом по схеме V-gate (V-ворота), с одним «магнитом – статором», который является не совсем обычным статором.

Отметим, что Г-образная перекладина, на которой сверху установлен магнит статора, может двигаться вдоль вертикальной направляющей оси, и делает это каждый раз, при прохождении ротором «мертвой точки». Белая деталь в форме полумесяца, закрепленная на оси в нужном положении, при прохождении «мертвой точки», поднимает перекладину с магнитом статора, а затем вновь начинается цикл ускорения за счет градиента магнитного поля. На прозрачном диске установлены резиновые шайбы, выполняющие роль амортизаторов. После цикла ускорения, ротору необходимо сохранить набранную кинетическую энергию, а для этого надо пройти «мертвую точку» без потерь. Это возможно при изменении линейной траектории, путем сдвига вдоль оси вращения. Данный тип моторов весьма капризен в настройке.

Прекрасный пример простой и работоспособной конструкции – мотор Вальтера Торбай, запатентованный в Аргентине, №P040103029, Walter Torbay, 2004 год. Автор сделал модель из дерева, магниты маломощные.

На рисунке показаны основные узлы его мотора. Детально конструкция описана в патенте. Отметим, что магниты статора, по-очереди циклично поднимаются и опускаются, позволяя ротору проходить точки максимального сближения без торможения. Напоминает работу мотора V-gate и мотора Соукупа.

Градиент, в сочетании с экранированием, встречается во многих конструкциях. 

Магнитный мотор с экранированием части цикла.

В данной схеме, магнит статора скрыт от приближающегося магнита ротора железным экраном. Расстояние между магнитом ротора и железным элементом статора меняется, как и в конструкции Кюре Текко.

Притяжение – результат градиента силы между магнитом ротора и железным статором, который также выполняет роль экрана. Этот градиент создает крутящий момент. После прохождения «мертвой точки», магниты отталкиваются, и цикл повторяется. Данных о практической реализации не имеется.

Другое известное изобретение из области магнитных моторов, описано в патенте Говарда Джонсона (Howard Johnson) Патент США № 4,151,431, выдан в 1979 году.

Суть изобретения Джонсона состоит в особой изогнутой форме магнита, который, при определенных условиях, получает постоянный однонаправленный импульс тяги, находясь рядом с магнитами статора. Важно отметить: для ускорения нужен градиент, поэтому зазор между магнитами статора не постоянный, он меняется. В данной концепции, магнит на тележке проходит внутри стационарных магнитов с ускорением, причем этот цикл можно замкнуть. Пресса рекламировала его разработки, были известны проекты 1980-х годов по созданию прототипа мощностью 5 кВт, однако, производственные планы в США по выпуску генераторов Джонсона не были реализованы.

Обычно магнитный материал заготовки, на заводе, помещают в линейное поле мощного соленоида, поэтому, независимо от формы заготовки, ее намагниченность получается линейной. Изогнутые магниты в моторе Джонсона должны иметь угол наклона линий магнитного поля, по отношению к оси магнита. Для выполнения данного условия, целесообразно намагничивать их под соответствующим углом. Это требует изготовления нестандартной оснастки для изготовления постоянных магнитов. Отметим также еще раз, градиент поля в статоре (зазор между магнитами статора меняется).

Из современных известных проектов, стоит отметить мотор Троя Рида (Troy Reed). Патент WO 9010337 (A1)


Магниты ротора и магниты статора отталкиваются друг от друга, создавая вращение коленвала. Автор объяснял, что в его конструкции магниты взаимодействуют таким образом, чтобы не создавать «мертвых точек». Вал мотора легко вращается рукой, без «залипания». Более подробно, принцип работы его генераторов не известен. Работали они хорошо, и даже нашли практическое применение. В 1994–1995 Трой Рид демонстрировал автомобиль, который приводился в движение его магнитным мотором.

Очень интересное изобретение Муаммера Илдиза (Muammer Yildiz), патент WO 2009019001 (A2), было показано недавно в Университете Delft University of Technology, Нидерланды. В качестве полезной нагрузки, автор установил на ось вентилятор.

Более мощная версия другого магнитного мотора, около 300 л.с., разработана южно-корейской компанией Shinean Corp. Схема пока неизвестна, но в конструкции есть коленвалы и постоянные магниты. Более подробно мы рассматривать конструкцию не будем, так как недостаточно информации о схеме, хотя в интернет есть убедительные видеоматериалы. Серьезный подход корейских авторов обещает интересные перспективы развития технологии.

