Skip to content

Генератор на постоянных неодимовых магнитах – Разработка генератора постоянного тока на неодимовых магнитах на магнитных подвесах

Ветрогенератор на неодимовых магнитах: чертежи, расчет, своими руками

Неодимовый магнит – это редкоземельный металл, обладающий стойкостью к размагничиванию и способностью намагничивать некоторые материалы. Используется при изготовлении электронных устройств (жесткие диски компьютеров, металлодетекторы и т.д.), медицине и энергетике.

Неодимовые магниты используются при изготовлении генераторов, работающих в различных видах установках, вырабатывающих электрический ток.

В настоящее время генераторы, изготовленные с использованием неодимовых магнитов, широко используются при изготовлении ветровых установок.

Основные характеристики

Содержание статьи

Для того, чтобы определиться в целесообразности изготовления генератора на неодимовых магнитах, нужно рассмотреть основные характеристики данного материала, которыми являются:

  • Магнитная индукция В — силовая характеристика магнитного поля, измеряется в Тесла.
  • Остаточная магнитная индукция Br — намагниченность, которой обладает магнитный материал при напряжённости внешнего магнитного поля, равной нулю, измеряется в Тесла.
  • Коэрцитивная магнитная сила Hc — определяет сопротивляемость магнита к размагничиванию, измеряется в Ампер/метр.
  • Магнитная энергия (BH)max -характеризует, насколько сильным является магнит.
  • Температурный коэффициент остаточной магнитной индукции Tc of Br – определяет зависимость магнитной индукции от температуры окружающего воздуха, измеряется в процентах на градус Цельсия.
  • Максимальная рабочая температура Tmax — определяет предел температуры, при которой магнит временно теряет свои магнитные свойства, измеряется в градусах Цельсия.
  • Температура Кюри Tcur — определяет предел температуры, при которой неодимовый магнит полностью размагничивается, измеряется в градусах Цельсия.

В состав неодимовых магнитов, кроме неодима входит железо и бор и зависимости от и их процентного соотношения, получаемое изделие, готовый магнит, различается по классам, отличающимся по своим характеристикам, приведенным выше. Всего выпускается 42 класса неодимовых магнитов.

Достоинствами неодимовых магнитов, определяющими их востребованность, являются:

  • Неодимовые магниты обладают наиболее высокими магнитными параметрами Br, Нсв, Hcм , ВН.
  • Подобные магниты имеют более низкую стоимость в сравнении с подобными металлами, имеющими в своем составе кобальт.
  • Обладают способностью работать без потерь магнитных характеристик в температурном диапазоне от – 60 до + 240 градусов Цельсия, с точкой Кюри +310 градусов.
  • Из данного материала возможно изготовить магниты из любой формы и размеров (цилиндры, диски, кольца, шары, стержни, кубы и др.).

Ветрогенератор на неодимовых магнитах мощностью 5,0 кВт

В настоящее время отечественные и зарубежные компании все более широко используют неодимовые магниты при изготовлении тихоходных генераторов электрического тока. Так ООО «Сальмабаш», г. Гатчина Ленинградской области, выпускает подобные генераторы на постоянных магнитах мощностью 3,0-5,0 кВт. Внешний вид данного устройства приведен ниже:

генератор на постоянных магнитах

Корпус и крышки генератора изготавливаются из стали, в дальнейшим с покрытием лакокрасочными материалами. На корпусе предусмотрены специальные крепления, позволяющие закрепить электрический аппарат на несущей мачте. Внутренняя поверхность обработана защитным покрытием, предотвращающим коррозию металла.

Статор генератора набран из электротехнических пластин стали.

Обмотка статора — выполнена эмаль-проводом, позволяющим устройству работать продолжительное время с максимальной нагрузкой.

Ротор генератора имеет 18 полюсов и установлен в подшипниковых опорах. На ободе ротора размещены неодимовые магниты.

Генератор не требует принудительного охлаждения, которое осуществляется естественным путем.

Технические характеристики генератора мощностью 5,0 кВт:

  • Номинальная мощность – 5,0 кВт;
  • Номинальная частота – 140,0 оборотов/минуту;
  • Рабочий диапазон вращения – 50,0 – 200,0 оборотов/минуту;
  • Максимальная частота – 300,0 оборотов/минуту;
  • КПД – не ниже 94,0 %;
  • Охлаждение – воздушное;
  • Масса – 240,0 кг.

Генератор оснащен клеммной коробкой, посредством которой осуществляется его подключение к электрической сети. Класс защиты соответствует ГОСТ14254 и имеет степень IP 65 (пылезащищенное исполнение с защитой от струй воды).

Конструкция данного генератора приведена на рисунке, приведенном ниже:

Конструкция генератора

где: 1-корпус, 2- крышка нижняя, 3- крышка верхняя, 4- ротор, 5- неодимовые магниты, 6- статор, 7- обмотка, 8- полумуфта, 9- уплотнения, 10,11,12- подшипники, 13- клеммная коробка.

Плюсы и минусы

К достоинствам ветрогенераторов, изготовленных с использование неодимовых магнитов можно отнести следующие характеристики:

  • Высокий КПД устройств, достигаемый за счет минимизации потерь на трение;
  • Продолжительные сроки эксплуатации;
  • Отсутствие шума и вибрации при работе;
  • Снижение затрат на установку и монтаж оборудования;
  • Автономность работы, позволяющая осуществлять эксплуатацию без постоянного обслуживания установки;
  • Возможность самостоятельного изготовления.

К недостаткам подобных устройств можно отнести:

  • Относительно высокая стоимость;
  • Хрупкость. При сильном внешнем воздействии (ударе), неодимовый магнит способен лишиться своих свойств;
  • Низкая коррозийная стойкость, требующая специального покрытия неодимовых магнитов;
  • Зависимость от температурного режима работы – при воздействии высоких температур, неодимовые магниты теряют свои свойства.

Как сделать своим руками

Ветровой генератор на основе неодимовых магнитов отличается от прочих конструкций генераторов тем, что легко может быть изготовлен самостоятельно в домашних условиях.

Как правило за основу берут автомобильную ступицу или шкивы от ременной передачи, которые предварительно очищаются, если это бывшие в употреблении запасные части и подготавливаются к работе.

При наличии возможности изготовить (выточить), специальные диски, лучше остановиться на этом варианте, т.к. в этом случае не придется подгонять геометрические размеры наматываем ых катушек к размерам используемых заготовок.

Неодимовые магниты следует приобрести, для чего можно воспользоваться сетью интернет или услугами специализированных организаций.

Один из вариантов изготовления генератора на неодимовых магнитах, с использованием дисков, специально изготовленных для этих целей, предлагает к рассмотрению Яловенко В.Г. (Украина). Данный генератор изготавливается в следующей последовательности:

  1. Из листовой стали вытачиваются два диска диаметром 170,0 мм с устройством центрального отверстия и шпоночного паза.
  2. Диск делится на 12 сегментов, для на его поверхности выполняется соответствующая разметка.
  3. В размеченные сегменты клеятся магниты, таким образом, чтобы их полярность чередовалась. Для избегания ошибок (по полярности), необходимо перед наклейкой, выполнить их маркировку.
  4. Подобным образом изготавливается и второй диск. В результате получается следующая конструкция:

Конструкция генератора

  1. Поверхность исков заливается эпоксидной смолой.
  2. Из провода (эмаль-провода) марки ПЭТВ или аналога, сечением 0,95 мм2, наматывается 12 катушек по 55 витков в каждой.
  3. На листе фанеры или бумаге, изготавливается шаблон, соответствующий диаметру используемых дисков, на котором также производится разбивка на 12 секторов.

Катушки укладываются в размеченные сегменты, где фиксируются (изолента, скотч и т.д.) и расключаются последовательно между собой (конец первой катушки соединяется с началом второй и т.д.). в результате получается следующая конструкция

 

Катушка

  1. Из дерева (доска и т.д.) или фанеры, изготавливается матрица, в которой можно залить эпоксидной смолой уложенные по шаблону катушки. Глубина матрицы должна соответствовать высоте катушек.
  2. Катушки укладываются в матрицу и заливаются эпоксидной смолой. В результате получается следующая заготовка:

Заготовка

  1. Из стальной трубы диаметром 63,0 мм изготавливается ступица с узлом крепления вала, изготавливаемого генератора. Вал монтируется на подшипники, устанавливаемые внутри ступицы.
  2. Из такой же трубы изготавливается поворотный механизм, обеспечивающий ориентацию генератора в соответствии с потоками ветра.
  3. На вал одеваются изготовленные запасные части. В результате получается следующая конструкция, плюс поворотный механизм:

Итоговая конструкция

  1. Конструкция должна жестко крепить статор (заготовка с обмотками, залитыми эпоксидной смолой), с одной стороны, и не затруднять вращение ротора (диски с недимовыми магнитами).
  2. Из трубы (полиэтилен, пропилеи и т.д.), используемой для прокладки сетей водопровода или канализации, изготавливаются лопасти ветрового генератора. Для этого труба нарезается нужной длины, после чего разрезается и заготовкам придается соответствующая форма.
  3. Изготавливается хвостовок ветровой установки. Для этого может быть использован любой листовой материал (фанера, металл, пластик), после чего хвостовик крепится к собираемой конструкции, со стороны противоположной креплению лопастей. В результате получается следующая конструкция:
  4. Готовая конструкция ветрогенератора
    • Собранная установка монтируется в предусмотренном для этого месте.
    • К выводам генератора подключается нагрузка.

    Конструкция ветрового генератора на неодимовых магнитах может быть различной, все зависит от имеющихся запасных частей и технический возможностей человека, решившего изготовить подобное устройство самостоятельно.

Аксиальный генератор на ферритовых магнитах

Аксиальный генератор на ферритовых магнитах
Наверное многих интересует возможность использования альтернативной энергии. Автор данного устройства как раз является одним из таких, он так же читал различные статьи в интернете посвященные возобновляемых источникам энергии. Особенно его заинтересовало использование энергии ветра, так как в его местности ветра довольно сильные и он сразу понял, что должная конструкция ветрового генератора будет выдавать довольно большое количество энергии.

Ознакомившись с основными типами ветряков и используемых в них генераторах, автор остановился на аксиальном генераторе с ферритовыми магнитами.

Материалы, которые были задействованы автором для создания данного генератора:

1) металлическая труба
2) подшипники
3) шпилька
4) алмазные диски диаметром 22 см
5) 40 ферритовых магнитов
6) эпоксидная смола
7) провод толщиной 0.5 мм
8) уголок металлический
9) шуруповерт
10) фанера
11) лобзик

Рассмотрим более подробно конструкцию данной модели генератора, а так же основные этапы его сборки.

Данный генератор был построен полностью с нуля. Его основой послужила ступица, которую автор собрал самостоятельно из отрезка трубы. В данную трубу были установлены подшипники и шпилька. Приварив к данной трубе несколько отрезков уголка, автор получил готовую основу для крепления статора будущего генератора своего ветряка.

Ступица, и уголки для крепления статора, разметка перед сваркой

Аксиальный генератор на ферритовых магнитах
В качестве роторов генератора автор решил использовать алмазные диски с диаметром около 220 мм. Для того, чтобы точно закрепить на них все ферритовые магниты, автор расчертил их таким образом, чтобы получилось двадцать одинаковых секторов, на стыках которых и были размещены магниты. Для того, чтобы магниты были надежно закреплены на дисках, автор использовал супер клей и эпоксидную смолу: для начала магниты были зафиксированы каплей супер клея, а затем залиты эпоксидной смолой.