Вы видите, что информации по магнитным моторам очень много. Давно созрела необходимость ее осмысления и построения надежной теории для развития практических направлений, в том числе, для энергоснабжения. Известным российским автором в данной области является Михаил Федорович Остриков, Санкт-Петербург. Он работал в Военно-Космической Академии имени Можайского, в 2001 издал книгу «Общая теория единого мира». Остриков впервые (еще в 1991 году) показал особые точки в структуре магнитного поля кольцевого магнита, где оно меняет направление, и назвал их «балдж». Проводя опыты с вращением поля, а также другие эксперименты, Михаил Федорович нашел много полезных технических решений, описанных в его патентах, например «Линейный генератор электрической энергии», № 2051462. Интересные предложения Остриков делает в книге «Технические приложения новых проявления магнетизма», СПб., 1997 г. Ряд его экспериментов напоминает работы Джона Серла, но эти авторы имеют разную теоретическую основу для изучения явлений магнетизма.

Особые проявления «продольного магнетизма» нам известны по работам российского ученого Николаева Г.В., г. Томск. В его книгах подробно описана теория и эксперименты, и показаны эффекты, полезные для конструирования преобразователей энергии, использующих эти новые свойства магнитных полей.

Известным примером, играющим важную роль для популяризации магнитных моторов, является демонстрационная машина Финсруда (Reidar Finsrud), установленная в норвежском музее.


Принцип работы. Металлический шар движется по кольцевой направляющей, ускоряясь на участке сближения с магнитом. В нужный момент, шар своим весом нажимает на рычаг, и это усилие отодвигает магнит с его пути, чтобы шар мог без торможения пройти точку максимального сближения с магнитом. Далее, шар двигается по инерции, повторяя цикл.

Интересное изобретение, которое было реализовано на уровне 200 кВт (по сообщениям Алана Стерлинга www.peswiki.com) описано в патенте США № 5,710,731, 20 января 1998 года, автор Андрей Аболафия (Andrew Abolafia). На рисунке показана схема данной конструкции, включающая магнит и катушку. Особенность конструкции в том, что магнит помещен в центре катушки, а вокруг него вращается полусфера, сделанная из сверхпроводящего материала, чем обеспечивается изменение магнитного поля и индукционный эффект в катушке. В общем, принцип такой же, как в любом альтернаторе, но используется сверхпроводящий «шунт» полусферической формы. Предлагаемый метод намного лучше, так как почти нет затрат на создание изменений магнитного поля».

Отметим, что в интернет можно найти много рекламных предложений по продаже схем – чертежей магнитных генераторов, которые, якобы, «смогут обеспечить Ваш дом независимым энергоснабжением». Предложения заманчивые, но приобретение схем не гарантирует успешную работу экспериментальной конструкции, которую Вы сами сможете собрать. Я смотрел эти проекты, они требуют наличия опыта и «домашней лаборатории». В целом, магнитные моторы, по сравнению с другими конструкциями генераторов свободной энергии, уже нельзя назвать оптимальным решением.

Во-первых, некоторые из них, при работе создают низкочастотное магнитное поле, которое почти не экранируется.

Во-вторых, все роторные конструкции уступают «неподвижным» преобразователям энергии по многим потребительским качествам.

В-третьих, длительная экспериментальная работа с сильными магнитами приводит к изменениям в составе крови, и повышенному давлению.

Ну и самое главное – если энергия снимается напрямую с силы взаимодействия постоянных магнитов, то они просто размагничиваются, обязательно должна быть изюминка в виде импульсного или ударного воздействия и др. Есть ещё один важный политический аспект — 95% поставок редкоземельных материалов контролируется КНР….

Мы рассмотрели малую часть генераторов с постоянными магнитами, которые уже широко известны. Развитие этого направления экспериментальных проектов идет во всем мире, и будет давать нам новые данные для изучения.

Продолжение следует.

Неодимовые магниты в ветряных турбинах и генераторах

Все, что нам уже известно, ветряных турбин и генераторов могут привести дом в действие электричеством, преобразованным из энергии ветра. Применение всего, что мы уже знаем, ветряных турбин и генераторов может привести в действие дом с электричеством, преобразованным из энергии ветра. Применение неодимовых магнитов значительно повысило энергоэффективность ветряных турбин и генераторов.Но как они делают все это возможным? В этой статье мы сосредоточимся на конструкции ветряной турбины и использовании магнитов NdFeB в системах генераторов.

До относительно недавнего времени почти все коммерческие ветряные турбины имели такие же характеристики силового агрегата, как показано на рис. 1: Лопасти ротора установлены на чугунной ступице. Ступица установлена ​​на приводном валу, который через подшипник ротора проходит через гондолу в механический редуктор. Затем редуктор соединяется с индукционным генератором с двойным питанием, который создает магнитное поле с двумя наборами электрически возбужденных обмоток.В этой системе нет постоянных магнитов.

Обычная ветряная турбина промышленного масштаба.
1 — отвал; 2 — ступица; 3 — подшипник ротора; 4 — коробка передач; 5 — генератор.