Установка магнитов на диски ротора:

Аксиальный генератор на ферритовых магнитах

Так примерно будут стоять диски ротора:

Аксиальный генератор на ферритовых магнитах
Для того, чтобы изготовить статор автор сделал небольшое приспособление в виде оправы.
Оправка для намотки катушек
Аксиальный генератор на ферритовых магнитах

Данная оправа понадобилась автору для того, чтобы более легко и удобнее намотать 15 катушек проводов. Именно такое количество катушек решил использовать автор для создания статора. Приспособление для намотки одевалось на шуруповерт, после чего он включался и автор наматывал 325 витков провода толщиной 0.5 мм. Такое большое количество витков провода для катушек автор обуславливает тем, что ферритовые магниты, использованные для создания генератора, довольно слабые. Итоговая толщина катушек составила 9 мм. Поэтому замеры сопротивления одной фазы показали значение в 18.5 Ом, что понятное дело не является лучшим показателем для постройки генератора, но благодаря такой конструкции катушек, напряжение будет в пределах нормы и подойдет для зарядки аккумуляторов.

Готовые катушки статора, провод 0,5 мм по 325 витков, толщина 9 мм:

Аксиальный генератор на ферритовых магнитах

После того как катушки были полностью готовы, автор решил приступить к изготовлению статора на их основе. Для начала автор взял лист фанеры и вырезал необходимую форму для статора. В эту форму автор планирует поместить катушки и залить их эпоксидной смолой. Чтобы затем было проще отделить статор от формы, автор обтянул фанерную заготовку скотчем. После чего все шесть проводов от фаз были соединены вместе и все залито эпоксидной смолой.

Катушки статора перед заливкой эпоксидной смолой:

Аксиальный генератор на ферритовых магнитах

Форма для отливки статора, под низом шаблон с пленкой, края формы обклеены скотчем:

Аксиальный генератор на ферритовых магнитах
Когда форма затвердела, автор отделил ее от заготовки и получил готовый статор. Следующим шагом автор собрал все части генератора воедино и протестировал его вручную. Таким образом, при соединении в треугольник и раскрутке генератора от руки, ток короткого замыкания получился около 1.5 ампер и напряжение в 15 вольт. Так же автор протестировал генератора при помощи шуруповерта. Для этого шуруповерт был специально соединен с генератором и автору удалось раскрутить до 700 оборотов в минуту и получить напряжение в 47 вольт.

Готовый статор аксиального генератора:

Аксиальный генератор на ферритовых магнитах

Общий вид готового генератора для ветряка

Аксиальный генератор на ферритовых магнитах
Аксиальный генератор на ферритовых магнитах
Затем автор приступил к сборке выбору подходящего винта для данной модели генератора. Было изготовлено несколько винтов из ПВХ трубы диаметром 110 мм. Однако подобные винты не давали необходимых результатов, так как были слишком тихоходными и не развивали нужных скоростей для полноценной работы генератора.

Генератор с винтом перед установкой на мачту:

Аксиальный генератор на ферритовых магнитах
Тихоходный шести-лопастной винт для ветрогенератора:
Аксиальный генератор на ферритовых магнитах

Трех-лопастной винт ветрогенератора:

Аксиальный генератор на ферритовых магнитах
В итоге был сделан трех-лопастной винт для ветряка на основе данного генератора, с которым генератор может работать. Однако это не означает, что на этом винте пробы автора закончились. Так как по мнению автора, хоть генератор получился и слабенький из за ферритовых магнитов, но он все же работает, а следовательно можно добиться мощности в 30 ватт с данного генератора при подходящем винте, который будет полностью раскрывать потенциал установки.
Источник Аксиальный генератор на ферритовых магнитах Доставка новых самоделок на почту

Получайте на почту подборку новых самоделок. Никакого спама, только полезные идеи!

*Заполняя форму вы соглашаетесь на обработку персональных данных

Становитесь автором сайта, публикуйте собственные статьи, описания самоделок с оплатой за текст. Подробнее здесь.

Ветрогенератор с генератором без магнитного залипания

Я сделал фотосессию моего маленького ветрячка или, как я называю, действующей модели. Так как я его построил неожиданно для себя, просто решил потренироваться и узнать что получится, то сначала ничего не фотографировал, не думал, что им могут заинтересоваться, фотосессия получилась в обратном порядке, т.е. дедукцией – от целого к частям.

А теперь немного истории, и все по порядку:

Построить ветряк – моя давнишняя мечта, но было много препятствий. То жил в городской квартире, а дачи не было. То переезды из одного города в другой, потом в третий. В Светловодске я живу последние 18 лет. Здесь есть все условия – частный коттедж на две семьи, 5 соток огорода и столько же сада. С востока и юга открытая местность, с севера и запада рельеф выше моего. Ветры не балуют, т.е. не очень сильные. Ну, думаю, здесь я построю ветряк для души.

Но когда занялся вплотную, оказалось все не так просто. Литературы подходящей не нашел. Долго не мог определиться с генератором, не знал, как правильно изготовить лопасти, какой редуктор применить, как защитить от урагана и т.п. Как говорится, варился в собственном соку. Но знал, что если очень хочется, то все получится. Неспеша делал мачту. На чермете подбирал подходящие куски труб, начиная с диаметра 325 мм по 1,5 м длиною (чтобы помещалась в багажнике моей машины). Взамен сдавал металлолом. Получилась мачта длиной 12м. Для фундамента привез бракованный фундаментный блок от высоковольтной опоры. Закопал его на 2метра в землю и 1м остался над землей. Затем обварил его двумя поясами из уголка, к ним приварил кронштейны. На концы кронштейнов к анкерным болтам приварил «пластинки» из 16мм железа размером 50 х 50 см, соединенных между собой мощными петлями. Купил на рынке мягкие 10 мм тросы и талрепы, все анодированное, не ржавеет. Сварил и закопал анкер под съемную лебедку. Лебедку тоже пришлось делать самодельную, используя готовый червячный редуктор. Кроме того, установил П-образную подпорку высотой около 2м, на которую должна ложиться мачта. Так как спешить было некуда – мачта делалась без спешки и поэтому получилась, на мой взгляд, красивая и надежная.

 Решил построить действующую уменьшенную модель, чтобы выдавала до 1 ампера на 12-вольтовый аккумулятор. 

    Для изготовления ротора купил 24 шт. дисковых неодимовых магнита 20х5 мм. Нашел ступицу от колеса мотоблока, токарь по моим чертежам выточил два стальных диска диаметром по 105мм и толщиной 5мм, распорную втулку толщиной 15мм и вал. На диски наклеил и до половины залил эпоксидкой магниты по 12 шт на каждый, чередуя их полярность.

Для изготовления статора намотал 12 катушек эмальпроволокой диаметром 0,5мм по 60 витков на катушку (взял проволоку с петли размагничивания старого негодного цветного кинескопа, там его достаточно). Распаял катушки последовательно конец с концом, начало с началом и т.д. Получилась одна фаза (боялся, что будет маловато напряжения). Выпилил из 4 мм фанеры форму, натер ее воском.

Жаль, вся форма в сборе не сохранилась. На нижнее основание положил вощеную бумагу (спер в жены на кухне, она выпечку на ней делает), на нее наложил форму с круглячком в центре. Потом вырезал со стеклоткани два кружка. Один постелил на вощеную бумагу нижнего основания формы. На него выложил распаянные между собой катушки. Выводы из многожильного изолированного провода проложил в выпиленные ножовкой неглубокие пазы. Залил все это эпоксидкой. Подождал около часа, чтобы пузырьки воздуха все вышли, и эпоксидка разлилась равномерно по всей форме и пропитала катушки, долил, где надо, и накрыл вторым кружком стеклоткани. Сверху положил второй лист вощеной бумаги и прижал верхним основанием (куском ДСП). Главное, чтобы оба основания были строго плоскими. Утром разъединил форму и извлек красивый прозрачный статор толщиной 4мм.

Жаль, что для более мощного ветряка эпоксидка не годится, т.к. боится высокой температуры. 

    В ступицу вставил 2 подшипника, в них вал со шпонкой, на вал первый диск ротора с наклеенными и залитыми до половины эпоксидкой магнитами, потом распорную втулку толщиной 15мм. Толщина статора с залитыми катушками 4мм, толщина магнитов 5мм, итого 5+4+5=14мм. На дисках ротора оставлены бортики на краях по 0,5мм чтобы упирались магниты при центробежной силе (на всякий случай). Поэтому отнимем 1мм. Осталось 13мм. На зазоры остается по 1мм. Поэтому распорка 15мм. Потом статор (прозрачный диск с катушками), который крепится к ступице тремя медными 5 мм болтами, их видно на фото. После ставится второй диск ротора, который упирается в распорную втулку. Нужно остерегаться, чтобы палец не попал под магниты – очень больно защемляют. (Противоположные магниты на дисках должны иметь разную полярность, т.е. притягиваться.)

 Зазоры между магнитами и статором регулируются медными гайками, размещенными на медных болтах по обе стороны ступицы. 

    На оставшуюся выступающую часть вала со шпонкой одевается пропеллер, который через шайбу (а если нужно то и втулку) и гровер прижимается гайкой к ротору. Гайку желательно закрыть обтекателем (я его так и не сделал).

Зато сделал крышу-козырек над ротором и статором, распилив алюминиевую кастрюльку так, чтобы захватить часть донышка и часть боковой стенки.

Пропеллер изготовил из метрового куска дюралевой поливной трубы диаметром 220 мм с толщиной стенки 2,5мм. 

   Просто на ней нарисовал двухлопастный пропеллер и выпилил электролобзиком. (Из этого же куска я еще выпилил три лопасти длиной по 1м для ветряка на автогенераторе, и еще как видите осталось). Переднюю кромку лопастей я заокруглил «на глаз» радиусом, равным половине толщины дюрали, а зднюю заострил с фаской приблизительно 1см на концах и до 3см к центру.

    В центре пропеллера сначала просверлил отверстие 1мм сверлом для балансировки. Балансировать можно прямо на сверле, положив дрель на стол, или подвесить на нить к потолку. Балансировать нужно очень тщательно. Я отдельно балансировал диски ротора и отдельно пропеллер. Ведь обороты доходят до 1500 об/мин. 

    Так как магнитное залипание отсутствует, пропеллер весело вращается от малейшего ветерка, которого на земле даже не ощущаешь. При рабочем ветре развивает высокие обороты, у меня амперметр на 2А прямого включения, так он часто зашкаливает на 12 вольтовый старый автомобильный аккумулятор. Правда при этом начинает складываться и подниматься вверх хвост, т.е. срабатывает автоматическая защита от сильного ветра и чрезмерных оборотов. 

    Защита выполнена на основе наклонной оси вращения хвоста.

Отклонение оси составляет 18-20 градусов от вертикали.

    Отработал этот ветрячок у меня 3 месяца. Снял, разобрал – подшипники в порядке, статор тоже цел. Немного приржавели магниты в тех местах, где не попала краска. Кабель идет напрямую без токосъемника. Он у меня есть сделанный, но я передумал его ставить. Когда демонтировал малый ветрячек — он небыл перекручен. Так что я убедился — он не нужен, только лишние хлопоты. Выдавал он до 30 ватт мощности. Шум от пропеллера при закрытых окнах не слышен. А при открытых не сильно слышно, если здоровый сон, то не разбудит, тем более на фоне шумов самого ветра. 

Генератор на неодимовых магнитах

Неодимовые магниты применяются не только в сувенирной продукции. Материал нашел применение во многих областях электротехники из-за качественного сцепления между отдельными деталями.

Ветрогенератор

Ветрогенератор тока своими руками

С помощью этого материала можно создать мощный автономный источник электрической энергии – тихоходный магнитный генератор.  Такие конструкции обладают высоким КПД. Для запуска необходима энергия ветра, воды или др.