В нормальных условиях типичная частота вращения ротора ветряной турбины промышленного масштаба находится в диапазоне от 10 до 20 об / мин, но индукционный генератор с двойным питанием требует гораздо более высоких оборотов (не менее 750 об / мин) для правильной работы. Поэтому редуктор используется для преобразования низкой скорости ротора в высокую скорость, необходимую для генератора.Однако более крупные коробки передач могут вызвать больше механических проблем. Согласно специальному отчету 2007 года, большинство отказов редукторов происходит из-за подшипников. Без регулярного технического обслуживания и наблюдения не требуется много времени, чтобы понять, насколько катастрофичен отказ редуктора для турбинной системы. За последние годы в конструкцию были внесены различные улучшения, но ни одно из них не могло полностью решить проблемы без устранения других. По этой причине в течение очень долгого времени коэффициент преобразования энергии ветра в электроэнергию оставался очень низким.

Эти проблемы привели к переосмыслению конструкции силового агрегата ветряной турбины, и в 2005 году было выпущено первое коммерчески доступное решение для турбогенератора. Эта новая конструкция представляет собой инновационное соединение коробки передач с генератором на постоянных магнитах и ​​значительно увеличивает скорость преобразования энергии ветра в электроэнергию и надежность системы.

Новая установка уменьшила общий вес гондолы и потребовала гораздо более низкой скорости генератора 60–150 об / мин по сравнению с конструкцией генератора индуктивности с двойным питанием.Кроме того, в новой конструкции было меньше движущихся частей, которые выходили из строя, и требовалось меньше обслуживания.

Как вы можете догадаться, следующим шагом будет разработка конструкции, которая полностью устраняет необходимость в коробке передач, а это именно та конструкция, которую мы используем сегодня. В последние пару лет появились коммерческие генераторы с постоянным магнитом и прямым приводом, в которых ступица напрямую подключена к генератору. Преимущество, которое мы получаем, — это система со значительно повышенной надежностью и меньшими затратами на обслуживание.Сокращение времени простоя для обслуживания также означает сокращение времени простоя в автономном режиме. Устранение неизбежных сопутствующих механических потерь в редукторах также приводит к повышению эффективности процесса преобразования энергии. Сам генератор также намного более надежен, чем обычные системы, и по сравнению с более ранними конструкциями он дает более высокий КПД, когда скорость ветра не на полной мощности.

Следуйте за нами на

Просмотры сообщений: 1 209

Применение неодимовых магнитов в ветряных генераторах

Рабочая среда ветряной турбины очень суровая, и она должна выдерживать испытание высокой температурой, сильным холодом, ветром и песком, влажностью и даже соляным туманом.Ветровые турбины обычно рассчитаны на срок службы 20 лет. В настоящее время спеченные постоянные магниты NdFeB используются как в небольших ветряных турбинах, так и в мегаваттных ветряных турбинах с постоянными магнитами. В этой статье давайте подробнее рассмотрим применение неодимовых магнитов в генераторах ветряных турбин.

Применение неодимовых магнитов в ветрогенераторах

Магнитные свойства спеченного NdFeB в ветрогенераторах с постоянными магнитами

Основной фазой спеченного сплава NdFeB является интерметаллид Nd2Fe14B, и его магнитная поляризация насыщения (Js) равна 1.6Т. Поскольку спеченный сплав постоянного магнита NdFeB состоит из основной фазы Nd2Fe14B и межзеренной фазы, а ориентация зерен Nd2Fe14B ограничена условиями процесса, остаточная магнитная индукция по току может достигать 1,5 Тл.

Кривая размагничивания NdFeB при комнатной температуре похожа на прямую. Поэтому при разработке двигателей с постоянными магнитами часто выбираются высококачественные магниты NdFeB для получения высокой магнитной плотности воздушного зазора. Когда двигатель работает, из-за наличия переменного размагничивающего поля и размагничивающего поля, вызванного мгновенным большим током при внезапном изменении нагрузки, необходимо выбирать магниты NdFeB с достаточной коэрцитивной силой.

Добавление диспрозия (тербия) и других элементов увеличивает собственную коэрцитивную силу (jHc) магнита NdFeB, но остаточная магнитная сила (Br) магнита соответственно уменьшается. Таким образом, высокоэффективные магниты из NdFeB для ветрогенераторов учитывают как коэрцитивную силу, так и остаточную намагниченность.

Температурная стабильность магнитов NdFeB

Ветряные генераторы работают в пустыне и выдерживают испытание изнуряющей жарой и суровым холодом. Температура Кюри неодимового магнита составляет около 310 ℃. Когда температура магнита превышает точку Кюри, он переходит от ферромагнетизма к парамагнетизму.

Ниже температуры Кюри остаточная намагниченность NdFeB уменьшается с повышением температуры, а его температурный коэффициент остаточной намагниченности α (Br) составляет -0,095 ~ -0,105% / ℃. Коэрцитивная сила NdFeB также уменьшается с повышением температуры, а температурный коэффициент β (jHc) коэрцитивной силы равен -0.54 ~ -0,64% / ℃.