Магниты

Неодимовые магниты применяются во многих областях электротехники

Преимущества установок:

  • экономия электрической энергии;
  • возможность подключать портативные электронные устройства и электроинструменты;
  • возможность изготовления своими руками.

Генератор на неодимовых магнитах используют для:

  • подзарядки аккумуляторных батарей авто;
  • подключения низковольтных бытовых электроприборов и портативной компьютерной техники;
  • создания автономных источников электрической энергии для дачных и садовых домиков.

Трехфазный генератор на неодимовых магнитах

Ветрогенераторы на альтернативных источниках приобрели широкую популярность за счет своей надежности, высокого КПД и практичности.

Благодаря внедрению в конструкцию неодимовых магнитов (принцип магнитной левитации) стало возможно сооружать более совершенные вертикальные модели, которые используют свободное инерционное вращение лопастей.

Новые модели не содержат редукторы, т.к. многополюсность установки обеспечивает необходимое напряжение при малом числе оборотов, а применение лопастей улучшенной формы позволяет выдавать полную мощность установки уже при скорости ветра 4 м/c.

Конструкции современных вертикальных ветрогенераторов не имеют повышенной нагрузки на подшипники, из-за чего возникало большое трение и снижение общего КПД установки.

Мотор

Ветрогенератор тока своими руками – мотор для конструкции

Где можно использовать ветрогенератор:

  • садовые и дачные дома, квартиры;
  • здания и сооружения;
  • магазины, небольшие промышленные установки, рекламные щитки и др.

Преимущества ветрогенераторов на постоянных магнитах:

  • минимальные потери на трение;
  • длительный срок эксплуатации;
  • отсутствие шума при работе и вибрации;
  • снижение экономических затрат на установку;
  • отсутствие необходимости постоянного обслуживания установки;
  • существует ряд моделей с инвертором для зарядки аккумуляторной батареи.

Покупка ветрогенераторов оправдана при больших нагрузках и постоянной эксплуатации электроустановки. Для частных домов, а также для электроснабжения маломощных потребителей целесообразно сооружать ветрогенератор своими руками.

Ветрогенератор состоит из нескольких основных узлов: статора и ротора (3-6 лопастей), на который действуют ветровые нагрузки. При вращении ротора появляется магнитное поле и ЭДС. Трехфазные модели абсолютно бесшумны при любых погодных условиях.

Самодельные конструкции изготавливают одного типа – аксиального. При наличии необходимых деталей самостоятельно изготовить магнитный генератор не сложно.

Мало,- и среднемощные модели изготавливают с длиной лопасти до трех метров.

Ветрогенератор на постоянных магнитах, изготовленный своими руками, может быть выполнен с одинарным или двойным креплением для мощных моделей (большой мотор), также в них дополнительно применяют ферритовые магниты.

Монтаж ротора

Если для создания ветрогенератора используются детали от автомобиля, необходимо их подготовить. Ступицы очистить от краски, грязи, и смазки, обезжирить стальной щеткой. По завершении работ поверхность ступицы также следует заново окрасить для увеличения срока эксплуатации. На диск от авто необходимо установить и приклеить неодимовые магниты, обычно 30 шт. При необходимости получить более мощную установку, требуется большее количество магнитов.

Число полюсов для однофазных установок равно числу магнитов, для трехфазной нагрузки – это соотношение три к четырем.

Катушки

Катушки для статора ветрогенератора

Детали автомобиля ступица с дисками тормоза – мощные сбалансированные конструкции, на основе которых можно изготовить долговечную ветрогенераторную установку.

Неодимовые магниты в установке

Для стандартной модели используют плоские магниты диаметром 25мм, высотой не более 8мм в количестве 20 шт. на каждом диске. Количество для каждой установки определяется чертежом ступицы. На поверхности не должно оставаться полых промежутков.

Монтаж заключается в приклеивании магнитов по кругу, чередуя полюса. После застывания конструкцию необходимо залить эпоксидной смолой. Края диска обрамляют шпоном, пластилином или плотным картоном. Для монтажа следует применять качественный клей, который необходимо проверить на прочность.

В конструкции ветрогенератора неодимовые магниты – самая важная и дорогая деталь. Поэтому к выбору количества и размеров следует подходить ответственно.

Количество фаз

Изготавливают оборудование двух типов:

  • Однофазные. Сооружаются для обеспечения электроэнергией маломощных установок. Главным недостатком этого типа является чрезмерные шумы из-за непостоянства нагрузки и скачкообразности амплитуды статора.
  • Трехфазные. При этом обеспечивается постоянство нагрузки: при падении тока в одной фазе, на другой происходит его возрастание (компенсация фаз). Благодаря бесшумной работе генератора ветрогенератор имеет больший срок эксплуатации. Эффективность трехфазных моделей до 50% больше, чем нескольких однофазных при тех же условиях работы.

Трехфазные тихоходные ветрогенераторы предпочтительнее, т.к. такие конструкции более устойчивы к ветровым нагрузкам и внешним вибрациям.

Намотка катушки

Для эффективной работы генератора необходимо произвести расчет статорных катушек.

Намотка катушек производится проводами большого сечения для того, чтобы снизить сопротивление на генераторе. Для этого используют специальные оправы или станки. Вытянутость катушки обеспечивает большее количество витков проволок. Ширина отверстия подбирается не менее ширины магнитов. Толщина статора соответствует толщине магнитов.

Форма магнитов произвольная:

  • прямоугольная, поле которых вытянуто по длине;
  • круглая, в которых поле сосредоточено в центре.

Тихоходные модели обеспечивают напряжение 12 В уже со 100 оборотов лопастей в минуту. При этом такая модель должна иметь около 1200 витков, равномерно распределенных по плоскости кольца.

Измерение тока в моделях, сделанных своими руками, производится без нагрузки. Реальный показатель, который будет производить установка, меньше, в связи с потерями на диодном мосту и проводах.

Большее число полюсов увеличивает частоту тока и мощность установки. Расчет количества витков должен соответствовать необходимым параметрам системы.

После изготовления статора необходимо приступить к изготовлению мачты и установке платформы.

Мачта, винт и платформа ветряка

Винт ветряка выполняется из ПВХ-труб диаметром 160 мм, также встречаются конструкции из алюминиевых сплавов и стали. Оптимальное количество лопастей – 6 шт.

Высота стандартной мачты ветряка – 6 м. Установка на более высокой отметке позволяет обеспечить большую скорость движения лопастей. На высоту мачты также влияет местная застройка. Необходимо обеспечить установку конструкции на высоте, при которой движению лопастей не будут препятствовать стены зданий и ветки деревьев. Если установка предполагается на открытой незастроенной площадке, высота может быть небольшая.

Установка

Установка ветрогенератора на мачту

Под мачту необходимо вырыть котлован, установить стальную трубу большого диаметра, на которую дальше будет установлена платформа (приварена). Поднимать вертикально мачту необходимо ручной лебедкой, т.к. вес металлической конструкции с оборудованием достаточно большой.

Трубу следует забетонировать. Для обслуживания ветрогенератора необходимо использовать таль.

Повышение мощности ветрогенератора

  1. Включение в схему дополнительных магнитов. На поверхность существующих доклеить равное или меньшее количество магнитов.
  2. Правильное конструирование лопастей ветряка. Неточности могут привести к увеличению сопротивления на лопатках и снижению эффективности установки.
  3. Для усиления магнитопотока в катушку устанавливают пластины трансформатора. Незначительное залипание полностью компенсируется повышением КПД установки. Метод позволяет увеличить мощность установки на 60%.

Видео. Генератор своими руками.

Ветрогенератор на неодимовых магнитах зарекомендовал себя как автономный источник электрической энергии. При правильных расчетах и конструировании КПД установки достаточно высок и позволяет успешно переключить часть нагрузки электроприборов.

Существует много вариантов моделирования, лучшим из них является ветрогенератор от Александра Седова, в котором потребленную мощность возможно увеличить до 4 раз (при потреблении 50 Вт на выходе установки можно получить до 200 Вт).

Оцените статью:

Использование постоянных магнитов в генераторах энергии.

Вы когда-нибудь держали в руках неодимовые магниты? Тогда представляете с какой неимоверной силой они притягиваются и отталкиваются друг от друга. Ну и естественно, наш пытливый ум начинает искать способы использования этой силищи. Каких только не придумано механизмов и конструкций, двигателей и альтернаторов.

В процессе творческого пути изобретатели сталкивались порой с новыми необычными эффектами и открытиями. Что бы вы понимали масштабность этой темы мы предлагаем краткий экскурс по наиболее нашумевшим проектам.

Начнем эту обширную тему с истории развития электромагнитного генератора Джона Серла (John Roy Robert Searl). В детстве Сёрл много болел и находился наедине с собой, что, как он считает, и послужило возникновению у него неординарного типа мышления, позволившего не попасть под догмы образовательной системы. С детства он видел вещие сны, которые в будущем послужили необходимыми ключами для создания его изобретений. Особенно его притягивали «магические квадраты». Джон Сёрл обнаружил, что его «обыкновенные» магические квадраты обладают необыкновенными свойствами. Для пытливого взора изобретателя и естествоиспытателя они стали, как говорит он сам, «окном в природу». Все в природе построено на строжайших закономерностях, убежден профессор, но мы их не видим. Мы не можем их увидеть, потому что получили стандартное образование, из-за чего просто ослепли. Или надели шоры. Заполнив свое сознание стереотипами, мы утратили саму способность удивляться, искать не предвзято, перестали видеть. И воспринимаем реальность не такой, какая она есть, а такой, какой нас научили ее воспринимать.

Джон в возрасте 14 лет поступил учеником электромонтера на завод в английском городе Бирмингеме. Работая с постоянными магнитами для электросчетчиков, он в 1946 году открыл новый эффект электромеханики, о котором в школе не рассказывают. В быстро вращающемся диске появлялась радиальная электродвижущая сила с вертикальным вектором. Для увеличения эффекта, Джон сначала намагничивал диски, а затем стал использовать постоянные магниты. Однажды его модель, состоящую из нескольких соединённых вместе колец, испытывали во дворе. При малых оборотах, в кольцах появилась большая радиальная разность потенциалов, что проявилось по характерному треску электрических разрядов и запаху озона. Затем произошло совсем необычное: блок колец оторвался от раскручивающего их мотора и завис на высоте 1,5 метра, постоянно увеличивая обороты вращения. Вокруг вращающегося объекта появилось розовое свечение – показатель активизации воздуха при падении давления. Объект начал подниматься. Наконец, вращение достигло такой скорости, что объект быстро исчез из виду в вышине. Вдохновлённый своими результатами, Джон, в период с 1950 по 1952 год создал и испытал свыше десятка моделей левитирующих дисков. В дальнейшем он научился управлять «разгоном» этих дисков. Уверенный в том, что общество будет с благодарностью принимать его открытия, он в 1963 году разослал приглашения на презентацию своей модели «летающей тарелки» в Королевский Дом и высшим министерским чинам. Но никто на приглашения не откликнулся. Обескураженный Джон на некоторое время перестал работать, потом, в 1967 году обратился к английским учёным, но те лишь высмеяли «неуча-электрика».