Постоянство магнитных свойств магнитов NdFeB в ветроэнергетических установках Магниты

NdFeB производятся с использованием специального процесса порошковой металлургии , основной производственный процесс которого осуществляется в защитной атмосфере или в вакууме. Зеленое тело NdFeB прессуется в очень сильном (~ 1,5 Тл) магнитном поле. Размер магнитов NdFeB ограничен этими специальными процессами.

В большом ветрогенераторе с постоянными магнитами обычно используются тысячи неодимовых магнитов, а каждый полюс ротора состоит из множества магнитов.Согласованность полюсов ротора требует согласованности магнитов, включая согласованность допусков на размеры и магнитных свойств. Так называемая согласованность магнитных свойств включает небольшое отклонение магнитных свойств у разных людей и однородность магнитных свойств одного магнита.

Заключение

Спасибо, что прочитали нашу статью, и мы надеемся, что она поможет вам лучше понять применение неодимовых магнитов в генераторах ветряных турбин .Если вы хотите узнать больше о неодимовых магнитах или других магнитах типа , мы хотели бы посоветовать вам посетить Stanford Magnets для получения дополнительной информации.

Как ведущий поставщик магнитов по всему миру, Stanford Magnets занимается исследованиями и разработками, производством и продажей магнитов с 1990-х годов. Он предоставляет клиентам высококачественные постоянные магниты, такие как SmCo магниты, неодимовые магниты , AlNiCo магниты и ферритовые магниты (керамические магниты) по очень конкурентоспособной цене.

Просмотры сообщений: 4932

Теги: Применение неодимовых магнитов, температура Кюри, ведущий поставщик магнитов, неодимовые магниты, неодимовые магниты в ветряных турбогенераторах, двигатели с постоянными магнитами, остаточная магнитная индукция (Br), спеченные постоянные магниты NdFeB, стэнфордские магниты, типы магнитов, ветрогенераторы

Магниты для ветряных турбин — прикладные магниты

Мы сейчас в наличии на складе Hydro-Soft Neodymium Magnetic Water Softener.
Магнитные водяные устройства «Hydro-Soft» легко устанавливаются снаружи на любую пластиковую или медную трубу.
Установить водоочистные устройства «Hydro-Soft» сможет даже пещерный человек… Это ооочень просто!
Изготовлен из самых эффективных… сильнейших редкоземельных неодимовых магнитов!
Трехслойное никель-медно-никелевое покрытие для максимальной коррозионной стойкости.

Очень простой монтаж своими руками, который занимает очень мало времени и не требует резки труб!

Устройства для смягчения воды «Hydro-Soft» не дадут вам ощущения слизи в душе, которое вы получаете от смягчителя воды на основе соли.

Устройство для смягчения воды «Hydro-Soft» питается от высокотехнологичных… высокоэнергетических экранированных неодимовых магнитных полей и потока воды по вашим трубам. Не электричество!

Устройства для смягчения воды «Hydro-Soft» одинаково эффективны как для городской, так и для колодезной воды.

Почему устройства для смягчения воды «Hydro-Soft» лучше, чем устройства для смягчения воды на основе соли?

* Сверхпрочный цельный стальной задний привод в четыре раза увеличивает магнитную силу.
* Не требует соли и постоянных затрат.
* Не требует модификаций сантехники.
* Не требует электричества.
* Не требует обслуживания.
* Нет обратной промывки и никаких неудобств.
* Полностью бесшумная работа.
* не требует воды.
* Улучшает поток и давление воды за счет удаления накипи внутри труб и приборов.
* Предотвращает и удаляет существующие известковые отложения и накипь.
* Не разъедает водонагреватели, трубы и арматуру.
* Сейф для старых домов!
* Не вредит окружающей среде и источникам пресной воды.
* Почувствуйте себя чище и свежее после купания.
* Законно для использования во всех регионах США.
* Безопасно для сердечных пациентов и людей с гипертонией.
* Берите с собой устройства для смягчения воды на магнитах.
* Сохраняет полезные минералы.

Ссылка на продукт

Добро пожаловать в Applied Magnets, где мы продаем сильные магниты по более низким ценам. Одна категория сильных магнитов, которые у нас есть в наличии, — это целая линейка керамических магнитов . Наши керамические магниты пользуются большим спросом и универсальны.Они использовались во многих отраслях и с большим успехом. Вы никогда не ошибетесь с нашим огромным ассортиментом керамических магнитов . От индукторов, электромагнитов и трансформаторов магниты использовались во всем. У нас есть как керамические блоки, так и кольца для любых проектов, для которых они нужны. Просмотрите наш сайт, чтобы увидеть наиболее полный выбор керамических магнитов в Интернете. Просмотрите нашу галерею изображений, чтобы найти продукт, который вы ищете, и мы доставим его вам.


Многие материалы имеют неспаренные электронные спины, и большинство из этих материалов парамагнитны. Когда спины взаимодействуют друг с другом таким образом, что спины выравниваются самопроизвольно, материалы называются ферромагнитными (что часто в общих чертах называют «магнитными»). Из-за того, как их регулярная кристаллическая атомная структура заставляет их спины взаимодействовать, некоторые металлы являются (ферро) магнитными, когда находятся в их естественном состоянии, например, в рудах. К ним относятся железная руда (магнетит или магнитный камень), кобальт и никель, а также редкоземельные металлы гадолиний и диспрозий (при очень низкой температуре).Такие природные (ферро) магниты использовались в первых экспериментах с магнетизмом. С тех пор технология расширила доступность магнитных материалов, включив в них различные искусственные изделия, однако все они основаны на естественных магнитных элементах.

У нас есть не только коллекция керамических магнитов, но и большой ассортимент неодимовых магнитов . Эти магниты очень прочные по сравнению со своими размерами. Популярно среди промышленных предприятий и любителей.
Неодимовые магниты используются в самых разных областях.Эти магниты видели все, от жестких дисков до наушников и динамиков.
Керамические магниты или ферриты
Керамические магниты или ферриты изготавливаются из спеченного композита порошкового оксида железа и керамики на основе карбоната бария / стронция. Из-за низкой стоимости материалов и методов производства недорогие керамические магниты (или немагнитные ферромагнитные сердечники, например, для использования в электронных компонентах, таких как радиоантенны) различных форм могут быть легко произведены в массовом порядке. Полученные керамические магниты не подвержены коррозии, но они хрупкие, и с ними нужно обращаться так же, как с другой керамикой.
Неодим-железо-бор (NIB)
Неодимовые магниты, также называемые магнитами неодим-железо-бор (NdFeB), имеют самую высокую напряженность магнитного поля, но уступают самарий-кобальту по устойчивости к окислению и температуре. Этот тип магнита традиционно был дорогим из-за стоимости сырья и лицензирования соответствующих патентов. Эта высокая стоимость ограничивала их использование в тех случаях, когда такая высокая сила компактного магнита критична. Использование защитной обработки поверхности, такой как покрытие золотом, никелем, цинком и оловом, а также покрытие эпоксидной смолой, может обеспечить защиту от коррозии там, где это необходимо.Начиная с 1980-х годов магниты NIB становятся все дешевле. Даже крошечные неодимовые магниты очень мощные и имеют важные соображения безопасности. В Applied Magnets вы получите самые выгодные цены на эти неодимовые магниты. Все, что вам нужно сделать, это просто просмотреть и выбрать из нашего огромного выбора, а мы сделаем все остальное. Кроме того, совершая покупки в Интернете, вы получаете современное удобство совершения покупок из дома или на работе. Тем не менее, наши неодимовые магниты бывают разных форм и размеров.От блоков, кубов, сфер, цилиндров до дуг и колец; мы здесь, на нашем веб-сайте, предлагаем все это. Мы можем предоставить вам наши неодимовые магниты лучше, чем у других поставщиков.

Помогите нам помочь вам с вашими потребностями в магнитах с неодимовыми магнитами и Керамические магниты из Магнит 4 Менее .

(PDF) КОНСТРУКЦИЯ И ИЗГОТОВЛЕНИЕ МАГНИТНОГО ГЕНЕРАТОРА НА НЕОДИМОВЫХ МАГНИТАХ

© 2019 JETIR Май 2019, Том 6, Выпуск 5 www.jetir.org (ISSN-2349-5162)

ПРОЕКТИРОВАНИЕ И ИЗГОТОВЛЕНИЕ МАГНИТНОГО

ГЕНЕРАТОР, ИСПОЛЬЗУЮЩИЙ НЕОДИМ

МАГНИТЫ

1Hemanth Dayalu D, 1M Hariprasad, 1Hemanth Kumar 2hUn , 2Ассистент

1, 2Школа машиностроения, Университет REVA, Бангалор, Индия

Аннотация: — Как правило, генератор состоит из катушечных цепей, питаемых током. Но есть генератор, который генерирует и хранит в батарее

энергии без помощи начального тока.В этом генераторе используются неодимовые магниты, которые генерируют энергию

и хранят ее в батарее. Генерация такой энергии не оказывает никакого воздействия на окружающую среду. Мы использовали смоделированный ролик 3D

, чтобы уменьшить вес всей установки, что, в свою очередь, помогает нам получить больше напряжения. Такой генератор может производить до

вольт, которое можно увеличить с помощью повышающего трансформатора. Энергия, вырабатываемая этим генератором, может использоваться для различных целей

, например, для зарядки мобильных телефонов, ноутбуков, для работы настольного вентилятора и т. Д.Этот генератор также можно использовать в качестве генератора электроэнергии для

электромобилей.

Ключевые слова: — Магнитный ролик, неодимовые магниты, повышающий трансформатор, динамометр

Введение:

Более 90% мировой энергии вырабатывается с помощью электромагнитов на основе закона электромагнитной индукции

Фарадея. Со временем было открыто много новых технологий, которые привели к резкому изменению восприятия электроэнергии. Но

в то же время есть неправильное представление о СВОБОДНОЙ ЭНЕРГИИ.Энергия становится бесплатной только в тот момент, когда нам не нужно платить

за выработку электроэнергии после ввода блока в эксплуатацию. Используя магниты, мы можем генерировать непрерывное движение (Энергию) с помощью

магнитного потока, создаваемого полюсами магнитов. Основной принцип выработки электроэнергии заключается в магнитном эффекте. В нем

говорится, что «Когда проводник вращается в магнитном поле, в проводнике индуцируется напряжение». Итак, здесь мы будем иметь дело с

таких проводников.Двигатель приводится в действие магнитным генератором, я питаюсь от электрической энергии. В простом двигателе магнитное поле

создается электрическими катушками, как правило, катушками Cu, Al. Эти двигатели постоянно нуждаются в электропитании для создания магнитного поля.

Огромные потери энергии. Но магнитный двигатель не состоит из таких катушек. Следовательно, будут минимальные потери

в соответствии с петлей гистерезиса. Он использует постоянное магнитное поле магнитов для создания необходимой силы для перемещения двигателя.

Эта концепция создания магнитного поля из постоянных магнитов стала практичной только после введения неодимовых магнитов

, которые намного мощнее, чем предыдущие ферритовые магниты. Основным преимуществом является то, что он не требует постоянного электропитания

[1].

Неодимовый магнит, наиболее широко используемый тип редкоземельного магнита, представляет собой постоянный магнит, сделанный из сплава неодима, железа и бора

, образующего тетрагональную кристаллическую структуру Nd2Fe14B.Неодимовые магниты, независимо разработанные в 1982 году

компаниями General Motors и Sumitomo Special Metals, представляют собой самый мощный из имеющихся на рынке постоянных магнитов

. Они заменили другие типы магнитов во многих приложениях в современной продукции, требующей сильных постоянных магнитов

, таких как двигатели в аккумуляторных инструментах, жесткие диски и магнитные крепления. Неодим — это металл, который

является ферромагнитным, что означает, что, как и железо, он может быть намагничен, чтобы стать магнитом, но его температура Кюри составляет 19 К (-254 ° C), поэтому

в чистом виде его магнетизм проявляется только при очень низком уровне. температуры.

В этом генераторе концепция одинаковых полюсов отталкивается друг от друга, а разные полюса притягиваются друг к другу, реализована в качестве базового принципа

для создания этого магнитного генератора. Этот принцип помогает нам генерировать достаточно магнитной энергии для непрерывного вращения вала

. Отныне вал, соединенный с генератором, вырабатывает электричество для работы электродвигателя.

Магнитный принцип:

Магнитные силовые линии соединяют полюса постоянного магнита.Мы помним принцип магнетизма:

 Противоположные полюса притягиваются друг к другу

 Подобные полюса отталкиваются друг от друга

Когда мы приближаем магнитные полюса друг к другу, мы можем почувствовать отталкивание и силу притяжения магниты, даже

, хотя силовые линии не видны. Двигатели тоже работают по этому принципу.

Материалы и методы эксперимента:

Наша модель магнитного генератора была сделана с использованием двух различных материалов для ролика.

1) Ролик из сверхвысокомолекулярного полиэтилена.

2) Валик из материала PLA (полиуксус).

Применение магнитов в ветряных турбинах

Постоянные магниты играют решающую роль в некоторых из крупнейших в мире ветряных турбин. Редкоземельные магниты, такие как мощные неодим-железо-борные магниты, использовались в некоторых конструкциях ветряных турбин для снижения затрат, повышения надежности и уменьшения необходимости в дорогостоящем и постоянном техническом обслуживании.

Ветрогенераторы

В 1831 году Майкл Фарадей создал первый электромагнитный генератор.Он обнаружил, что электрический ток может создаваться в проводнике, когда он перемещается через магнитное поле. Спустя почти 200 лет магниты и магнитные поля продолжают играть важную роль в современном производстве электроэнергии. Инженеры продолжают развивать изобретения Фарадея, создавая новые конструкции для решения проблем 21 века.

В некоторых конструкциях ветряных турбин для коммунальных предприятий используются индукционные генераторы для производства электроэнергии. В индукционных генераторах используются электромагниты, встроенные в узел ротора для создания магнитного поля.Эти электромагниты потребляют небольшой ток от энергосистемы для создания магнитного поля в роторе, которое затем вращается внутри генератора рядом со стационарными катушками с проволокой. Это вращающееся магнитное поле индуцирует большой ток в неподвижных катушках провода, который затем можно использовать для питания домов, школ и предприятий.

Эта конструкция обычно требует контактных колец для питания электромагнитов и коробки передач для преобразования низкой скорости вращения вала турбины в более высокие скорости, которые требуются индукционным генераторам для выработки электроэнергии.Эти редукторы могут быть массивными, обычно весом от 15 до 80 тонн. Дополнительный вес коробки передач требует, чтобы конструкторы строили более прочные (и более дорогие) башни. Коробки передач также требуют постоянного периодического обслуживания, что может быть проблематичным в определенных областях применения, например, на морских ветряных электростанциях. Кроме того, редукторы вызывают потери на трение и снижают общий КПД.

Синхронный генератор с постоянными магнитами — это альтернативный тип ветрогенератора. В отличие от индукционных генераторов, эти генераторы используют магнитное поле сильных редкоземельных магнитов вместо электромагнитов.Им не требуются контактные кольца или внешний источник питания для создания магнитного поля. Они могут работать на более низких скоростях, что позволяет им приводиться в действие непосредственно от вала турбины и, следовательно, не требует редуктора. Это снижает вес гондолы ветряной турбины и означает, что башни могут изготавливаться с меньшими затратами. Отказ от коробки передач приводит к повышению надежности, снижению затрат на техническое обслуживание и повышению эффективности. Способность магнитов позволять конструкторам снимать механические редукторы с ветряных турбин иллюстрирует инновационное использование магнитов для решения как эксплуатационных, так и экономических проблем в современных ветровых турбинах.

Некоторые производители ветряных турбин разработали магнитные системы крепления, которые надежно прикрепляют лестницы и другое оборудование к стенам стальной башни. (Предоставлено: Amazing Magnets)

Магнитные крепления для лестниц и другого оборудования

Внутренняя часть ветряной турбины заполнена кабелями, лестницами и иногда лифтами, чтобы рабочие могли получить доступ к гондоле турбины. Это оборудование необходимо закрепить на стене башни. Традиционным решением этой проблемы было либо просверлить отверстия для монтажных кронштейнов в стене башни, либо приварить кронштейны непосредственно к башне.Однако сверление отверстий в стене башни снижает ее механическую прочность и создает возможности для усталости металла и коррозии, что может привести к нарушению целостности и безопасности башни. Приварка кронштейнов непосредственно к вышке требует квалифицированного труда. Оба решения увеличивают общее время строительства и стоимость.

Некоторые производители ветряных турбин разработали магнитные системы крепления, которые надежно прикрепляют лестницы и другое оборудование к стальным стенам башни. Этот метод позволяет закрепить оборудование на башне без необходимости сверлить отверстия или приваривать кронштейны к стенам башни.Это прогрессивное монтажное решение сокращает время и затраты на строительство, не вызывая усталости металла или коррозии, и является еще одной иллюстрацией того, как можно эффективно использовать магниты для решения эксплуатационных и финансовых ограничений в современных ветряных турбинах. Использование нескольких сильных неодимовых магнитов, стратегически размещенных по всей длине лестницы, повышает безопасность рабочего, закрепляя лестницу таким образом, чтобы предотвратить раскачивание или другое боковое движение, которое может привести к соскальзыванию и падению рабочего, а также причинению физического вреда людям. как производственный и финансовый ущерб компании и отрасли в целом.

Инженер-инспектор спускается вниз по лопасти ротора ветряной турбины ветряной электростанции в Северной Германии. (Предоставлено: Amazing Magnets)

Устойчивость и рост энергии ветра как возобновляемого ресурса

Энергия ветра сегодня является одним из самых быстрорастущих источников энергии в коммунальном секторе. Ожидается, что производители ветроэнергетики США удвоят существующие производственные мощности со 113 ГВт в 2020 году до 224 ГВт к 2030 году. [1]

«Огромные преимущества использования магнитов в ветровых турбинах для производства более чистого, безопасного, более эффективного и экономически жизнеспособного источника энергии ветра имеют огромные положительные последствия для нашей планеты, населения и того, как мы живем и работаем», — сказал Адам Полинг, Amazing Главный операционный директор Магниты.

Таким образом, компания стремится выделить несколько ресурсов на этот возобновляемый ресурс и пространство.

Ветер — это чистый и возобновляемый источник топлива, который можно использовать для производства электроэнергии. Ветровые турбины могут использоваться вместе с другими возобновляемыми источниками энергии, чтобы помочь штатам и странам соответствовать стандартам портфеля возобновляемых источников энергии и целевым показателям выбросов, чтобы замедлить темпы изменения климата. Ветровые турбины не выделяют углекислый газ или другие вредные парниковые газы, что делает энергию ветра лучше для окружающей среды, чем источники на ископаемом топливе.

Помимо сокращения выбросов парниковых газов, энергия ветра дает дополнительные преимущества по сравнению с традиционными источниками производства электроэнергии. Атомные, угольные и газовые электростанции используют удивительно большое количество воды для производства электроэнергии. В этих типах электростанций вода используется для создания пара, контроля выбросов или для охлаждения. Большая часть этой воды в конечном итоге выбрасывается в атмосферу в виде конденсата. И наоборот, ветряным турбинам не требуется вода для производства электроэнергии.Таким образом, ценность ветряных электростанций экспоненциально возрастает в засушливых регионах, где доступность воды ограничена.

Возможно, очевидным, но значительным преимуществом энергии ветра является то, что источник топлива практически бесплатный и производится на месте. Напротив, затраты на ископаемое топливо могут быть одними из самых больших эксплуатационных расходов для электростанции, и их, возможно, придется оплачивать у иностранных поставщиков, что может создать зависимость от прерывистых цепочек поставок и может пострадать от геополитических конфликтов.Это означает, что энергия ветра может помочь странам стать более энергонезависимыми и снизить риск колебаний цен на ископаемое топливо.

В отличие от ограниченных источников топлива, таких как уголь или природный газ, ветер является устойчивым источником энергии, который не требует ископаемого топлива для выработки энергии. Ветер создается разницей температуры и давления в атмосфере и является результатом нагрева поверхности Земли солнцем. В качестве источника топлива ветер обеспечивает бесконечный запас энергии, и пока солнце продолжает светить, ветер будет продолжать дуть.

Заключение

Магниты играют важную роль в некоторых из крупнейших ветряных турбин в мире. Ветер — один из самых быстрорастущих источников чистой энергии. Таким образом, не следует упускать из виду роль магнитов в создании этой чистой энергии, поскольку она согласуется с мега-тенденцией устойчивости и всеми ее преимуществами. Магниты используются для снижения затрат, повышения надежности и увеличения интервалов технического обслуживания во многих ветряных электростанциях по всему миру, а также для снижения затрат на строительство новых турбин за счет устранения необходимости в более дорогостоящих конструкциях монтажа оборудования.

Список литературы

  1. www.energy.gov/eere/wind/wind-vision

% PDF-1.4 % 1 0 объект > поток 2019-05-28T10: 03: 37-04: 00Microsoft® Word 20132021-11-29T13: 52: 58-08: 002021-11-29T13: 52: 58-08: 00iText 4.2.0 от 1T3XTapplication / pdfuuid: 2756248a- 3669-416b-b697-8d2ae7911abduuid: d9735c21-a622-417b-92ea-38b4bb33cbcauuid: 2756248a-3669-416b-b697-8d2ae7911abd

  • сохраненоxmp.iid: DF34B3CCA128EE9119C04B03CCA08E9119E06DF: DF34B3CCA128EE9119C08DF34B3CCA08EE9119F04B03CCA08E9118 / метаданные
  • Агус Супарди
  • Нур Мухаммад Джикри
  • конечный поток эндобдж 2 0 obj > эндобдж 3 0 obj > поток xXn $ 7WF «

    Мощный промышленный генератор с постоянным неодимовым магнитом

    Alibaba.com имеет ряд уникальных генераторов с постоянными неодимовыми магнитами , которые являются мощными и эффективными для различных целей. Эти постоянные неодимовые магниты для генераторов отличаются прочностью по своей природе и являются одними из лучших неодимовых изделий, которые могут использоваться в различных промышленных и коммерческих целях. Эти продукты идеально подходят для использования в электрическом оборудовании. Генератор с постоянным неодимовым магнитом очень универсален, предлагая качественные характеристики. Покупайте эти товары у ведущих поставщиков и оптовиков на сайте по привлекательным ценам и предложениям.

    Эти прочные и высококачественные генераторные постоянные неодимовые магниты изготовлены из неодима, железа, бора и т. Д. Для обеспечения прочной конструкции. Эти продукты также являются экологически безопасными и могут эффективно служить вашим целям благодаря своим постоянным магнитным свойствам. Эти генераторы с постоянным неодимовым магнитом доступны с полностью настраиваемыми опциями и сертифицированы, испытаны и проверены для использования в коммерческих целях и в мастерских. Срок службы этих генераторов на постоянных неодимовых магнитах неограничен и требует минимального обслуживания.

    Alibaba.com предлагает широкий выбор постоянных неодимовых магнитов для генераторов различных форм, размеров, характеристик и применений в зависимости от ваших требований и выбранных моделей. Эти генераторные постоянные неодимовые магниты идеально подходят для установки в металл, пластик, резину и другие прочные материалы. Эти генераторные постоянные неодимовые магниты имеют черное эпоксидное покрытие и имеют более высокий уровень допуска, а также плотность.Вы также можете использовать эти осевые магниты для отдельной упаковки, подарочных коробок, деталей динамиков.

    Изучите различные диапазоны генераторов на постоянных неодимовых магнитах на Alibaba.

    Добавить комментарий

    Ваш адрес email не будет опубликован.