Как обычно, признание к изобретателю пришло из-за рубежа. Сначала от японцев, а значительно позже и от ученых других стран. В 1968 году произошло событие, которое, задержало развитие этих научных исследований. 30 июля 1968 года Джон испытывал аппарат «Р-11» весом почти 500 кг. При демонстрации аппарат опять перестал управляться, а затем взлетел и скрылся из виду на большой высоте в небе. Власти оперативно «отреагировали» на это событие. Местные электрики предъявили изобретателю счет за использование электроэнергии в течении прошлых 30 лет, хотя Джон имел собственную электростанцию. Он не имел возможности уплатить огромную сумму, поэтому его арестовали, судили, и посадили в тюрьму на 15 месяцев. Все оборудование и приборы уничтожили, а дом сожгли. В 1980-е годы о нем было много шума в прессе, как об «отце летающих тарелок». Потом все разговоры об этом талантливом изобретателе прекратились, как будто кто-то дал такую команду.

В настоящее время, Джон Серл открыт для контактов, о нем снимают фильмы и пишут книги. Он действительно заслуживает того, чтобы изучить его теорию и технологию. Необходимо отметить, что Джон Серл сделал фундаментальное открытие природы магнетизма, которое заключается в том, что добавление небольшой составляющей слабого переменного тока (примерно 100 милиампер) высокой частоты (около 10 MГц) в процессе изготовления постоянных магнитов придает им новые и неожиданные свойства. На основе этих магнитов Джон создал свои генераторы. Полагаю, что суть данной технологии состоит в создании магнитного материала, имеющего прецессию магнитных моментов. Основной интерес разработчика был в создании «летающих дисков», и это у него получалось с большим успехом, так как в его генераторах, кроме эффекта самовращения, создается эффект осевой активной силы. К продаже генераторов энергии, Серл и его коллеги готовы давно, иногда они давали рекламу, но до серийного выпуска развитие их проекта не дошло. Возможно, отсутствие серийного производства – это компромисс за то, что они сейчас еще имеют возможность продолжать исследования. На фото показана фотография небольшой экспериментальной установки в современной лаборатории Джона Серла. Слева на фото ролики не вращаются, а справа на фото показаны вращающиеся ролики. Фото публикуется с разрешения Джона Серла. Он прислал письмо в январе 2011 года, с пожеланиями успехов в исследованиях.


Использование постоянных магнитов в генераторах энергии

Один из современных генераторов Серла.

В интернете есть много фильмов с его презентациями и пояснениями о том, «как это работает». Официально, проектами занимается компания DISC Direct International Science Consortium Inc. Они ставят задачи коммерческого освоения космоса, в том числе. Технические подробности данного изобретения имеют аналогии с другими проектами. Эффект Серла, обнаруженный в магнитных взаимодействиях, проявляется в необычном поведении роликов, находящихся в области постоянного поля кольцевого магнита с осевой намагниченностью. Ролик, установленный на свое место «на орбите», после небольшого толчка влево или вправо, начинает движение по орбите с вращением вокруг своей оси, причем с постоянным увеличением орбитальной скорости. Этот эффект может быть объяснен явлением «запаздывания взаимодействия», которое, при перемагничивании, в особых материалах, возникает даже на небольших скоростях взаимного движения магнитов. Команда последователей Джона Серла продолжает его проекты, создавая новые конструкции и применяя современные материалы.

Для более детального обсуждения конструкции, можно обратиться к схеме Рощина и Година, которые в 1992 году в Институте Высоких Температур, Москва, построили и успешно испытали аналогичный генератор. Проект назывался «Астра». Схема экспериментальной установки показана на рисунке.


Использование постоянных магнитов в генераторах энергии

Установка «Астра», авторы Годин и Рощин, 1992 год

В данной конструкции, периферийные магниты (ролики с осевой намагниченностью) вращаются вокруг центрального магнита, имеющего форму кольца с осевой намагниченностью. Вращение создает электродвигатель с внешним питанием. Некоторые отличия от проектов Серла состоят в том, что магниты, в данном случае, не являются свободными, а установлены на общем роторе (элемент 3), хотя ролики также имеют свободу вращения вокруг своей оси. Диаметр магнитной системы рабочего тела конвертора Година и Рощина в проекте «Астра» был около 1 метра. При оборотах более 500 оборотов в минуту, начиналось самовращение, и машина переключалась от первичного привода на генератор с нагрузкой до 7 киловатт. Интересно, что в процессе работы также отмечалось наличие осевой вертикальной силы, и создается радиальное электрическое поле. В затемненном помещении, вокруг работающего генератора наблюдается коронный разряд в виде голубовато-розового свечения и характерный запах озона. При этом, облако ионизации охватывает статор и ротор, и имеет тороидальную форму. Вокруг установки отмечаются концентрические «магнитные стены», то есть области изменения величины магнитного поля и температуры среды. Расстояние между данными «магнитными стенами» было около 50–60 см, толщина «стен» примерно 5–8 см. Температура внутри «стен» была ниже окружающей примерно на 6–8 градусов. Концентрические «магнитные стены» и сопутствующие тепловые эффекты начинали проявляться, заметным образом, примерно с 200 об/мин, и линейно нарастали по мере увеличения числа оборотов.

Подробнее, читайте о данном проекте в стат

Генератор на неодимовых магнитах

 

Магнитный генератор

Магнитный двигатель – это реально бесплатный генератор энергии, который может эффективно заменить подключение от локальной электрической сети, и не требует сложной разработки, нужно только купить магниты. Форум электриков утверждает, что таким образом можно создать бесшумный источник тока.

Фото — Магнитный генератор

Он работает по принципу мощных неодимовых постоянных магнитов. Когда магнитная сила достигает необходимого уровня, чтобы преодолеть трение, скорость двигателя направляется на пандусы, значение доходит до равновесия. В обычном двигателе, магнитное поле возникает от электрических катушек, которые как правило, состоят из меди (Cu), а иногда алюминия (Al).

Поскольку медь и алюминий не являются сверхпроводниками (их сопротивление не равно нулю), обычный электродвигатель должен непрерывно производить электроэнергию для поддержания магнитного поля и компенсации потерь. Этому построению сложно работать из-за высоких показателей потерь.

В магнитной конструкции не нужны катушки самоиндукции, поэтому он работает практически без потерь. Магнита  использует постоянное магнитное поле, в котором генерируется сила движущегося ротора. Недостатком магнитов является то, что он не может управлять потоком. Вы не сможете переключить магнит на резистор или реле. Но преимуществ намного больше, чем недостатков:

  1. Низкая себестоимость;
  2. Отличные показатели работоспособности;
  3. Практически нет потерь электроэнергии.

Инструкция по сборке магнитного генератора с фото

Практическую модель этого генератора легко построить самостоятельно. Все, что вам нужно, это подходящий набор неодимовых магнитов. Очень маленькие неодимовые магниты можно найти даже в компакт-дисках или DVD фокусирующей системе.

Простейший самодельный механический генератор энергии подходит для генерации низких и средних уровней свободной мощности. Максимальная выходная величина значительно выше, чем максимум электрического контура энергии. При более легкой конструкции, чем электромагнитный прибор, мы получаем аналоговый асинхронный генератор.

Для генерации полезной электроэнергии, есть два варианта:

  1. 1.Использование мотков электродвигателя в качестве основы магнитного движка. Такой домашний прибор гораздо проще в конструировании, но в таком случае мотор должен иметь достаточно места для набора магнитов и обмотки катушек (при необходимости намотка осуществляется самостоятельно), для работы на дисбалансе.
  2. 2.Подключить к магнитному двигателю электрогенератор. Вы можете напрямую связывать валы или использовать зубчатую передачу. Второй вариант генератора способен генерировать больше энергии, но его сложно сконструировать.

Рассмотрим самостоятельный способ сборки.

Вентилятор компьютера может быть использован для создания небольшого прототипа магнитного генератора свободной энергии.

Фото — Компьютерный радиатор как двигатель

Фото — Вентилятор от компьютера в разборке

Изначально катушки используются для создания магнитного поля. Мы можем заменить катушки неодимовыми магнитами. Магниты должны быть помещены в тех же направлениях, в которых расположены исходные катушки. Это гарантирует, что ориентация магнитного поля, необходимая для работы двигателя, остается такой же. В этом двигателе, есть четыре катушки, поэтому нужно использовать четыре магнита.

 

Фото — Катушки Фото — Подключение неодимовых магнитов к катушке

Магниты, расположены в направление катушек. Двигатель работает из-за образовавшегося МП, он не нуждается в электроэнергии. Меняя направление магнитов, Вы можете изменять скорость вращения двигателя, соответственно и его энергию.

Фото — Правильное расположение магнитов

 

Фото — Поворот магнитов и работа двигателей

Эти генераторы свободной энергии – вечные, двигатели будут работать до тех пор, пока из цепи не уберется какой-то магнит. Если собрать такой мотор в домашних условиях из более мощного радиатора, то электричества хватит для питания лампочки или даже нескольких бытовых приборов (до 3 кВт), просто Вам понадобится прикрепить к устройству провода, которые будут передавать ток к потребителю электроэнергии.

Следите за новостями!

p.s.  в статье использованы материалы с источников сети интернет

Самодельный генератор на неодимовых магнитах

Неодимовые магниты позволяют создавать мощные источники энергии с высоким КПД, которые можно приводить в действие мускульной силой, ветром, водой и другими средствами. В этой статье рассмотрим трехфазный самодельный генератор на неодимовых магнитах. Приобрести их можно в китайском интернет-магазине. Этим устройством можно заряжать АКБ автомобиля, переносные телевизоры, ноутбуки и другие энергетически “прожорливые” устройства. Если нет желания или времени делать генератор вручную, то можно взять и готовый электрогенератор в интернет-магазине.

Генератор на неодимовых магнитахГенератор на неодимовых магнитах

Генератор имеет ручной привод, но можно поменять его на другой, например на привод от ветроустановки. Ручной привод имеет повышающую передачу один к восьми. При использовании его нужно жестко крепить с столу, это позволит интенсивно его вращать и извлечь до 100 ватт электроэнергии. По сравнению с генератором на моторе, аппарат имеет значительно более высокий КПД преобразования механической энергии в электрическую и заряжать с его помощью можно не только мобильники, но и ноутбуки. Напряжение, которое он выдает при ручном вращении 12 вольт, ток 2 ампера.
Устройство генератора. Примерно с 16-й минуты на ролике показано устройство генератора на неодимовых магнитах.

Механизм привода использован от настольного точильного аппарата. Для соединения его с генератором сделана переходная втулка. Важно, чтобы при соединении этих частей была соблюдена соосность.
Собственно генератор собран на основе мощных неодимовых магнитов, размером 15 мм в диаметре, 5 мм толщиной. Рабочая часть находится на стойках, которые устанавливаются на основание и крепятся на болты. Для уменьшения трения внутри отверстий стоек встроены маленькие подшипники.

Ротор

Ротор

Ротор состоит из оси, на которую установлены 2 диска с магнитами. Магниты стоят на диске поочередно, они крепятся без использования клея, а держатся на железном диске силой магнитного притяжения. На каждом диске стоят по 12 магнитиков.
Для обеспечения точности установки магнитов, сделана пластиковая обойма с высверленными выемками для магнитов.
Статор состоит из 9 катушек, по 3 катушки на каждую фазу. В приведенной модели медный провод 0,4 -0,5 мм. Автор данного устройства (Игорь Белецкий рекомендует оптимальную толщину 0,5 мм). Тонкий провод повысит напряжение, но снизит ток. Толстый провод повысит ток, понизит напряжение.

Статор

Статор

Количество витков от 100 до 200. От количества витков также зависит напряжение и ток. Чем больше витков, тем больше напряжение, но тем меньше ток. Схема соединения катушек использована стандартная, в интернете ее можно найти. В данной конструкции классическое соединение “звезда”. На выходе диодный мостик для выпрямления тока.
При сборке генератора очень важно, чтобы магниты попадали строго в центры катушек.

Такое устройство можно использовать в генераторах на основе мотора Стирлинга.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *