Skip to content

Генератор на постоянных магнитах своими руками генератор своими: Самодельный генератор на постоянных магнитах

Содержание

Самодельный генератор на постоянных магнитах

Магниты у меня были дисковые 25*8 в количестве 12 штук, катушек столько же. Материал магнитов — NdFeB , а какой конкретно (N35, N40, N45) понятия не имею. Промежутки между магнитами 5 мм.  

Диаметр статора 140 мм, внутренний — 90 мм, высота железа статора — 20 мм. Белое под магнитами — пластик. В нем отверстия просверлены под магниты, а под пластиком оцинковка, а под ней фанерка.

Число витков кажется по 50, диаметр провода 1мм. Все соединены последовательно: конец одной с концом другой, начало одной с началом другой. Я сначала не подумал соединил начало с концом. Напряжение на статоре 0. Даже приятно — значит катушки одинаковые получились.

Толщина катушки то ли 6 то ли 7 мм. Можно и до 10 увеличить. Я зазор разным делал. Разница в напряжении есть, но не очень страшная. И еще чего у меня неправильно это то что под магнитами подложен кусок кровельного железа около 0.5 мм толщиной. Надо бы раз в десять толще как я теперь понимаю для нормального замыкания потока.

В качестве железа для статора использовал какую-то стальную ленту шириной сантиметра 2. По-моему, та, которая используется при упаковке оборудования в большие деревянные ящики.

Никаких усилий для страгивания прикладывать не надо. Генератор получился с такими характеристиками: сопротивление обмоток 1 Ом, напряжение 1.5 вольта при 1 об/с.Все тщательно промазал кисточкой эпоксидкой так что по моему никакой дождь не страшен.

Вес всего ветряка килограммов 8 получился вместе с винтом, хвостом и поворотным узлом. Сам генератор 4 кг.   Подшипники в генераторе запрессованы прямо в фанеру.

Поставил на ветряк 1.5 метра диаметром двухлопастный, т.е при 6 мс должен начать аккумулятор заряжать (быстроходность около 6 пытался получить, угол поворота лопасти очень маленький). Не ахти какая стартоваая скорость, но думал, что ветер такой не редкость.

Поставил вечером, ветра не было, но к утру ветер появился и он начал крутиться, но больше вольт 7 я с него не увидел. Понаблюдать больше одного дня выходных за ним не получилось, но приехав через неделю, а потом через две я убедился, что ветер в Подмосковье-редкость (не то что 12м/с как некоторые производители пишут расчетную, а вообще хоть какой-нибудь).

Т.к. аккумулятор щелочной на 110 А*ч зарядился только до 10 Вольт (был разряжен до 8, а может и вовсе прокис от долгих лет стояния в разряженном состоянии). Расчитывать генератор и весь ветряк надо на стартовую скорость метра 3.

Сейчас привез генератор с дачи. Буду проводить более детальные эксперименты. Сегодня вот уже лампочку спалил на 12 Вольт, дрель подключив. Подключал мой генератор к осциллографу — там вроде синус, на мой взгляд, ровный такой.

Из моего опыта постройки такого миниатюрного ветряка сделал несколько выводов (только про мощность ничего сказать не могу и про пропеллер тоже,переделывать буду):

  1. Генератор надо рассчитать, а потом умножить все это на два :-). По крайней мере, у меня с расчетами генератор разошелся почти в два раза.
  2. При изготовлении генератора, катушки должны быть с дыркой по всей ширине статора (или чуть больше ширины магнитов если дисков два). Это очевидно, но в целях уменьшения сопротивления я по незнанию сделал катушки маленькими.
  3. Ничего запихивать в катушки для увеличения магнитного потока через них не надо. Я попробовал наложить металлических обрезков, ничего не поменялосьл, но стронуть стало невозможно, пришлось все выковыривать. А я все эпоксидкой залил.
  4. Система ограничения мощности не нужна в подмосковье. Может у Финского залива это актуально, но у нас ограничивать нечего. Даже на otherpower.com первые ветряки они делали без складывающегося хвоста и ничего у них не ломалось. А в горах ветер посильнее чем у нас бывает.
  5. Никаких скользящих контактов. Ну, не видел я чтобы мой ветряк хоть пару оборотов сделал вокруг своей оси. Ветер на самом деле редко меняет свое направление на диаметрально противоположное. Спустил многожильный провод на землю и привезал к колышку. Хотя я сделал на скользящих контактах, а потом понял, что это не нужно. Даже в Сапсане на весьма мощных ветряках в мачте спрятан перекручивающийся кабель. 
  6. Поворотный узел на подшипниках — долой. Площадь хвоста из фанеры увеличить для компенсации трения возросшего, и все.

Даже легкий ветер поворачивал мой ветряк с небольшим хвостом, хотя мачта была наклонена от вертикали. У меня было с подшипниками, а мачта из плохо закрепленного елового ствола.

Ни на каком импортном самопальном ветряке я такого не видел. Лишние подшипники смазывать — никакого удовольствия, по-моему. Да и хорошие подшипники очень дорогие. А зачем разоряться, когда не очень то и надо?

Автор: Алексей Л. (rosinmn.ru).

Ветрогенератор на постоянных магнитах своими руками.

 

Аксиальный 20-ти полюсной ветрогенератор

Ветрогенератор аксиального типа на основе готовой ступицы и трехфазного генератора, который содержит 15 катушек, намотанных проводом 0.7 мм по 70 витков. Ротор данного генератора имеет 20 пар магнитов размером 20 на 5 мм, а толщина статора равна 8 мм. В этой модели используется двухлопастной винт и система защиты от сильного ветра.

Материалы и агрегаты использованные для постройки данного ветрогенератора:


1) автомобильная ступица
2) эпоксидная смола
3) металлические уголки
4) магниты размером 20 на 5 мм в количестве 40 штук
5) труба 20
6) суперклей
7) вазелин
8) ступица от прицепа «зубренок»
9) фанера
10) ламинат 8 мм
11) провод толщиной 0.7 мм

Рассмотрим более подробно основные этапы постройки и особенности конструкции данной модели ветрогенератора.

Для начала автор занялся намоткой катушек для статора. Чтобы облегчить данный процесс автор изготовил специальное приспособление:

 


Для его изготовления автор использовал трубу диаметром 20 мм, таким образом она как раз подходит под размеры магнитов. Автор решил изготовить катушки толщиной 7 мм.
Еще одно изображение самодельного станка для намотки катушек:

 

 


Автор отмечает, что благодаря данному станку, собранному из подручных материалов, намотка катушек прошла без особых трудностей. Главное мотать катушки виток к витку давая несильную натяжку для того, чтобы витки плотнее прижимались друг к другу.

 

 


Итак, автор приступил к изготовлению катушек для генератора. Для того, чтобы катушки не развалились после намотки автор промазывал их клеем для пластика, а так же дополнительно обернул оконным скотчем. Для намотки катушек автор использовал провод толщиной 0.7 мм по 70 витков на каждую катушку. Хотя после конечной сборки автор решил, что нужно было делать по 90 витков, это позволило бы выиграть по напряжению.

 


Далее была изготовлена форма для заливки статора. Автор решил сделать форму на подложке из фанеры. Для этого на фанеру была нанесена разметка, которая позволит более точно разместить катушки. Средняя часть формы сделана из ламината толщиной 8 мм. Для того, чтобы эпоксидная смола не приставала к форме, автор смазал ее вазелином, это позволит затем легко извлечь статор из заготовки после затвердевания эпоксидной смолы.

Для проводов были сделаны специальные канавки при помощи болгарки.

 


При заливке статора автор использовал стеклосетку, чтобы увеличить прочность статора. Уложив стеклосетку с каждой стороны статора, автор через заранее просверленные отверстия притянул крышку и оставил статор остывать.

 

Катушки статора были соединены пофазно, все шесть проводов от фаз были выведены по канавкам наружу, после чего провода были замазаны пластилином для того, чтобы смола не вытекала. В последствии автор соединил фазы звездой.

 


На следующий день статор был извлечен из формы, и автор слегка обработал края для ровности. Магниты на дисках автор так же решил залить эпоксидной смолой для большей надежности.

На фотографиях ниже можно рассмотреть, как была выполнена поворотная ось ветрогенератора:

 

 

Основой для изготовления поворотной оси послужила автомобильная ступица. Для того, чтобы защитить будущий ветрогенератор от слишком сильного ветра автор использовал стандартную конструкцию увода от ветра путем складывания хвоста. Важно заметить, что ветроголовку необходимо вынести минимум на 100 мм, иначе защита от ветра не будет работать так как ось генератора будет расположена слишком близко к поворотной оси.

Так же к конструкции был приварен штырь под углом в 20 градусов и на 45 градусов относительно винта, на этот штырь одевается хвост ветрогенератора.

Рассмотрим конструкцию ступицы генератора.


За основу самого генератора была взята ступица от прицепа «Зубренок». Автор использовал неодимовые магниты размером 20х5 мм. На каждый диск ушло по 20 магнитов. Ступица была закручена через пластину, на которую прикреплены уголки. Статор генератора будет держаться на шпильках.

Далее автор приступил к изготовлению дисков с магнитами.
Магниты были прикреплены на диски при помощи суперклея. Для того, чтобы сделать все максимально точно автор изготовил шаблон из картона. Так же важно заметить, что магниты должны клеиться с чередованием полюсов, таким образом, чтобы на генераторе диски с магнитами притягивались.

 

 


Ниже можно рассмотреть, как именно был закреплен хвост ветрогенератора, который будет защищать его от сильного ветра:

 

На фотографии ветроголовка была размещена слишком близко к поворотной оси ветрогенератора, что в последующем было выявлено на испытаниях и устранено. Однако само крепление хвоста и углы наклона верные. После доведения конструкции до ума, она отлично себя проявила: при усилении ветра винт отворачивается, а хвост складывается и поднимается вверх.

 

 


Автор решил сделать для начала двухлопастной вариант винта для своего генератора. Лопасти были изготовлены из ПВХ трубы. Так же был сооружен кожух, который будет закрывать генератор от дождя.

Затем генератор был собран и покрашен. После покраски автор решил испытать работу генератора. От руки удалось раскрутить генератор до 30 вольт с силой тока кз 4.5 А.

 

 

 
 
Данный генератора работает на 3 светодиодные ленты по 25 ватт каждая, но в будущем автор планирует более серьезно подойти к расчету винта для генератора и подключить аккумулятор.

статья взята с сети интернет: http://usamodelkina.ru/

Следите за новостями!

Аксиальный генератор на постоянных магнитах своими руками – Tokzamer

Как правильно делать дисковый генератор инструкция

Здравствуйте, мне часто пишут по поводу того как лучше делать аксиальный дисковый генератор, сколько магнитов должно быть и сколько катушек. Спрашивают каким проводом нужно мотать катушки, и по сколько витков. Спрашивают про соотношение магнитов к катушкам, и про то как соединять катушки между собой. Вот на эти вопросы я постараюсь ответить сопровождая их рисунками.

Общие правила построения аксиального генератора

1.Расстояние между магнитов по кругу на дисках должно быть равно их ширине, но чем плотнее тем лучше, идеально если магниты будут почти вплотную друг к другу. Ниже я более подробно описал, если не можете определится делайте расстояние равным ширине магнитов, работать будет как у всех.
2. Круглые магниты, квадратные, или прямоугольные, по сути не важно, это потом отразится на форме катушек. Для первого варианта проще круглые магниты и катушки.
3.Толщина дисков должна быть равна толщине магнитов, или немного тоньше.
4.Количество витков в катушках для 12V АКБ по 60 витков, для 24V ВКБ по 90 витков.
5.Толщина статора по толщине магнитов.
6.Соотношение катушек к магнитам 4:3, на 9 катушек 12 магнитов, на 12 катушек 16 магнитов.
Однофазные генераторы не делают потому что будет сильная вибрация генератора при работе.

Соотношение магнитов к катушкам должно быть таким: на каждые три катушки должно быть по четыре магнита, соотношение 3/4. То есть на 9 катушек должно быть по 12 магнитов на дисках. На 12 катушек должно быть 16 магнитов. На 18 катушек должно быть 24 магнита (по 24 магнита на каждом из двух дисков). Можно делать соотношение и 2/3, генератор тоже будет работать, но как показали некоторые опыты такой вариант немного проигрывает, более подробно здесь — Тестирование генераторов со статорами на 12 и 18 катушек, что оказалось лучше

Магниты должны быть толщиной не менее 10 мм, можно правда и тоньше, но тогда придётся делать тонкий статор, вообще статор должен быть примерно равен толщине магнитов. Форма магнитов, круглые они, квадратные, или прямоугольные, не особо важна, потом это повлияет на форму катушек, будут ли они ровно круглые, треугольной вытянутой формы. Для крупных и мощных генераторов от 1.5кВт магниты можно ставить толщиной 15-20 мм, и делать более толстый и прочный статор толщиной 15-20 мм.

Обычно расстояние между магнитов делают равным их ширине, но чем больше площадь заполнения магнитами дисков по кругу тем лучше. Расстояние между магнитов чем плотнее тем лучше. Но если делать расстояние между магнитов равным ширине самих магнитов, или в половину ширины магнитов то тоже будет работать нормально. Из-за увеличения диаметра дисков увеличивается скорость магнитов за оборот, и напряжение катушек увеличивается пропорционально росту скорости движения магнитов.

Но работают те витки катушек, которые попадают под магниты, поэтому чем реже магниты на диске тем меньше витков катушек принимают участие в работе, и здесь выигрыш только в диаметре, но большой чес получается и много меди уходит. если расположить магниты близко друг другу то диаметр дисков становится меньше, витков в работе больше, а меди меньше. Так в общем эффективнее.

Обычно делаю расстояние между магнитов равное их ширине, но те кто делал расположение магнитов плотнее, и даже вплотную при меньших диаметра и размеров генераторов получали тот же результат. Как делать тут уже решать вам.

Для схемы 9 катушек на 12 магнитов подойдут круглые магниты, и их лучше размещать на диске почти вплотную друг к другу. Внутренний диаметр круглых катушек можно делать меньше диаметра магнита.

Для 12 катушек на 16 магнитов также можно делать круглые катушки и ставить круглые или лучше квадратные магниты. Расстояние между магнитов чем плотнее тем лучше. А так в зависимости от размеров можно сделать расстояние около 5-10 мм между магнитами, если квадратные то в самом узком месте должно быть такое расстояние.

Для 18 катушек на 12 магнитов лучше использовать прямоугольные магниты с расстоянием равным их ширине. При этом внутренняя дырка катушки должна быть почти равна размерам магнита. Если 24 магнита ставить на дисках то расстояние между магнитами будет вплотную.

Ниже рисунок для сравнения насколько перекрываются катушки магнитами если магниты ставить почти вплотную и с расстоянием между магнитами равным их ширине.

Так.же вариант перекрытия магнитами статора на 18 катушек и 12 катушек.

Какой вариант лучше на этот вопрос однозначного ответа нет, любой вариант будет работать. Проще наверное делать как большинство, с расстоянием между магнитов равным их ширине, так как медь дешевле и её можно не экономить.

Намотка катушек и соединение

Количество витков в катушках для зарядки АКБ 12 вольт обычно делается по 60 витков, если ветряк на 24 вольта то по 90 витков в катушке. Более подробно про расчёт напряжения генератора и его мощности я описал здесь — Расчёт генератора новая версия

Соединяются катушки фазы так: Начало первой катушки это начало фазы. Конец первой катушки соединяется с началом второй. Конец второй с началом третьей. Конец третьей на выход если у вас по три катушки на фазу это конец фазы. Вторая и третья фаза соединяется также как и первая. Всего на выходе должно быть шесть проводов, по два повода с каждой фазы. Далее уже можно соединить звездой, для этого три конца фаз или три начала фаз соединяются в одну точку, а три свободные конца уже на трёхфазный диодный мост. Ниже рисунок соединения одной фазы.

Лучше не соединять фазы генератора сразу звездой, а вывести из статора все концы фаз, чтобы потом можно было соединять по разному. Может быть так что с вашим винтом генератор будет лучше работать при параллельном соединении фаз.

По конструкции самого генератора есть два варианта

Первый вариант самый распространённый, диски здесь крутятся на валу, а статор больше по диаметру, и крепится шпильками с внешней стороны, тесть по внешнему диаметру. Обычно для изготовления за основу берут автомобильную ступицу и на её основе строят генератор. Второй вариант это когда статор крепится по внутреннему диаметру за неподвижный вал. А диск с подшипником надевается на этот вал, и с обратной стороны к нему притягивается второй диск.

Как сделать аксиальный ветрогенератор

Эта статья посвящена созданию аксиального ветрогенератора на неодимовых магнитах со статорами без металла. Ветряки подобной конструкции стали особенно популярны из-за растущей доступности неодимовых магнитов.

Материалы и инструменты использованные для постройки ветряка этой модели:

1) ступица от автомобиля с тормозными дисками.
2) дрель с металлической щеткой.
3) 20 неодимовых магнитов размером 25 на 8 мм.
4) эпоксидная смола
5) мастика
6) труба ПВХ 160 мм диаметром
7) ручная лебедка
8) труба металлическая длинной 6 метров

Рассмотрим основные этапы постройки ветряка.

За основу генератора была взята ступица автомобиля с тормозным диском. Так как основная деталь заводского производства, то это послужит гарантом качества и надежности. Ступица была полностью разобрана, подшипники находящиеся в ней были проверены на целостность и смазаны. Так как ступица была снята со старого автомобиля, то ржавчину пришлось зачистить с помощью щетки, которую автор насадил на дрель.
Ниже предоставлена фотография ступицы.

Затем автор приступил к установке магнитов на диски ротора. Было использовано 20 магнитов. Причем важно заметить, что для однофазного генератора количество задействованных магнитов равно количеству полюсов, для двухфазного соотношение будет три к двум или четыре полюса к трем катушкам. Магниты следует крепить на диски с чередованием полюсов. Для соблюдения точности необходимо сделать шаблон размещения на бумаге, либо начертить линии секторов прямо на самом диске.

Рассмотрим основные отличия конструкции однофазного и трехфазного генераторов.
Однофазный генератор будет давать вибрацию при нагрузках, что будет отражаться на мощности самого генератора. Трехфазная конструкция лишена подобного недостатка благодаря чему, мощность постоянна в любой момент времени. Это происходит потому, что фазы компенсируют потерю тока друг в друге. По скромным расчетам автора трехфазная конструкция превосходит однофазную на целых 50 процентов. К тому же из-за отсутствия вибраций мачта не будет дополнительно раскачиваться,следовательно не будет дополнительного шума при работе ротора.

При расчете зарядки 12-ого аккумулятора, которая будет начинаться на 100-150 оборотах в минуту, автор сделал по 1000-1200 витков в катушках. При намотке катушек автор использовал максимально допустимую толщину проволоки, чтобы избежать сопротивления.
Для наматывания проволоки на катушки автор соорудил самодельный станок, фотографии которого представлены ниже.

Лучше использовать катушки эллипсоидной формы, что позволит большей плотности магнитных полей их пересекать. Внутреннее отверстие катушки стоит делать по диаметру магнита либо больше него. В случае, если делать их меньше, то лобовые части практически не участвуют в выработке электроэнергии, а служат проводниками.

Толщина самого статора должна равняться толщине магнитов, которые задействованы в установке.

Форму для статора можно сделать из фанеры, хотя автор решил этот вопрос иначе. Был нарисован шаблон на бумаге, а затем сделаны борта при помощи мастики. Так же для прочности была использована стеклоткань. Для того, чтобы эпоксидная смола не прилипла к форме, ее необходимо смазать воском или вазелином, или можно использовать скотч, пленку, которую в последствии можно будет отодрать от готовой формы.

Перед заливкой катушки необходимо точно закрепить, а их концы вывести за пределы формы, чтобы затем соединить провода звездой или треугольником.

После того, как основная часть генератора была собрана, автор измерил протестировал его работу. При ручном вращении генератор вырабатывает напряжение в 40 вольт и силу тока в 10 ампер.

Для поднятия мачты используется ручная лебедка.
Сам винт для генератора был сделан из трубы ПВХ диаметром 160 мм.

После установки и испытаний генератора в стандартных условиях автор сделал следующие наблюдения: мощность генератора доходит до 300 ватт при ветре в 8 метров в секунду. В последующем увеличил мощность генератора за счет металлических сердечников установленных в катушки. Винт стартует уже при двух метрах в секунду.

Дальше автор приступил к совершенствованию конструкции в целях увеличения мощности генератора. Были набраны магнитопроводы из пластин, которые в последствии были установлены в конструкцию. Из-за их установки появился эффект залипания, но не очень сильный. Старт работы винта происходит при скорости ветра около двух метров в секунду.

Таким образом установка металлических сердечников увеличила мощность генератора до 500 ватт при ветре в 8 метров в секунду.
Для защиты от сильных ветров была использована классическая схема увода винта складывающимся хвостом.

В среднем генератор способен вырабатывать до 150 ватт энергии в час, которая идет на зарядку аккумуляторов.

Принципы построения БЕЗЖЕЛЕЗНЫХ аксиальных генераторов для ветряка на постоянных магнитах.

В данной теме предлагаю обсуждать общую теорию и практику построения безжелезных генераторов, чтобы не флудить в авторских темах, замусоренных до безобразия.
Аксиальный БЕЗЖЕЛЕЗНЫЙ (без железного сердечника в обмотке статора) генератор подчиняется закону движения проводника в магнитном поле: при движении проводника в магнитном поле на его концах под действием силы Лоренца индуцируется ЭДС (электродвижущая сила). Причём, для максимума ЭДС, проводник должен быть прямолинейным и располагаться перпендикулярно направлению движения. Если проводник расположен вдоль направления движения, то ЭДС в нём, по формуле закона, не индуцируется.
Для упрощения реальных конструкций, применяется движение магнитов, а не проводников, что позволяет отказаться от скользящих щёток и коллекторов.
ЗДС рассчитывается по известной формуле E=BLV*sin(фи), где B-индукция магнитного поля в месте нахождения проводника (не путать с остаточной индукцией магнитного материала Br), L – длина активной части проводника, т.е. той части, которая находится в магнитном поле, V – линейная скорость движения проводника относительно магнита, фи – угол между проводником и направлением движения. В случае фи = 90град, sin 90 = 1. Формула приобретает привычный вид E = BLV.
Учебные советские фильмы тут:
https://youtu.be/zXRr4YReNPg
https://youtu.be/yhxHTAKKTT0

Программа для предварительного расчёта ЭДС аксиального безжелезного генератора есть тут: http://www.rlocman.ru/forum/showthre. 617#post190617

На индуцирование ЭДС в обмотке генератора влияют разные факторы – расположение магнитов и их количество, зазор между магнитами, количество дисков с магнитами, расположение проводников относительно магнитов, количество фаз и т. д. От оптимального выбора этих параметров и множества нюансов зависит мощность и КПД генератора.
Предлагаю именно в этой теме и обсуждать все проблемы таких генераторов.

САШУН пишет:
Для лучшего понимания простой, с виду, вопрос. Вот У Владимира74 магниты — прямоугольные. И расположены ПОЧЕМУ-ТО длинной стороной по радиусу, а короткой — по окружности.
Знаете почему? Не знаете.
Ответ — просто не подумал. Ежели просто повернуть каждый магнит на 90 градусов — генератор с РЕДКО расположенными по окружности обмотками работать будет чуток получше.

НЕПРАВИЛЬНЫЕ мысли!
ЭДС считается по формуле E=BLV, тут видно, что ЭДС больше, когда больше длина проводника. Проводника над магнитом, длина активной, радиальной части всей обмотки.
Если магнит перевернуть, то длина уменьшится с 50мм до 20мм, соответственно уменьшится ЭДС.
Кроме этого, что не маловажно, увеличится значительно длина соединительных проводников, продольных, так называемых лобовых частей обмотки. Значит увеличится сопротивление обмотки и потери увеличатся.
Можете в проге http://www.rlocman.ru/forum/showthre. 617#post190617 прикинуть как это всё будет.

Я же не так прост, как это может показаться издали.
Цель генератора — вовсе не вырабатывать ЭДС. Если я буду чесать своего кота (перс Максимилиан фон Кардинал — см. фото) ЭДС будет ОГО-ГО, а вот энергии электрической — пшик!
Задача генератора вырабатывать электроэнергию, а не ЭДС. Поэтому тезис об уменьшении ЭДС при повороте магнита не принимается.
ЭДС хотя будет и меньше, зато вырабатываться будет ДОЛЬШЕ — магнит будет двигаться над каждым проводником фазы в 2,5 раза дольше, и конкретно электроэнергии выработает БОЛЬШЕ.

Поэтому ПРОСЬБА.
Написать в обоснование своего тезиса формулку для ЭНЕРГИИ, а не для ЭДС. В эту формулку, как Вам известно, входит СИЛА, которую нужно прикладывать к магниту, чтобы двигать его ПОПЕРЕК проводников с их амперами и витками, причем, никаких ни ЭДС ни Вольтов в этой формулке нету.

Изображения

cat_best.jpg (32.0 Кб, 0 просмотров)

Как китайцы полностью победили «залипание» в НЕбезжелезных генераторах.
Случайно нашел в сети 2 ролика какого-то «умельца», который захотел улучшить китайский генератор и что из этого получилось.
Оно в середине 1-го длинного ролика есть ЗАМЕЧАТЕЛЬНОЕ место — демонстрация полного ОТСУТСТВИЯ залипания — ротор генератора крутится двумя пальчиками. а во втором ролике, что случится, если НЕ ПОДУМАВ, попытаться «улучшить» конструкцию.
https://www.youtube.com/watch?v=6hE7dcWxGuk
https://www.youtube.com/watch?v=ymSzE2265K0

P.S. Я невзлюбил «заводских рационализаторов» лет 35 назад, когда получил первый десяток патентов из больше 80. Большинство из них плохо образованы и просто не понимают основные принципы работы машин и механизмов. Хотя встречаются и исключения.

Сашун;
. Цель генератора — вовсе не вырабатывать ЭДС. .

ЭДС — электродвижущая сила, первоисточник энергии.
Мощность — скорость расходования энергии. Для эл. генератора P=U*I
Как видно, мощность это ПРОИЗВЕДЕНИЕ тока на напряжение. Одну и туже мощность можно получить малым напряжением и большим током ИЛИ большим напряжением и малым током. ГЛАВНОЕ — ПРОИЗВЕДЕНИЕ. И естественно мощность привода генератора (ветродвигатель, мотор ДВС и т.п.) должна быть немного больше.
В безжелезном гене нет потерь на перемагничивание в сердечнике, сердечник не входит в насыщение при больших мощностях, т. к. его нет. Поэтому ТОК в безжелезном гене больше всего завсит от сопротивления обмотки. А сопротивление от сечения провода. Толще провод, больше ток, больше мощность при одинаковых остальных параметрах. Ну это же ясно как светлый день!

Задача генератора вырабатывать электроэнергию, а не ЭДС. Поэтому тезис об уменьшении ЭДС при повороте магнита не принимается.
ЭДС хотя будет и меньше, зато вырабатываться будет ДОЛЬШЕ — магнит будет двигаться над каждым проводником фазы в 2,5 раза дольше, и конкретно электроэнергии выработает БОЛЬШЕ.

Ничего не больше! Это называется ЧАСТОТА переменного тока. Посчитайте площадь одной большой, ШИРОКОЙ, долгой полуволны и десяток маленьких УЗКИХ горбиков. Площадь одинакова. Мощность переменноьго тока не зависит от его частоты в электротехнике. ВЧ и СВЧ системы к этомк отношения не имеют.

Поэтому ПРОСЬБА.
Написать в обоснование своего тезиса формулку для ЭНЕРГИИ, а не для ЭДС. В эту формулку, как Вам известно, входит СИЛА, которую нужно прикладывать к магниту, чтобы двигать его ПОПЕРЕК проводников с их амперами и витками, причем, никаких ни ЭДС ни Вольтов в этой формулке нету.

ЭНЕРГИЯ измеряется в киловатт-часах, мощность помножить на время действия этой мощности.
Сила про которую вы говорите, это сила противодействия F=IBL, из этого видно, что чем больше ток в обмотке и нагрузке, тем больше сила противодействия. Эта сила противодействия равна силе действия привода генератора (без учёта КПД).

Делаем ветрогенератор на неодимовых магнитах

Аксиальный ветрогенератор, который работает на неодимовых магнитах, впервые начали массово изготавливать в странах Запада. И это были вовсе не заводские изделия, а плод труда местных гаражных мастеров, поставивших себе на службу явление левитации. Серьезной популярности именно такие модели ветряка обязаны массовому распространению и дешевизне неодимовых магнитов. Постепенно комплектующие и схемы изготовления стали распространятся по всему миру и в настоящее время магнитный аксиальный ветрогенератор завоевывает признание на просторах Российской Федерации. Ниже описана последовательность создания одной из самых удачных моделей такого ветряка.

Процесс создания ротора

Основой генератора автор разработки решил сделать ступицу автомобиля с дисками тормоза, поскольку она мощная, надежная и идеально сбалансированная. Начав делать ветряк своими руками, в первую очередь следует подготовить основу для ротора — ступицу, — почистить ее от грязи, краски и смазки. После чего приступить к наклейке постоянных магнитов. Для создания данного ветрогенератора, их было использовано по двадцать штук на диске. Размер неодимовых магнитов составил 25х8 миллиметров. Однако, и их количество, и их размер могут варьировать в зависимости от целей и задач человека, своими собственными руками создающего ветрогенератор. Однако всегда будет правильным, для получения одной фазы, равенство количества полюсов числу неодимовых магнитов, а для трех фаз — выдержка соотношений полюсов и катушек — два к трем или три к четырем.

Магниты следует располагать учитывая чередование полюсов, к тому же максимально точно, но прежде, чем приступить к их наклейке, нужно либо создать бумажный шаблон, либо прочертить линии, делящие диск на сектора. Чтобы не перепутать полюса, делаем отметки на магнитах. Главное — выполняем следующее требование — те магниты, которые стоят напротив друг друга, должны быть повернуты разными полюсами, то есть притягиваться.

Магниты приклеиваются к дискам при помощи супер-клея и заливаются. Также нужно сделать бордюрчики по краям дисков и в их центре, либо намотав скотча, либо вылепив из пластилина для недопущения растекания.

Фазы — что лучше — три или одна?

Многие любители электрической техники идут по пути наименьшего сопротивления и, чтобы не заморачиваться, останавливают свой выбор на однофазном статоре для ветряка. Однако у него имеется одна неприятная особенность, нивелирующая простоту сборки, — это вибрация в нагруженном состоянии, по причине непостоянства отдачи тока. Ведь амплитуда такого статора скачкообразна, — достигая максимума, когда неодимовые магниты располагаются над катушками, а после падая до минимума.

А вот, когда генератор сделан по трехфазной системе, то вибрации отсутствуют, и показатель мощности ветряка имеет постоянное значение. Причина такого отличия заключается в том, что ток, падая в одной фазе, в то же время нарастает в другой. И в итоге, ветрогенератор, работающий в трехфазной системе, может быть более эффективным до 50 %, чем точно такой же, но использующий однофазную систему. И главное, — нагруженный трехфазный генератор не дает вибрации, следовательно, мачта не дает повода для жалоб на ветрогенератор в надзирающие органы недоброжелателям из числа соседей, поскольку не создает надоедливого гула.

Способ намотки катушки статора ветряка

Для того, чтобы сделанный своими руками ветрогенератор на неодимовых магнитах работал с максимальной отдачей, статорные катушки следует рассчитывать. Однако большинство мастеров предпочитают делать их на глаз. К примеру, тихоходный генератор, способный заряжать 12 В аккумулятор, начиная со 100 — 150 оборотов за минуту, должен иметь во всех катушках от 1000 до 1200 витков, поровну разделенное между всеми катушками. Увеличение количества полюсов ведет к росту частоты тока в катушках, благодаря чему генератор, даже при малых оборотах, дает большую мощность.

Намотка катушек должна производиться по возможности более толстыми проводами, с целью снижения сопротивления в них. Делать это можно на оправке, либо на самодельном станке.

Для того чтобы разобраться, какой потенциал мощности имеет генератор, покрутите его с одной катушкой, поскольку, в зависимости от того, в каком количестве будут установлены неодимовые магниты и какова их толщина, данный показатель может существенно отличаться. Измерение проводятся без нагрузки при необходимом числе оборотов. Например, если генератор при 200 оборотах за минуту обеспечивает напряжение в 30 В, имея сопротивление в 3 Ом, то следует из 30 В вычесть 12 В (напряжение питания аккумулятора) и полученный результат — 18 делим на 3 (сопротивление в омах) получаем 6 (сила тока в амперах), которые и пойдут от ветрогенератора на зарядку АКБ. Однако, как показывает практика, по причине потерь в проводах и диодном мосту, реальный показатель, который будет производить магнитный аксиальный генератор, будет поменьше.

Магниты для создания ветрогенератора лучше брать в форме прямоугольника, поскольку их поле распространяется по длине, в отличие от круглых, поле которых сосредотачивается в центре. Катушки, как правило, мотают круглыми, хотя лучше делать их несколько вытянутыми, что обеспечивает больший объем меди в секторе, а также более прямые витки. Отверстие внутри катушек должно быть равно или превышать ширину магнитов.

Толщина статора должна быть такой же что и магниты. Форма для него обычно фанерная, для прочности под катушки и поверх них кладут стеклоткань, и все это заливается эпоксидной смолой. Для того, что бы не допустить прилипания смолы к форме, последнюю смазывают любым жиром либо применяют скотч. Провода предварительно выводят наружу и скрепляют между собой, концы каждой фазы после этого соединяют треугольником либо звездочкой.

Мачта для ветрогенератора

Мачту на которой будет расположен данный генератор, можно делать высотой от 6 и выше метров, чем выше, тем больше скорость ветра. Под нее следует вырыть яму и залить основание из бетона, а трубу укрепить таким образом, чтобы магнитный аксиальный ветрогенератор, сделанный своими руками, можно было опускать и поднимать. Делать это можно при помощи механической тали.

Винт ветряка

Его делают из поливинилхлоридных труб, чей оптимальный для этого диаметр — 160 мм. К примеру, ветрогенератор, работающий на принципе магнитной левитации, с диаметром в два метра и шестью лопастями, при скорости ветра в 8 метров за секунду, способен обеспечить мощность до 300 Вт.

Как повысить мощность ветряка?

Для подъема мощности ветрогенератора можно использовать магниты. Попросту на магниты, которые уже установлены наклеить еще по одному такому же или более тонкому. Другой способ основан на установке в катушки металлических сердечников, — пластин трансформатора. Это обеспечит усиление магнитопотока в катушке, однако вызывает небольшое залипание, которое, впрочем, совершенно не ощущается шестилопастным винтом. Стартует такой ветрогенератор при ветре в 2 м/с. Благодаря применению сердечников генератор получил увеличение мощности с 300 до 500 Вт/ч при ветре в 8 м/с. Также следует уделять внимание форме лопастей, — малейшие неточности снижают мощность.


Изготовление ветрогенератора на неодимовых магнитах своими руками: конструкция ротора ветряка с аксиальным генератором

Обновлено: 6 января 2021

  • Самодельный ветряк
  • Тихоходные ветрогенераторы
  • Изготовление ротора на постоянных магнитах
    • Модификация автомобильного генератора
    • Изготовление ротора из ступицы и тормозного диска
  • Ветряк с аксиальным генератором на неодимовых магнитах
  • Изготовление статора
    • Выбор количества фаз
    • Модификация статора автогенератора
    • Изготовление статора аксиального типа
  • Сборка крыльчатки
  • Рекомендуемые товары

Самодельный ветряк

Приобретение ветрогенератора — дорогостоящая и не всегда полностью эффективная затея. Образцы ветряков, имеющиеся в продаже, имеют ограниченный срок службы, низкую ремонтопригодность и высокую цену. Покупка такого комплекта не по карману многим потенциальным пользователям. Выходом из положения становится самостоятельное изготовление ветрогенератора, обходящееся гораздо дешевле и позволяющее получить устройство с высокой эффективностью и производительностью.

Самодельный ветряк имеет высокую ремонтопригодность и, как следствие, длительный срок службы. Зачастую конструкцию по ходу эксплуатации модернизируют, улучшают и доводят до максимально возможных параметров, чего нельзя сделать с заводскими комплектами.

Тихоходные ветрогенераторы

Наиболее привлекательными конструкциями ветряков для большинства регионов России являются образцы, дающие высокие показатели на слабых и средних ветрах — тихоходные ветряки. Для них характерна возможность начинать вращение при низких скоростях потока, выдавая достаточное напряжение для питания приборов потребления.

Выработка энергии на таких устройствах производится генераторами, адаптированными к работе с ветряками. Специфика конструкции таких генераторов состоит в высокой чувствительности, поскольку устройство изначально рассчитывается на работу с низкими скоростями вращения.

Для того, чтобы обеспечить заданный режим работы, необходимо обмотку возбуждения исключить из конструкции, заменив ее постоянными магнитами. В результате отпадет необходимость подачи напряжения для образования электромагнитов, индукция станет более стабильной, независимой от источника питания на обмотке ротора. Кроме того, отпадет надобность в щеточном узле, подающем питание на обмотку возбуждения.

Изготовление ротора на постоянных магнитах

Конструкция генератора на постоянных магнитах в каком-то смысле проще, чем с электромагнитным возбуждением. Создание такого устройства может выполняться как на базе готового генератора, так и при помощи подручных материалов.

Модификация автомобильного генератора

Создание ротора на постоянных магнитах требует достаточно серьезного вмешательства в конструкцию. Необходимо уменьшить диаметр на толщину магнитов плюс толщину стальной гильзы, которая одевается на ротор для образования сплошного магнитного потока и одновременно служит посадочной площадкой под магниты. Некоторые специалисты обходятся без гильзы, устанавливая магниты прямо на ротор с уменьшенным диаметром и фиксируя на эпоксидку.

Процесс изготовления требует участия производственного оборудования. В токарный станок зажимается ротор и аккуратно снимается слой с таким расчетом, чтобы установленные магниты вращались с минимальным зазором, но вполне свободно. Установка магнитов производится на пластины ротора с чередованием полюсности.

Наибольшего эффекта удается добиться при установке относительно небольших по размерам магнитов, расположенных рядами в продольном направлении. Достигается ровный и мощный магнитный поток, воздействующий на силовые обмотки статора с равномерной плотностью во всех точках.

Изготовление ротора из ступицы и тормозного диска

Рассмотренный способ относится к готовым генераторам, нуждающимся в небольших изменениях конструкции. К таким устройствам относятся автомобильные генераторы, часто применяющиеся самодеятельными конструкторами в качестве базового устройства. Зачастую генераторы собирают полностью самостоятельно, не имея готового устройства.

В таких случаях действуют несколько иначе. За основу берется автомобильная ступица с тормозным диском. Она качественно отбалансирована, прочна и приспособлена к нагрузкам определенного рода. Кроме того, размер ступицы позволяет разместить по окружности большое число магнитов, позволяя получить трехфазное напряжение.

Магниты с чередованием полюсности размещают на равноудаленном от центра расстоянии. Очевидно, что наибольшее число можно установить, если приклеивать их как можно ближе к наружному краю. Наиболее точным показателем станет размер магнитов, который определит возможность размещения на определенном расстоянии. Число магнитов должно быть четным, чтобы не сбивался ритм чередования полюсов при вращении.

Наклейка магнитов на ступицу производится при помощи любого клея, оптимальным вариантом считается эпоксидная смола, которой заливают магниты полностью. Это защищает их от воздействия влаги или от механических воздействий. Перед заливкой по краю ступицы рекомендуется сделать бортик из пластилина, не позволяющий эпоксидке стекать со ступицы вниз.

Конструкция генератора на автомобильной ступице наиболее удобна при изготовлении вертикального ветряка. Примечательно, что подобную схему можно использовать и без ступицы, на диске, вырезанном из обычной фанеры. Такая конструкция намного легче, позволяет выбирать удобный размер, что делает возможным создание чувствительного и производительного устройства.

Ветряк с аксиальным генератором на неодимовых магнитах

Наиболее сильными магнитами, обладающими оптимальными параметрами для использования в конструкции генератора, являются неодимовые магниты. Они несколько дороже обычных, но превосходят их многократно и дают возможность создать мощное устройство при относительно компактном размере.

Принципиального отличия в конструкции не имеется. Неодимовые магниты изготавливаются в различных формфакторах, позволяющих выбрать наиболее удобный для себя вариант — тонкие продолговатые брусочки, форма таблетки, цилиндры и т.д. если используется металлический ротор, то приклеивать магниты необязательно, они сами по себе с усилием прикрепляются к основанию. Остается лишь залить их эпоксидкой для защиты от коррозии.

Приобрести такие магниты проще всего через Интернет, заодно можно сразу же выбрать самую удобную форму.

Изготовление статора

Статор — это неподвижная часть генератора, несущая силовую обмотку, индуцирующую электрический ток. В зависимости от типа конструкции, статор может быть использован от готового устройства (например, от автомобильного генератора), или изготовлен с нуля самостоятельно. Техника изготовления в каждом случае своя, но принцип остается общий — по окружности, охватывающей вращающийся ротор, располагаются катушки, вырабатывающие переменный ток.

При модификации автомобильного генератора иногда силовые обмотки не трогают, предпочитая изменить конструкцию ротора и на этом остановиться. Чаще всего причиной тому является слабая техническая или теоретическая подготовка, когда мастер имеет весьма смутное представление, как именно подобные вещи делаются. Рассмотрим вопрос внимательнее:

Выбор количества фаз

Многие мастера пытаются облегчить себе задачу, делая генератор на одну фазу. В данном случае простота весьма сомнительная, так как экономия усилий получается только на стадии намотки катушек. Зато при эксплуатации получается неприятный эффект — амплитуда напряжения имеет классический вид, отчего выпрямленный ток имеет пульсирующую структуру.

Скачки противопоказаны аккумуляторам, создают отрицательное воздействие на все узлы комплекса и способствуют быстрому выходу из строя. Появляется вибрация, которая может стать причиной жалоб соседей, источником неприятных ощущений для людей или животных.

Трехфазная конструкция, напротив, имеет более мягкую огибающую, в выпрямленном состоянии ток практически не имеет каких-либо отклонений. Мощность устройства имеет стабильное значение, сохраняется в рабочем состоянии механическая и электрическая часть агрегата.

Выбор между трех- и однофазным устройством однозначно следует делать в сторону трехфазной конструкции. Количество намотанных катушек возрастает, но число витков не настолько велико, чтобы отказываться от более качественного результата из-за призрачной экономии времени.

Модификация статора автогенератора

Автомобильный генератор имеет готовые силовые катушки, плотно уложенные в каналах статора. Для получения качественного результата требуется изменить чувствительность статора, поскольку номинальная частота вращения автомобильного двигателя находится в пределах 2000-3000 об/мин, а на пике может подниматься до 5000-6000 об/мин. Таких параметров ветряк выдать не в состоянии, а использование повышающей передачи значительно снизит мощность крыльчатки.

Решением вопроса становится увеличение количества витков, для чего старые обмотки демонтируются, а на их место наматываются новые, с большим числом витков из более тонкого провода. При этом, нельзя использовать слишком тонкий провод, так как с возрастанием числа витков растет и сопротивление, делающее генератор менее производительным. Необходимо соблюдать «золотую середину», увеличивая количество аккуратно, без излишнего рвения.

Важно! Подобная операция требует расчета, но на практике чаще всего поступают проще — наматывают столько витков, сколько способна вместить конструкция статора. Результат обычно достигается положительный, поскольку слишком большое число витков вместить не получится.

Изготовление статора аксиального типа

Такая конструкция подойдет для генератора аксиального типа, ротор которого создан из ступицы и тормозного диска от автомобильного колеса. Статор имеет форму плоского диска, по окружности которого расположены силовые обмотки. Они должны быть намотаны из достаточно толстого провода, чтобы число витков было достаточным, но и сопротивление не снижало эффективность конструкции. Количество катушек кратно трем, чтобы на каждую фазу приходилось одинаковое количество.

Соединяются они между собой звездой, для каждой фазы соединяются 1, 4, 7, 10 и т.д. При намотке однофазного статора каждая катушка мотается в противоположном направлении — первая по часовой стрелке, вторая — против, затем опять по часовой и т.д. соединяются они последовательно.

Готовый статор устанавливается соосно с ротором. Зазор между катушками и неодимовыми магнитами должен быть минимальным, но ход ротора свободный, без соприкосновения с катушками.

Для защиты от влаги, пыли или прочих воздействий катушки обычно заливают эпоксидной смолой. Для этого предварительно делается по внешнему краю диска статора бортик из пластилина высотой, немного превышающей слой заливки.

Сборка крыльчатки

Крыльчатка должна обеспечивать максимальную чувствительность. Перед тем, как начать создание ветряка, следует подробно изучить метеорологическую обстановку в регионе, направление и скорость преобладающих ветров, частоту и силу шквалистых порывов, возможность ураганов. Эта информация поможет выбрать наиболее подходящую конструкцию ветряка (вертикальный или горизонтальный, размер, количество лопастей и т.п.).

Создание крыльчатки производится из подручного материала на основании параметров генератора. Размер лопастей должен обеспечивать начало вращения при невысоких скоростях потока, но не создавать чрезмерно большой преграды. Это снизит риск падения мачты при сильном порыве или шквале.

Регионы с нестабильными и часто меняющимися ветрами (каких большинство в России) больше подходят для эксплуатации вертикальных конструкций. Горизонтальные ветряки считаются более эффективными, но нуждаются в установке на высокие мачты, что создает проблемы при обслуживании.

Рабочее колесо ветрогенератора должно быть качественно отбалансировано и прочно соединено. Установка комплекта на крышу дома запрещается, особенно, если в нем проживает несколько семей. Рекомендуется выбирать открытое место на возвышении неподалеку от дома, чтобы длина кабеля не создавала большого сопротивления. Поблизости не должно быть преград, высоких деревьев или зданий, заслоняющих прямой поток ветра.

Ветрогенератор на неодимовых магнитах

Пост опубликован: 15 ноября, 2017

Неодимовый магнит – это редкоземельный металл, обладающий стойкостью к размагничиванию и способностью намагничивать некоторые материалы. Используется при изготовлении электронных устройств (жесткие диски компьютеров, металлодетекторы и т.д.), медицине и энергетике.

Неодимовые магниты используются при изготовлении генераторов, работающих в различных видах установках, вырабатывающих электрический ток.

В настоящее время генераторы, изготовленные с использованием неодимовых магнитов, широко используются при изготовлении ветровых установок.

Основные характеристики

Для того, чтобы определиться в целесообразности изготовления генератора на неодимовых магнитах, нужно рассмотреть основные характеристики данного материала, которыми являются:

  • Магнитная индукция В — силовая характеристика магнитного поля, измеряется в Тесла.
  • Остаточная магнитная индукция Br — намагниченность, которой обладает магнитный материал при напряжённости внешнего магнитного поля, равной нулю, измеряется в Тесла.
  • Коэрцитивная магнитная сила Hc — определяет сопротивляемость магнита к размагничиванию, измеряется в Ампер/метр.
  • Магнитная энергия (BH)max -характеризует, насколько сильным является магнит.
  • Температурный коэффициент остаточной магнитной индукции Tc of Br – определяет зависимость магнитной индукции от температуры окружающего воздуха, измеряется в процентах на градус Цельсия.
  • Максимальная рабочая температура Tmax — определяет предел температуры, при которой магнит временно теряет свои магнитные свойства, измеряется в градусах Цельсия.
  • Температура Кюри Tcur — определяет предел температуры, при которой неодимовый магнит полностью размагничивается, измеряется в градусах Цельсия.

В состав неодимовых магнитов, кроме неодима входит железо и бор и зависимости от и их процентного соотношения, получаемое изделие, готовый магнит, различается по классам, отличающимся по своим характеристикам, приведенным выше. Всего выпускается 42 класса неодимовых магнитов.

Достоинствами неодимовых магнитов, определяющими их востребованность, являются:

  • Неодимовые магниты обладают наиболее высокими магнитными параметрами Br, Нсв, Hcм , ВН.
  • Подобные магниты имеют более низкую стоимость в сравнении с подобными металлами, имеющими в своем составе кобальт.
  • Обладают способностью работать без потерь магнитных характеристик в температурном диапазоне от – 60 до + 240 градусов Цельсия, с точкой Кюри +310 градусов.
  • Из данного материала возможно изготовить магниты из любой формы и размеров (цилиндры, диски, кольца, шары, стержни, кубы и др.).

Ветрогенератор на неодимовых магнитах мощностью 5,0 кВт

В настоящее время отечественные и зарубежные компании все более широко используют неодимовые магниты при изготовлении тихоходных генераторов электрического тока. Так ООО «Сальмабаш», г. Гатчина Ленинградской области, выпускает подобные генераторы на постоянных магнитах мощностью 3,0-5,0 кВт. Внешний вид данного устройства приведен ниже:

Корпус и крышки генератора изготавливаются из стали, в дальнейшим с покрытием лакокрасочными материалами. На корпусе предусмотрены специальные крепления, позволяющие закрепить электрический аппарат на несущей мачте. Внутренняя поверхность обработана защитным покрытием, предотвращающим коррозию металла.

Статор генератора набран из электротехнических пластин стали.

Обмотка статора — выполнена эмаль-проводом, позволяющим устройству работать продолжительное время с максимальной нагрузкой.

Ротор генератора имеет 18 полюсов и установлен в подшипниковых опорах. На ободе ротора размещены неодимовые магниты.

Генератор не требует принудительного охлаждения, которое осуществляется естественным путем.

Технические характеристики генератора мощностью 5,0 кВт:

  • Номинальная мощность – 5,0 кВт;
  • Номинальная частота – 140,0 оборотов/минуту;
  • Рабочий диапазон вращения – 50,0 – 200,0 оборотов/минуту;
  • Максимальная частота – 300,0 оборотов/минуту;
  • КПД – не ниже 94,0 %;
  • Охлаждение – воздушное;
  • Масса – 240,0 кг.

Генератор оснащен клеммной коробкой, посредством которой осуществляется его подключение к электрической сети. Класс защиты соответствует ГОСТ14254 и имеет степень IP 65 (пылезащищенное исполнение с защитой от струй воды).

Конструкция данного генератора приведена на рисунке, приведенном ниже:

где: 1-корпус, 2- крышка нижняя, 3- крышка верхняя, 4- ротор, 5- неодимовые магниты, 6- статор, 7- обмотка, 8- полумуфта, 9- уплотнения, 10,11,12- подшипники, 13- клеммная коробка.

Плюсы и минусы

К достоинствам ветрогенераторов, изготовленных с использование неодимовых магнитов можно отнести следующие характеристики:

  • Высокий КПД устройств, достигаемый за счет минимизации потерь на трение;
  • Продолжительные сроки эксплуатации;
  • Отсутствие шума и вибрации при работе;
  • Снижение затрат на установку и монтаж оборудования;
  • Автономность работы, позволяющая осуществлять эксплуатацию без постоянного обслуживания установки;
  • Возможность самостоятельного изготовления.

К недостаткам подобных устройств можно отнести:

  • Относительно высокая стоимость;
  • Хрупкость. При сильном внешнем воздействии (ударе), неодимовый магнит способен лишиться своих свойств;
  • Низкая коррозийная стойкость, требующая специального покрытия неодимовых магнитов;
  • Зависимость от температурного режима работы – при воздействии высоких температур, неодимовые магниты теряют свои свойства.

Как сделать своим руками

Ветровой генератор на основе неодимовых магнитов отличается от прочих конструкций генераторов тем, что легко может быть изготовлен самостоятельно в домашних условиях.

Как правило за основу берут автомобильную ступицу или шкивы от ременной передачи, которые предварительно очищаются, если это бывшие в употреблении запасные части и подготавливаются к работе.

При наличии возможности изготовить (выточить), специальные диски, лучше остановиться на этом варианте, т.к. в этом случае не придется подгонять геометрические размеры наматываем ых катушек к размерам используемых заготовок.

Неодимовые магниты следует приобрести, для чего можно воспользоваться сетью интернет или услугами специализированных организаций.

Один из вариантов изготовления генератора на неодимовых магнитах, с использованием дисков, специально изготовленных для этих целей, предлагает к рассмотрению Яловенко В.Г. (Украина). Данный генератор изготавливается в следующей последовательности:

  1. Из листовой стали вытачиваются два диска диаметром 170,0 мм с устройством центрального отверстия и шпоночного паза.
  2. Диск делится на 12 сегментов, для на его поверхности выполняется соответствующая разметка.
  3. В размеченные сегменты клеятся магниты, таким образом, чтобы их полярность чередовалась. Для избегания ошибок (по полярности), необходимо перед наклейкой, выполнить их маркировку.
  4. Подобным образом изготавливается и второй диск. В результате получается следующая конструкция:

  1. Поверхность исков заливается эпоксидной смолой.
  2. Из провода (эмаль-провода) марки ПЭТВ или аналога, сечением 0,95 мм 2 , наматывается 12 катушек по 55 витков в каждой.
  3. На листе фанеры или бумаге, изготавливается шаблон, соответствующий диаметру используемых дисков, на котором также производится разбивка на 12 секторов.

Катушки укладываются в размеченные сегменты, где фиксируются (изолента, скотч и т.д.) и расключаются последовательно между собой (конец первой катушки соединяется с началом второй и т.д.). в результате получается следующая конструкция

  1. Из дерева (доска и т.д.) или фанеры, изготавливается матрица, в которой можно залить эпоксидной смолой уложенные по шаблону катушки. Глубина матрицы должна соответствовать высоте катушек.
  2. Катушки укладываются в матрицу и заливаются эпоксидной смолой. В результате получается следующая заготовка:

  1. Из стальной трубы диаметром 63,0 мм изготавливается ступица с узлом крепления вала, изготавливаемого генератора. Вал монтируется на подшипники, устанавливаемые внутри ступицы.
  2. Из такой же трубы изготавливается поворотный механизм, обеспечивающий ориентацию генератора в соответствии с потоками ветра.
  3. На вал одеваются изготовленные запасные части. В результате получается следующая конструкция, плюс поворотный механизм:

  1. Конструкция должна жестко крепить статор (заготовка с обмотками, залитыми эпоксидной смолой), с одной стороны, и не затруднять вращение ротора (диски с недимовыми магнитами).
  2. Из трубы (полиэтилен, пропилеи и т.д.), используемой для прокладки сетей водопровода или канализации, изготавливаются лопасти ветрового генератора. Для этого труба нарезается нужной длины, после чего разрезается и заготовкам придается соответствующая форма.
  3. Изготавливается хвостовок ветровой установки. Для этого может быть использован любой листовой материал (фанера, металл, пластик), после чего хвостовик крепится к собираемой конструкции, со стороны противоположной креплению лопастей. В результате получается следующая конструкция:

  • Собранная установка монтируется в предусмотренном для этого месте.
  • К выводам генератора подключается нагрузка.

Конструкция ветрового генератора на неодимовых магнитах может быть различной, все зависит от имеющихся запасных частей и технический возможностей человека, решившего изготовить подобное устройство самостоятельно.

Спасибо, что дочитали до конца! Не забывайте подписываться на канал, Если статья Вам понравилась!

Делитесь с друзьями, оставляйте ваши комментарии

Добавляйтесь в нашу группу в ВК:

и предлагайте темы для обсуждений, вместе будет интереснее.

Тихоходный генератор на постоянных магнитах своими руками – Tokzamer

Делаем ветрогенератор на неодимовых магнитах

Аксиальный ветрогенератор, который работает на неодимовых магнитах, впервые начали массово изготавливать в странах Запада. И это были вовсе не заводские изделия, а плод труда местных гаражных мастеров, поставивших себе на службу явление левитации. Серьезной популярности именно такие модели ветряка обязаны массовому распространению и дешевизне неодимовых магнитов. Постепенно комплектующие и схемы изготовления стали распространятся по всему миру и в настоящее время магнитный аксиальный ветрогенератор завоевывает признание на просторах Российской Федерации. Ниже описана последовательность создания одной из самых удачных моделей такого ветряка.

Процесс создания ротора

Основой генератора автор разработки решил сделать ступицу автомобиля с дисками тормоза, поскольку она мощная, надежная и идеально сбалансированная. Начав делать ветряк своими руками, в первую очередь следует подготовить основу для ротора — ступицу, — почистить ее от грязи, краски и смазки. После чего приступить к наклейке постоянных магнитов. Для создания данного ветрогенератора, их было использовано по двадцать штук на диске. Размер неодимовых магнитов составил 25х8 миллиметров. Однако, и их количество, и их размер могут варьировать в зависимости от целей и задач человека, своими собственными руками создающего ветрогенератор. Однако всегда будет правильным, для получения одной фазы, равенство количества полюсов числу неодимовых магнитов, а для трех фаз — выдержка соотношений полюсов и катушек — два к трем или три к четырем.

Магниты следует располагать учитывая чередование полюсов, к тому же максимально точно, но прежде, чем приступить к их наклейке, нужно либо создать бумажный шаблон, либо прочертить линии, делящие диск на сектора. Чтобы не перепутать полюса, делаем отметки на магнитах. Главное — выполняем следующее требование — те магниты, которые стоят напротив друг друга, должны быть повернуты разными полюсами, то есть притягиваться.

Магниты приклеиваются к дискам при помощи супер-клея и заливаются. Также нужно сделать бордюрчики по краям дисков и в их центре, либо намотав скотча, либо вылепив из пластилина для недопущения растекания.

Фазы — что лучше — три или одна?

Многие любители электрической техники идут по пути наименьшего сопротивления и, чтобы не заморачиваться, останавливают свой выбор на однофазном статоре для ветряка. Однако у него имеется одна неприятная особенность, нивелирующая простоту сборки, — это вибрация в нагруженном состоянии, по причине непостоянства отдачи тока. Ведь амплитуда такого статора скачкообразна, — достигая максимума, когда неодимовые магниты располагаются над катушками, а после падая до минимума.

А вот, когда генератор сделан по трехфазной системе, то вибрации отсутствуют, и показатель мощности ветряка имеет постоянное значение. Причина такого отличия заключается в том, что ток, падая в одной фазе, в то же время нарастает в другой. И в итоге, ветрогенератор, работающий в трехфазной системе, может быть более эффективным до 50 %, чем точно такой же, но использующий однофазную систему. И главное, — нагруженный трехфазный генератор не дает вибрации, следовательно, мачта не дает повода для жалоб на ветрогенератор в надзирающие органы недоброжелателям из числа соседей, поскольку не создает надоедливого гула.

Способ намотки катушки статора ветряка

Для того, чтобы сделанный своими руками ветрогенератор на неодимовых магнитах работал с максимальной отдачей, статорные катушки следует рассчитывать. Однако большинство мастеров предпочитают делать их на глаз. К примеру, тихоходный генератор, способный заряжать 12 В аккумулятор, начиная со 100 — 150 оборотов за минуту, должен иметь во всех катушках от 1000 до 1200 витков, поровну разделенное между всеми катушками. Увеличение количества полюсов ведет к росту частоты тока в катушках, благодаря чему генератор, даже при малых оборотах, дает большую мощность.

Намотка катушек должна производиться по возможности более толстыми проводами, с целью снижения сопротивления в них. Делать это можно на оправке, либо на самодельном станке.

Для того чтобы разобраться, какой потенциал мощности имеет генератор, покрутите его с одной катушкой, поскольку, в зависимости от того, в каком количестве будут установлены неодимовые магниты и какова их толщина, данный показатель может существенно отличаться. Измерение проводятся без нагрузки при необходимом числе оборотов. Например, если генератор при 200 оборотах за минуту обеспечивает напряжение в 30 В, имея сопротивление в 3 Ом, то следует из 30 В вычесть 12 В (напряжение питания аккумулятора) и полученный результат — 18 делим на 3 (сопротивление в омах) получаем 6 (сила тока в амперах), которые и пойдут от ветрогенератора на зарядку АКБ. Однако, как показывает практика, по причине потерь в проводах и диодном мосту, реальный показатель, который будет производить магнитный аксиальный генератор, будет поменьше.

Магниты для создания ветрогенератора лучше брать в форме прямоугольника, поскольку их поле распространяется по длине, в отличие от круглых, поле которых сосредотачивается в центре. Катушки, как правило, мотают круглыми, хотя лучше делать их несколько вытянутыми, что обеспечивает больший объем меди в секторе, а также более прямые витки. Отверстие внутри катушек должно быть равно или превышать ширину магнитов.

Толщина статора должна быть такой же что и магниты. Форма для него обычно фанерная, для прочности под катушки и поверх них кладут стеклоткань, и все это заливается эпоксидной смолой. Для того, что бы не допустить прилипания смолы к форме, последнюю смазывают любым жиром либо применяют скотч. Провода предварительно выводят наружу и скрепляют между собой, концы каждой фазы после этого соединяют треугольником либо звездочкой.

Мачта для ветрогенератора

Мачту на которой будет расположен данный генератор, можно делать высотой от 6 и выше метров, чем выше, тем больше скорость ветра. Под нее следует вырыть яму и залить основание из бетона, а трубу укрепить таким образом, чтобы магнитный аксиальный ветрогенератор, сделанный своими руками, можно было опускать и поднимать. Делать это можно при помощи механической тали.

Винт ветряка

Его делают из поливинилхлоридных труб, чей оптимальный для этого диаметр — 160 мм. К примеру, ветрогенератор, работающий на принципе магнитной левитации, с диаметром в два метра и шестью лопастями, при скорости ветра в 8 метров за секунду, способен обеспечить мощность до 300 Вт.

Как повысить мощность ветряка?

Для подъема мощности ветрогенератора можно использовать магниты. Попросту на магниты, которые уже установлены наклеить еще по одному такому же или более тонкому. Другой способ основан на установке в катушки металлических сердечников, — пластин трансформатора. Это обеспечит усиление магнитопотока в катушке, однако вызывает небольшое залипание, которое, впрочем, совершенно не ощущается шестилопастным винтом. Стартует такой ветрогенератор при ветре в 2 м/с. Благодаря применению сердечников генератор получил увеличение мощности с 300 до 500 Вт/ч при ветре в 8 м/с. Также следует уделять внимание форме лопастей, — малейшие неточности снижают мощность.


Аксиальный генератор на ферритовых магнитах

Наверное многих интересует возможность использования альтернативной энергии. Автор данного устройства как раз является одним из таких, он так же читал различные статьи в интернете посвященные возобновляемых источникам энергии. Особенно его заинтересовало использование энергии ветра, так как в его местности ветра довольно сильные и он сразу понял, что должная конструкция ветрового генератора будет выдавать довольно большое количество энергии.

Ознакомившись с основными типами ветряков и используемых в них генераторах, автор остановился на аксиальном генераторе с ферритовыми магнитами.

Материалы, которые были задействованы автором для создания данного генератора:

1) металлическая труба
2) подшипники
3) шпилька
4) алмазные диски диаметром 22 см
5) 40 ферритовых магнитов
6) эпоксидная смола
7) провод толщиной 0.5 мм
8) уголок металлический
9) шуруповерт
10) фанера
11) лобзик

Рассмотрим более подробно конструкцию данной модели генератора, а так же основные этапы его сборки.

Данный генератор был построен полностью с нуля. Его основой послужила ступица, которую автор собрал самостоятельно из отрезка трубы. В данную трубу были установлены подшипники и шпилька. Приварив к данной трубе несколько отрезков уголка, автор получил готовую основу для крепления статора будущего генератора своего ветряка.

Ступица, и уголки для крепления статора, разметка перед сваркой

В качестве роторов генератора автор решил использовать алмазные диски с диаметром около 220 мм. Для того, чтобы точно закрепить на них все ферритовые магниты, автор расчертил их таким образом, чтобы получилось двадцать одинаковых секторов, на стыках которых и были размещены магниты. Для того, чтобы магниты были надежно закреплены на дисках, автор использовал супер клей и эпоксидную смолу: для начала магниты были зафиксированы каплей супер клея, а затем залиты эпоксидной смолой.

Установка магнитов на диски ротора:

Так примерно будут стоять диски ротора:

Данная оправа понадобилась автору для того, чтобы более легко и удобнее намотать 15 катушек проводов. Именно такое количество катушек решил использовать автор для создания статора. Приспособление для намотки одевалось на шуруповерт, после чего он включался и автор наматывал 325 витков провода толщиной 0.5 мм. Такое большое количество витков провода для катушек автор обуславливает тем, что ферритовые магниты, использованные для создания генератора, довольно слабые. Итоговая толщина катушек составила 9 мм. Поэтому замеры сопротивления одной фазы показали значение в 18.5 Ом, что понятное дело не является лучшим показателем для постройки генератора, но благодаря такой конструкции катушек, напряжение будет в пределах нормы и подойдет для зарядки аккумуляторов.

Готовые катушки статора, провод 0,5 мм по 325 витков, толщина 9 мм:

После того как катушки были полностью готовы, автор решил приступить к изготовлению статора на их основе. Для начала автор взял лист фанеры и вырезал необходимую форму для статора. В эту форму автор планирует поместить катушки и залить их эпоксидной смолой. Чтобы затем было проще отделить статор от формы, автор обтянул фанерную заготовку скотчем. После чего все шесть проводов от фаз были соединены вместе и все залито эпоксидной смолой.

Катушки статора перед заливкой эпоксидной смолой:

Форма для отливки статора, под низом шаблон с пленкой, края формы обклеены скотчем:

Когда форма затвердела, автор отделил ее от заготовки и получил готовый статор. Следующим шагом автор собрал все части генератора воедино и протестировал его вручную. Таким образом, при соединении в треугольник и раскрутке генератора от руки, ток короткого замыкания получился около 1.5 ампер и напряжение в 15 вольт. Так же автор протестировал генератора при помощи шуруповерта. Для этого шуруповерт был специально соединен с генератором и автору удалось раскрутить до 700 оборотов в минуту и получить напряжение в 47 вольт.

Готовый статор аксиального генератора:

Общий вид готового генератора для ветряка

Затем автор приступил к сборке выбору подходящего винта для данной модели генератора. Было изготовлено несколько винтов из ПВХ трубы диаметром 110 мм. Однако подобные винты не давали необходимых результатов, так как были слишком тихоходными и не развивали нужных скоростей для полноценной работы генератора.

Генератор с винтом перед установкой на мачту:

Cамодельный генератор для ветряка

Как сделать низкооборотный генератор для ветряка из неодимовых магнитов. Самодельный генератор для ветряка, схемы, фото, видео.

Для изготовления самодельного ветряка в первую очередь требуется генератор, при чём, предпочтительней низкооборотный. В этом и заключается основная проблема, найти такой генератор достаточно сложно.Первое что приходит в голову, взять стандартный автомобильный генератор, но все автомобильные генераторы рассчитаны на высокие обороты, зарядка аккумулятора начинается от 1000 об/мин. Если установить автогенератор на ветряк, то достичь таких оборотов будет сложно, понадобится делать дополнительный шкив с ременной или цепной передачей, всё это усложняет и утяжеляет конструкцию.

Для ветряка нужен низкооборотный генератор, оптимальный вариант генератор аксиального типа на неодимовых магнитах. Поскольку таких генераторов по доступной цене в продаже практически нет, аксиальный генератор можно изготовить самостоятельно.

Самодельный генератор для ветряка из неодимовых магнитов.

Для изготовления генератора аксиального типа понадобятся:

  • Ступица от авто, тормозные диски.
  • Неодимовые магниты.
  • Медная проволока (0,7мм).
  • Эпоксидная смола.
  • Крепёжные элементы.

Генератор аксиального типа для ветряка представлен на схеме.

В данном случае в роли статора будет диск с катушками, ротором будут два диска с постоянными магнитами. При вращении ротора в катушках статора будет генерироваться ток, который нужен нам для зарядки аккумуляторов.

Самодельный генератор: изготовление статора.

Статор – неподвижная часть генератора состоит из катушек, которые размещаются напротив магнитов ротора. Внутренний размер катушек обычно равен внешнему размеру магнитов, которые используются в роторе.

Для намотки катушек можно изготовить простое приспособление.

Толщина медной проволоки для катушек примерно 0,7 мм, количество витков в катушках нужно подсчитывать индивидуально, общее количество витков во всех катушках должно быть не менее 1200.

Катушки размещаются на статоре, выводы катушек можно подключить двумя способами, в зависимости от того на сколько фаз будет генератор.

Трёхфазный генератор будет более эффективным для ветрогенератора, поэтому рекомендуется соединить катушки по типу звезда.

Чтобы катушки зафиксировать на статоре их заливают эпоксидной смолой. Для этого нужно сделать форму для заливки из куска фанеры, чтобы жидкая смола не растеклась, нужно сделать борта из пластилина или аналогичного материала. На этом этапе нужно предусмотреть проушины для крепления статора.

Важно чтобы получилась идеально ровная плоскость, поэтому перед заливкой матрицу с катушками нужно установить на ровную поверхность. Катушки перед заливкой нужно тщательно проверить мультиметром и выложить на матрицу по кругу с таким расчётом, чтобы потом магниты ротора находились напротив катушек.

В матрицу заливается жидкая эпоксидная смола по уровень края катушек, перед заливкой форму нужно смазать вазелином.

Когда смола полностью застынет, матрицу разбираем и извлекаем готовый статор с катушками.

Статор фиксируется на корпусе генератора с помощью болтов или шпилек с гайками.

Самодельный генератор: изготовление ротора.

В этой конструкции ротор будет двусторонним, статор с катушками будет посредине между вращающимися дисками с магнитами.

На каждом диске ступицы нужно по кругу расположить магниты, в последовательности поочерёдно меняя полюса.

Когда диски ротора будут установлены, магниты должны быть направлены друг к другу разными полюсами.

Магниты нужно приклеить к дискам суперклеем и залить эпоксидной смолой, верхняя часть магнитов должна остаться непокрытой.

Изготовление ротора для самодельного генератора видео.

Чтобы закрепить статор на ветрогенераторе нужно изготовить металлическое основание, статор крепится к нему с помощью болтов или шпилек.

Собираем всю конструкцию, при этом нужно оставить минимальный зазор между статором ротором, чем меньше зазор, тем эффективней генератор будет вырабатывать энергию. На выход из катушек нужно подключить диодный мост.

В итоге у вас получится аксиальный генератор на неодимовых магнитах. Самодельный генератор может работать на низких оборотах и при этом вырабатывать достаточно энергии для зарядки аккумуляторных батарей, что немаловажно при установке ветогенератора в районах, где преобладают слабые ветра.

Генератор для ветряка видео.

Тихоходный генератор на постоянных магнитах своими руками

Секрет магнитного генератора Перендева. Делаем своими руками

Всем доброго вечера, мы с отцом уже давно ломаем голову над знаменитым двигателем Perendev перепробовали много вариантов, был у нас один двигатель суть его в том чтобы на роторе разместить магниты как можно плотнее и все с одним полюсом наружу а на статоре разместить три полюса магнитов которые будут сдвинуты друг от друга (во общем то что Perendev сделал за счет трех дисков):

Вот статья неплохая по поводу принципа роботы двигателя Perendev которая дает ответы на многие вопросы.

При внимательном изучении патента перендева (ссылка на патент находится на российский странице, вход с немецкого сайта) обнаружился рисунок собственно «единичного элемента», то-бишь экранированного магнита.

Судя по чертежу, цилиндрический магнит находится внутри не просто толстостенного железного цилиндра, а внутри цилиндра, на торце которого добавлено кольцо металла.

Таким образом края магнита, (с максимальными магнитными потоками) спрятаны в железо. Для взаимодействия оставлена только площадка в центре магнитной «таблетки».

Видимо, для проверки принципа достаточно промоделировать несколько вариантов единичного элемента — учесть геометрию цилиндра, изображенного в патенте, и изготовить его из нержавейки (как утверждает автор) и из обычного магнитомягкого железа. Скорее всего, сам магнит должен удерживаться внутри цилиндра неким кольцом из изолятора, чтобы не соприкасался с железом, иначе пойдет намагничивание цилиндра со всеми последствиями.
Что касается графита, согласно утверждению автора, то я сомневаюсь, чтобы сочетание нержавейки с графитом в любых геометрических положениях смогло хотя бы частично экранировать магнит.

Однако, можно попробовать проверить и это.
Я проверил с обычным цилиндром из нержавейки с таблеткой внутри, экранирования нету.

———————————
В интервью Брэди нашел фразу, что все магниты срезаны на конус, изолированы прослойкой и вставлены в экранирующие цилиндры.

Основная идея в следующем:
Поясню без рисунка. На пальцах.
Возьмем отрезок времени 5 секунд, (для простоты).
на цилиндрическом роторе находится скажем 9 или 11 магнитов. а на статоре соответственно 8 или 10.
в первую секунду 1й магнит ротора находится в мертвой точке. На него действует максимальная сила противодействия движению =х. В эту-же секунду магнит 2 уже прошел свою мертвую точку,и тянет с некоторым плюсовым усилием . соответственно №3 тоже находится после мертвой точки, и тоже в плюсе. и так до №9.

во вторую секунду в мертвую точку входит №2, а все остальные в эту же вторую секунду (или любую другую минимальную единицу времени) тянут с положительным усилием, компенсируя мертвую точку.

Смысл в том, что при разном количестве магнитов в статоре и роторе, их расположение должно быть таким, чтобы в ЛЮБОЙ момент времени в МТ находился ТОЛЬКО ОДИН магнит, а все остальные, количество которых не может быть меньше какого-то определенного чмсла, должны своим суммарным тяговым усилием компенсировать прохождение этой единичной мертвой точки.
Количество магнитов нужно подсчитывать в каждом конкретном случае отдельно.
Несомненно одно, построить модель на 3-5 магнитах не получится по определению.
Количество роторных должно быть таким, чтобы сумма находящихся в разном положении магнитов ротора относительно статора была БОЛЬШЕ усилия мертвой точки для единичного магнита, или, если угодно, пары ротор-статор, зависших в МТ.

Нужно просто понять этот принцип.
Три кольца прототипа у Perendev создаст только повышенную мощность, для раскрутки генератора в 20 квт (видео). Но каждое отдельно взятое кольцо, вернее- пара, ротор-статор имеют как раз такой расклад сил.

Безусловно, нужно очень точно позиционировать магниты на кольце, чтобы соблюсти это условие.
а добавки Perendev в виде изолирующих железных цилиндров просто убирают паразинтые влияния магнитов друг на друга, оставляя в голом виде этот самый принцим, поскольку при подходе к МТ , имея экран, магнит ротора взаимодействует только со своим статорным магнитом, не чувствуя паразитных полей соседних магнитов статора и ротора.
Т.е принцип в чистом виде.
Совершенно понятно, что такие конструкции возможны только в цилиндрических формах, однако проверить правильность этого моего утверждения можно и на линейной модели.
Для этого расстояния между магнитами ротора на линейке должны быть больше на какую-то величину, чем расстояние между магнитами статора на другой линейке.
Но ни в коем случае НЕ равными.
Для примера можно разместить на линейном статоре 30 магнитов с интервалом 10 мм, а на роторной линейке штук 9-11 с интервалом в 11 мм.

Ветрогенератор на неодимовых магнитах

Пост опубликован: 15 ноября, 2017

Неодимовый магнит – это редкоземельный металл, обладающий стойкостью к размагничиванию и способностью намагничивать некоторые материалы. Используется при изготовлении электронных устройств (жесткие диски компьютеров, металлодетекторы и т.д.), медицине и энергетике.

Неодимовые магниты используются при изготовлении генераторов, работающих в различных видах установках, вырабатывающих электрический ток.

В настоящее время генераторы, изготовленные с использованием неодимовых магнитов, широко используются при изготовлении ветровых установок.

Основные характеристики

Для того, чтобы определиться в целесообразности изготовления генератора на неодимовых магнитах, нужно рассмотреть основные характеристики данного материала, которыми являются:

  • Магнитная индукция В — силовая характеристика магнитного поля, измеряется в Тесла.
  • Остаточная магнитная индукция Br — намагниченность, которой обладает магнитный материал при напряжённости внешнего магнитного поля, равной нулю, измеряется в Тесла.
  • Коэрцитивная магнитная сила Hc — определяет сопротивляемость магнита к размагничиванию, измеряется в Ампер/метр.
  • Магнитная энергия (BH)max -характеризует, насколько сильным является магнит.
  • Температурный коэффициент остаточной магнитной индукции Tc of Br – определяет зависимость магнитной индукции от температуры окружающего воздуха, измеряется в процентах на градус Цельсия.
  • Максимальная рабочая температура Tmax — определяет предел температуры, при которой магнит временно теряет свои магнитные свойства, измеряется в градусах Цельсия.
  • Температура Кюри Tcur — определяет предел температуры, при которой неодимовый магнит полностью размагничивается, измеряется в градусах Цельсия.

В состав неодимовых магнитов, кроме неодима входит железо и бор и зависимости от и их процентного соотношения, получаемое изделие, готовый магнит, различается по классам, отличающимся по своим характеристикам, приведенным выше. Всего выпускается 42 класса неодимовых магнитов.

Достоинствами неодимовых магнитов, определяющими их востребованность, являются:

  • Неодимовые магниты обладают наиболее высокими магнитными параметрами Br, Нсв, Hcм , ВН.
  • Подобные магниты имеют более низкую стоимость в сравнении с подобными металлами, имеющими в своем составе кобальт.
  • Обладают способностью работать без потерь магнитных характеристик в температурном диапазоне от – 60 до + 240 градусов Цельсия, с точкой Кюри +310 градусов.
  • Из данного материала возможно изготовить магниты из любой формы и размеров (цилиндры, диски, кольца, шары, стержни, кубы и др.).

Ветрогенератор на неодимовых магнитах мощностью 5,0 кВт

В настоящее время отечественные и зарубежные компании все более широко используют неодимовые магниты при изготовлении тихоходных генераторов электрического тока. Так ООО «Сальмабаш», г. Гатчина Ленинградской области, выпускает подобные генераторы на постоянных магнитах мощностью 3,0-5,0 кВт. Внешний вид данного устройства приведен ниже:

Корпус и крышки генератора изготавливаются из стали, в дальнейшим с покрытием лакокрасочными материалами. На корпусе предусмотрены специальные крепления, позволяющие закрепить электрический аппарат на несущей мачте. Внутренняя поверхность обработана защитным покрытием, предотвращающим коррозию металла.

Статор генератора набран из электротехнических пластин стали.

Обмотка статора — выполнена эмаль-проводом, позволяющим устройству работать продолжительное время с максимальной нагрузкой.

Ротор генератора имеет 18 полюсов и установлен в подшипниковых опорах. На ободе ротора размещены неодимовые магниты.

Генератор не требует принудительного охлаждения, которое осуществляется естественным путем.

Технические характеристики генератора мощностью 5,0 кВт:

  • Номинальная мощность – 5,0 кВт;
  • Номинальная частота – 140,0 оборотов/минуту;
  • Рабочий диапазон вращения – 50,0 – 200,0 оборотов/минуту;
  • Максимальная частота – 300,0 оборотов/минуту;
  • КПД – не ниже 94,0 %;
  • Охлаждение – воздушное;
  • Масса – 240,0 кг.

Генератор оснащен клеммной коробкой, посредством которой осуществляется его подключение к электрической сети. Класс защиты соответствует ГОСТ14254 и имеет степень IP 65 (пылезащищенное исполнение с защитой от струй воды).

Конструкция данного генератора приведена на рисунке, приведенном ниже:

где: 1-корпус, 2- крышка нижняя, 3- крышка верхняя, 4- ротор, 5- неодимовые магниты, 6- статор, 7- обмотка, 8- полумуфта, 9- уплотнения, 10,11,12- подшипники, 13- клеммная коробка.

Плюсы и минусы

К достоинствам ветрогенераторов, изготовленных с использование неодимовых магнитов можно отнести следующие характеристики:

  • Высокий КПД устройств, достигаемый за счет минимизации потерь на трение;
  • Продолжительные сроки эксплуатации;
  • Отсутствие шума и вибрации при работе;
  • Снижение затрат на установку и монтаж оборудования;
  • Автономность работы, позволяющая осуществлять эксплуатацию без постоянного обслуживания установки;
  • Возможность самостоятельного изготовления.

К недостаткам подобных устройств можно отнести:

  • Относительно высокая стоимость;
  • Хрупкость. При сильном внешнем воздействии (ударе), неодимовый магнит способен лишиться своих свойств;
  • Низкая коррозийная стойкость, требующая специального покрытия неодимовых магнитов;
  • Зависимость от температурного режима работы – при воздействии высоких температур, неодимовые магниты теряют свои свойства.

Как сделать своим руками

Ветровой генератор на основе неодимовых магнитов отличается от прочих конструкций генераторов тем, что легко может быть изготовлен самостоятельно в домашних условиях.

Как правило за основу берут автомобильную ступицу или шкивы от ременной передачи, которые предварительно очищаются, если это бывшие в употреблении запасные части и подготавливаются к работе.

При наличии возможности изготовить (выточить), специальные диски, лучше остановиться на этом варианте, т.к. в этом случае не придется подгонять геометрические размеры наматываем ых катушек к размерам используемых заготовок.

Неодимовые магниты следует приобрести, для чего можно воспользоваться сетью интернет или услугами специализированных организаций.

Один из вариантов изготовления генератора на неодимовых магнитах, с использованием дисков, специально изготовленных для этих целей, предлагает к рассмотрению Яловенко В.Г. (Украина). Данный генератор изготавливается в следующей последовательности:

  1. Из листовой стали вытачиваются два диска диаметром 170,0 мм с устройством центрального отверстия и шпоночного паза.
  2. Диск делится на 12 сегментов, для на его поверхности выполняется соответствующая разметка.
  3. В размеченные сегменты клеятся магниты, таким образом, чтобы их полярность чередовалась. Для избегания ошибок (по полярности), необходимо перед наклейкой, выполнить их маркировку.
  4. Подобным образом изготавливается и второй диск. В результате получается следующая конструкция:

  1. Поверхность исков заливается эпоксидной смолой.
  2. Из провода (эмаль-провода) марки ПЭТВ или аналога, сечением 0,95 мм 2 , наматывается 12 катушек по 55 витков в каждой.
  3. На листе фанеры или бумаге, изготавливается шаблон, соответствующий диаметру используемых дисков, на котором также производится разбивка на 12 секторов.

Катушки укладываются в размеченные сегменты, где фиксируются (изолента, скотч и т.д.) и расключаются последовательно между собой (конец первой катушки соединяется с началом второй и т.д.). в результате получается следующая конструкция

  1. Из дерева (доска и т.д.) или фанеры, изготавливается матрица, в которой можно залить эпоксидной смолой уложенные по шаблону катушки. Глубина матрицы должна соответствовать высоте катушек.
  2. Катушки укладываются в матрицу и заливаются эпоксидной смолой. В результате получается следующая заготовка:

  1. Из стальной трубы диаметром 63,0 мм изготавливается ступица с узлом крепления вала, изготавливаемого генератора. Вал монтируется на подшипники, устанавливаемые внутри ступицы.
  2. Из такой же трубы изготавливается поворотный механизм, обеспечивающий ориентацию генератора в соответствии с потоками ветра.
  3. На вал одеваются изготовленные запасные части. В результате получается следующая конструкция, плюс поворотный механизм:

  1. Конструкция должна жестко крепить статор (заготовка с обмотками, залитыми эпоксидной смолой), с одной стороны, и не затруднять вращение ротора (диски с недимовыми магнитами).
  2. Из трубы (полиэтилен, пропилеи и т.д.), используемой для прокладки сетей водопровода или канализации, изготавливаются лопасти ветрового генератора. Для этого труба нарезается нужной длины, после чего разрезается и заготовкам придается соответствующая форма.
  3. Изготавливается хвостовок ветровой установки. Для этого может быть использован любой листовой материал (фанера, металл, пластик), после чего хвостовик крепится к собираемой конструкции, со стороны противоположной креплению лопастей. В результате получается следующая конструкция:

  • Собранная установка монтируется в предусмотренном для этого месте.
  • К выводам генератора подключается нагрузка.

Конструкция ветрового генератора на неодимовых магнитах может быть различной, все зависит от имеющихся запасных частей и технический возможностей человека, решившего изготовить подобное устройство самостоятельно.

Спасибо, что дочитали до конца! Не забывайте подписываться на канал, Если статья Вам понравилась!

Делитесь с друзьями, оставляйте ваши комментарии

Добавляйтесь в нашу группу в ВК:

и предлагайте темы для обсуждений, вместе будет интереснее.

Ветрогенератор на неодимовых магнитах своими руками

Аксиальный ветрогенератор, который работает на неодимовых магнитах, впервые начали массово изготавливать в странах Запада. И это были вовсе не заводские изделия, а плод труда местных гаражных мастеров, поставивших себе на службу явление левитации. Серьезной популярности именно такие модели ветряка обязаны массовому распространению и дешевизне неодимовых магнитов. Постепенно комплектующие и схемы изготовления стали распространятся по всему миру и в настоящее время магнитный аксиальный ветрогенератор завоевывает признание на просторах Российской Федерации. Ниже описана последовательность создания одной из самых удачных моделей такого ветряка.

к содержанию ↑

Процесс создания ротора

Основой генератора автор разработки решил сделать ступицу автомобиля с дисками тормоза, поскольку она мощная, надежная и идеально сбалансированная. Начав делать ветряк своими руками, в первую очередь следует подготовить основу для ротора — ступицу, — почистить ее от грязи, краски и смазки. После чего приступить к наклейке постоянных магнитов. Для создания данного ветрогенератора, их было использовано по двадцать штук на диске. Размер неодимовых магнитов составил 25х8 миллиметров. Однако, и их количество, и их размер могут варьировать в зависимости от целей и задач человека, своими собственными руками создающего ветрогенератор. Однако всегда будет правильным, для получения одной фазы, равенство количества полюсов числу неодимовых магнитов, а для трех фаз — выдержка соотношений полюсов и катушек — два к трем или три к четырем.

Магниты следует располагать учитывая чередование полюсов, к тому же максимально точно, но прежде, чем приступить к их наклейке, нужно либо создать бумажный шаблон, либо прочертить линии, делящие диск на сектора. Чтобы не перепутать полюса, делаем отметки на магнитах. Главное — выполняем следующее требование — те магниты, которые стоят напротив друг друга, должны быть повернуты разными полюсами, то есть притягиваться.

Магниты приклеиваются к дискам при помощи супер-клея и заливаются. Также нужно сделать бордюрчики по краям дисков и в их центре, либо намотав скотча, либо вылепив из пластилина для недопущения растекания.

к содержанию ↑

Фазы — что лучше — три или одна?

Многие любители электрической техники идут по пути наименьшего сопротивления и, чтобы не заморачиваться, останавливают свой выбор на однофазном статоре для ветряка. Однако у него имеется одна неприятная особенность, нивелирующая простоту сборки, — это вибрация в нагруженном состоянии, по причине непостоянства отдачи тока. Ведь амплитуда такого статора скачкообразна, — достигая максимума, когда неодимовые магниты располагаются над катушками, а после падая до минимума.

А вот, когда генератор сделан по трехфазной системе, то вибрации отсутствуют, и показатель мощности ветряка имеет постоянное значение. Причина такого отличия заключается в том, что ток, падая в одной фазе, в то же время нарастает в другой. И в итоге, ветрогенератор, работающий в трехфазной системе, может быть более эффективным до 50 %, чем точно такой же, но использующий однофазную систему. И главное, — нагруженный трехфазный генератор не дает вибрации, следовательно, мачта не дает повода для жалоб на ветрогенератор в надзирающие органы недоброжелателям из числа соседей, поскольку не создает надоедливого гула.

к содержанию ↑

Способ намотки катушки статора ветряка

Для того, чтобы сделанный своими руками ветрогенератор на неодимовых магнитах работал с максимальной отдачей, статорные катушки следует рассчитывать. Однако большинство мастеров предпочитают делать их на глаз. К примеру, тихоходный генератор, способный заряжать 12 В аккумулятор, начиная со 100 — 150 оборотов за минуту, должен иметь во всех катушках от 1000 до 1200 витков, поровну разделенное между всеми катушками. Увеличение количества полюсов ведет к росту частоты тока в катушках, благодаря чему генератор, даже при малых оборотах, дает большую мощность.

Намотка катушек должна производиться по возможности более толстыми проводами, с целью снижения сопротивления в них. Делать это можно на оправке, либо на самодельном станке.

Для того чтобы разобраться, какой потенциал мощности имеет генератор, покрутите его с одной катушкой, поскольку, в зависимости от того, в каком количестве будут установлены неодимовые магниты и какова их толщина, данный показатель может существенно отличаться. Измерение проводятся без нагрузки при необходимом числе оборотов. Например, если генератор при 200 оборотах за минуту обеспечивает напряжение в 30 В, имея сопротивление в 3 Ом, то следует из 30 В вычесть 12 В (напряжение питания аккумулятора) и полученный результат — 18 делим на 3 (сопротивление в омах) получаем 6 (сила тока в амперах), которые и пойдут от ветрогенератора на зарядку АКБ. Однако, как показывает практика, по причине потерь в проводах и диодном мосту, реальный показатель, который будет производить магнитный аксиальный генератор, будет поменьше.

Магниты для создания ветрогенератора лучше брать в форме прямоугольника, поскольку их поле распространяется по длине, в отличие от круглых, поле которых сосредотачивается в центре. Катушки, как правило, мотают круглыми, хотя лучше делать их несколько вытянутыми, что обеспечивает больший объем меди в секторе, а также более прямые витки. Отверстие внутри катушек должно быть равно или превышать ширину магнитов.

Толщина статора должна быть такой же что и магниты. Форма для него обычно фанерная, для прочности под катушки и поверх них кладут стеклоткань, и все это заливается эпоксидной смолой. Для того, что бы не допустить прилипания смолы к форме, последнюю смазывают любым жиром либо применяют скотч. Провода предварительно выводят наружу и скрепляют между собой, концы каждой фазы после этого соединяют треугольником либо звездочкой.

к содержанию ↑

Мачта для ветрогенератора

Мачту на которой будет расположен данный генератор, можно делать высотой от 6 и выше метров, чем выше, тем больше скорость ветра. Под нее следует вырыть яму и залить основание из бетона, а трубу укрепить таким образом, чтобы магнитный аксиальный ветрогенератор, сделанный своими руками, можно было опускать и поднимать. Делать это можно при помощи механической тали.

к содержанию ↑

Винт ветряка

Его делают из поливинилхлоридных труб, чей оптимальный для этого диаметр — 160 мм. К примеру, ветрогенератор, работающий на принципе магнитной левитации, с диаметром в два метра и шестью лопастями, при скорости ветра в 8 метров за секунду, способен обеспечить мощность до 300 Вт.

к содержанию ↑

Как повысить мощность ветряка?

Для подъема мощности ветрогенератора можно использовать магниты. Попросту на магниты, которые уже установлены наклеить еще по одному такому же или более тонкому. Другой способ основан на установке в катушки металлических сердечников, — пластин трансформатора. Это обеспечит усиление магнитопотока в катушке, однако вызывает небольшое залипание, которое, впрочем, совершенно не ощущается шестилопастным винтом. Стартует такой ветрогенератор при ветре в 2 м/с. Благодаря применению сердечников генератор получил увеличение мощности с 300 до 500 Вт/ч при ветре в 8 м/с. Также следует уделять внимание форме лопастей, — малейшие неточности снижают мощность.




Предлагаем вашему вниманию инструкцию по изготовлению классического генератора на постоянных магнитах (ГПМ), на языке оригинала – permanent magnet generator, PMG. Подобные генераторы широко используются в самодельных мини-ГЭС, ветряках и прочих электростанциях, изготовленных своими руками.

Описание разработано доктором Смэйлом Хеннасом, опубликовано на сайте известного шотландского самодельщика и автора многочисленных пособий Хью Пигота.

1. Введение

Это инструкция по изготовлению генератора на постоянных магнитах, который выдает переменный ток. Он генерирует не «промышленное» напряжение 220В, а низкое переменное напряжение по трем фазам, которое затем выпрямляется и подается на выход в виде постоянного тока с параметрами, подходящими для зарядки батарей 12В.

Этот генератор на постоянных магнитах состоит из следующих узлов:

1. Стальные оси и цапфы (shafts and spines)

2. Статор, содержащий катушки из провода (Stator)

3. Два магнитных ротора (magnet rotor)

4. Выпрямитель (rectifier)

Статор содержит шесть катушек медного провода, залитых эпоксидной смолой. Корпус статора закреплен цапфами и не вращается. Провода от катушек подключены к выпрямителю, который производит постоянный ток для зарядки батарей 12В. Выпрямитель прикреплен к алюминиевому радиатору, чтобы не перегревался.

Магнитные роторы закреплены на составной, вращающейся на оси конструкции. Задний ротор установлен за статором и закрыт им. Передний ротор находится снаружи и прикреплен к заднему ротору длинными спицами, проходящими через центральное отверстие статора. В случае использования генератор на постоянных магнитах с ветряком, на тех же спицах будут монтироваться лопасти ветряка. Они будут вращать роторы, и таким образом перемещать магниты вдоль катушек. Переменное магнитное поле роторов генерирует ток в катушках.

Этот генератор на постоянных магнитах спроектирован для использования с небольшим ветрогенератором. Для того, чтобы сделать сам ветровой генератор, нужны следующие узлы:

• Мачта: стальная труба, закрепленная тросами (Tower)

• «Вращающаяся головка», которая устанавливается на верхушке мачты

• Хвост, для поворота ветряка по ветру (tail)

• Набор лопастей (blades)

Генератор на постоянных магнитах работает на малых оборотах . На графике показана мощность ГПМ при зарядке 12В батареи. При 420 об/мин он генерит 180 Вт = 15А х 12В

При большей скорости ГПМ может генерить большую мощность. Но больший ток разогревает катушки и К.П.Д. падает. Для использования ГПМ для больших оборотов лучше мотать катушки другим проводом, более толстым и делать меньше витков в катушке. Но при этом на малых оборотах ГПМ работать не будет.

Для того, чтобы использовать ГПМ и на большой и на малой скорости, можно менять способ соединения катушек: со звезды переключаться на треугольник и наоборот.

На графике представлена зависимость выходной мощности от скорости при разных типах соединения. «Звезда» начинает работать при низкой скорости (170 об/мин). «Треугольник» выдает больше мощности, но только при больших оборотах. Звезда хороша при малом ветре, треугольник – при большом.

Если увеличить размеры ГПМ, то при тех же скоростях он сможет выдавать больше мощности.

Внимание

При изготовлении ГПМ обращайте особое внимание на крепеж магнитов – ни при каких условиях они не должны отделяться от посадочного места! Болтающийся магнит начинает распарывает корпус статора и необратимо повреждает ГПМ.

• Строго следуйте инструкциям по заливке ротора – ни в коем случае не ограничивайтесь просто приклеиванием магнитов к стальным дискам.

• При сборке не бейте по ротору молотком

• Оставляйте как минимум 1 мм зазор между роторами и статором (при тяжелых условиях эксплуатации зазор надо увеличить)

• Не используйте ГПМ на скоростях выше 800 об/мин. (При поворотах ветряка на такой сокрости в нем возникают гироскопические силы , которые могут согнуть оси и вызвать касание магнитами ротора)

• Не прикрепляйте лопасти непосредственно к внешнему ротору, крепите только на спицы.

• При креплении лопастей к спицам держите ГПМ так, чтобы его ось вращения была вертикально, ни в коем случае не горизонтально.

2. Список материалов и инструментов

Материалы Кол-во размер Вес, гр
СТЕКЛОПЛАСТИК
Эпоксидная смола с отвердителем 2700
Катализатор (перекись) 50
Порошок талька (наполнитель) 1200
Стеклопластиковые листы (1 унция/квадр.фут) 1 килоВ.м. 300
Красящий пигмент для эпоксидки (по желанию) 50
Пластилин
НЕРЖАВЕЙКА
Проволока из нержавейки 2 мм х 10м 200
МАГНИТЫ
Постоянные ферромагнитные блоки (степень 3) 16 20 х50 х50 4000
ЭЛЕКТРИКА
Намоточный эмалированный провод 1,7мм 3000
Гибкий провод 1,7 мм х 6 м
Припой и кембрики
изолента
Мостовой выпрямитель 2 25А 200В однофазный
Радиатор для выпрямителя 250
СТАЛЬ
Профиль с осью (см. рисунок) 1 380 х 50 х25 х 4мм 1100
Шпилька 10мм 1000мм 500
Гайка 10 мм 32
Шайба 10 мм 16
Шпилька 8мм 400мм
Гайка 8мм 8
Гайка и болт 5 мм для выпрямителя 2
ось 25 мм х 150 мм
МЕХАНИКА
Узел подшипника в сборе, для крепления на ось 1 1250

Ротор, узел подшипника, профиль с осью

Материалы для отливочных форм и оснастки.

Половые доски и клей по дереву

Наждачная бумага, восковая полировка (если есть – полиуретановый лак + жидкость для его снятия )

Кисточки для рисования, губка для их очистки

Фанера 13 мм для оснастки и форм

Стальной стержень или трубка для намоточной машинки

Кусочки толстого металлического листа

Болты с гайками и шайбами диаметр длина Используется для
2 с барашковыми гайками 6 мм 60 мм Намоточная машинка
4 10 мм 25 мм балансировка
1 12 мм 150 мм Форма для заливки статора

Инструменты

Защитные очки, маска, перчатки

Верстак с тисками

Сварочный аппарат

угловая шлифовальная машина

ножовка, молоток, пробойник, зубило

рулетка, циркуль, транспортир

гаечные ключи : 8, 10, 13, 17, 19 мм, по 2 каждого типа

вороток и метчик М10 для отверстий в магнитном роторе

медная проволока для позиционирования магнитов

вертикальный сверлильный станок

сверла 6, 8, 10, 12 мм

насадка для дрели для проделывания отверстий 25 мм, 65 мм

токарный станок по дереву

резец для токарного станка

лобзик по дереву

весы для взвешивания эпоксидки. Распылитель для катализатора, пластиковы ванночки, ножницы

паяльник, припой с флюсом, кусачки, острый нож

3. Отливочные формы и оснастка

В этом разделе описано изготовление отливочных форм и оснастки для ГПМ. Их можно использовать многократно.

3.1 Намоточная машинка

Статор ГПМ содержит 6 катушек медной проволоки.

Катушки будут намотаны на фанерный шаблон. Шаблон смонтирован на конце ручки, между фанерных щечек.

• Делаем ручку

• Отрезаем кусочек стальной пластины 60 х30 х6 мм (плюс-минус) и надежно прикрепляем ее (или привариваем) к концу ручки, как показано ниже.

• Сверлим 2 отверстия диаметром 6мм на расстоянии 40 мм друг от друга

• Вырезаем 3 куска 13-мм фанеры, как на рисунке ниже

Шаблон имеет размеры 50 х 50мм, толщина 13 мм. Края закругленные. Две щечки – 125 х 125 мм, с вырезами глубиной 20 мм вверху и внизу. Вырезы нужны для того, чтобы после намотки зафиксировать катушку изолентой.

• Собираем все детали, как показано ниже и сверлим сквозные отверстия для болтов, диаметр 6 мм, на расстоянии 40 мм. Лучше всего использовать вертикальный сверлильный станок.

• Вставьте два болта сквозь отверстия в стальной пластине и соберите всю конструкцию, шаблон между щечками. Лучше всего использовать барашковые гайки.

3.2 Шаблоны для ротора

• Шаблон для крепежных отверстий.

Магнитные роторы монтируются на подшипниковом узле (bearing hub). У узла есть фланец с отверстиями. Например, это может быть 4 отверстия, расположенных на окружности диаметром 102 мм (по-английски есть специальный термин pitch circle diameter, PCD). Или вы можете спроектировать другое количество отверстий, в зависимости от узла подшипника. Далее мы рассматриваем PCD 102 мм.

PCD шаблон будет использоваться для сверления отверстий в роторе, а также для балансировки ротора. Отверстия должны быть размечены и просверлены с предельной точностью.

a) вырежьте квадратную стальную пластину 125 х 125 мм

b) проведите диагонали и накерните центр

c) разведите циркуль на радиус 51 мм, проведите окружность

d) диаметр окружности равен PCD

e) накерните 2 точки пересечения окружности и одной из диагоналей

f) разведите циркуль на 72 мм (цифра верна для PCD 102 мм). Разметьте на окружности две точки ровно на расстоянии 72 мм от двух предыдущих.

g) Просверлите 4 отверстия на расстоянии 72 мм друг от друга, сначала используйте сверло маленького диаметра.

• Шаблон для позиционирования магнитов

a) Разметьте центр фанерной заготовки

b) Проведите из размеченной точки 3 окружности диаметром 50мм, 102 мм и 200м

c) Проведите 2 параллельные линии как касательные к окружности 50 мм (на рисунке вверху)

d) Проведите еще 3 пары параллельных линий под 45 и 90 градусов к первой паре.

e) Используя линии, разметьте места для магнитов, и вырежьте шаблон по жирной линии (рисунок выше)

f) Проведите линию между центрам двух противолежащих магнитов

g) Положите стальной PCD шаблон для крепежных отверстий на 102-мм окружность, выровняйте его относительно линии между центрами магнитов, и просверлите отверстия сквозь отверстия в стальном шаблоне.

3.3 Формы и оснастка: Изготовление отливочных форм

Приступаем к изготовлению форм для отливки ротора и статора. Они могут быть изготовлены из дерева или алюминия. Другой способ – вылепить формы из глины и выровнять на гончарном круге, как горшок. Поверхность формы будет внешней поверхностью статора или ротора. Затем внутри формы будут добавлены стеклопластиковые вставки. Поверхность формы должна быть максимально гладкой.

Формы должны быть прочные. Статор или ротор нелегко выбить из формы после застывания, может понадобиться пара ударов киянкой.

Далее описан один из способов изготовления отливочных форм.

3.3.1 Внешняя форма для статора.

• Вырежьте несколько дисков из половой доски (рис. ниже), около 500мм в диаметре.

• Во всех дисках, кроме одного, вырежьте круглые отверстия, диаметром 360мм, чтобы получить кольца.

• На оставшемся диске начертите окружность 360 мм в диаметре

• Просверлите 12 мм отверстие в центре диска

• Приклейте кольца к диску, чтобы получилась стопка высотой 60мм. Мажьте побольше клея внутри.

• Вырежьте диск из 15-мм фанеры диаметром 140 мм, просверлите отверстие 12 мм в его центре

• Продев 12 мм болт сквозь оба отверстия, приклейте маленький диск к центру большого. Мажьте побольше клея по краям диска

• Приделайте конструкцию к еще одному самодельному диску, или к диску токарного станка, или к колесу. В общем вам нужно то, что на рисунке ниже называется faceplate (держатель).

• Поворачивая держатель, нарисуйте карандашом кружочек в его центре.

• Просверлите 12 мм отверстие в этом центре. Дрель должна быть строго параллельна оси.

• Прикрутите склеенные диски (далее будем называть это заготовкой) к держателю 12мм болтом. Дополнительно закрепите 4-мя шурупами.

• Проверьте вращение заготовки. Для этого надо держать карандаш возле поверхности, когда заготовка вращается. Если карандаш оставляет отметину, значит, на поверхности в этом месте выпуклость. Ослабьте шурупы и вставьте кусочки бумаги между держателем и заготовкой на противоположной поверхности заготовки напротив карандашных меток. Закрутите шурупы и попробуйте повторить все снова.

Теперь можно обработать заготовку резцом.

• Вырежьте ровную поверхность на внутренней стороне заготовки.

• Сделайте фаску в 7 градусов на внутренней поверхности

• Общий диаметр внутренней части должен быть 380 мм

• Диаметр плоской части 360мм (см. рисунок ниже)

• Внутренние углы закруглены, не острые

• Внутренний диск сточите до диаметра 130мм. Углы также закруглены (рисунок ниже)

• Проверьте, что катушка входит на свое место свободно – если нет, то или чуть расточите внутреннюю поверхность, или уменьшите диаметр внутреннего диска.

• Снимите заготовку с токарного станка

• Просверлите 4 отверстия в центральной части (они нужны для разделения внешней и внутренней отливочных форм статора, внутренняя форма описана в следующем разделе). Забейте маленькие кусочки фанеры с обратной стороны отверстий, чтобы сделать «упор».

3.3.2 Внутренняя форма для статора.

• Вырежьте диски диаметром 370 мм

• Просверлите 12 мм отверстие в центре каждого

• Склейте их в стопку (рис. выше), скрепите 12 мм болтом

• Стопка должна быть минимум 45 мм толщиной, лучше 50 мм

• Пройдитесь 20-градусным резцом по краю, срежьте угол так, чтобы диаметр уменьшился с 368 мм до 325 мм

• Проверьте, что внешняя форма садится на внутреннюю форму с зазором 6мм по краю. Затем снимите внутреннюю форму со станка.

• Разметьте две линии на большей поверхности формы, на расстоянии 340 мм друг от друга.

• Срежьте фаски, как на рисунке ниже

Фаски позволят сделать в этих местах наплывы заливочного материала и усилить тем самым места крепления статора.

3.3.3 отливочная форма для ротора.

Для ГПМ надо 2 магнитных ротора. Отливочная форма для них нужна одна, но лучше иметь две, для ускорения процесса.

Внешняя форма для ротора (рис.ниже) похожа на внешнюю форму для статора, но попроще:

Используя шаблон для крепежных отверстий, просверлите 4 отверстия для последующего крепления магнитных роторов.

Отливка магнитного ротора требует также внутренней отливочной формы (рис. ниже), с такой же разметкой крепежных отверстий.

Все формы надо зачистить наждачкой, чтобы получить очень гладкую поверхность, которую надо финально отделать затиркой полиуретановой губкой, смазаной воском.

Не надо красить формы: при нагревании краска потрескается и испортит поверхность отливки.

3.3.4 шаблоны для статора

• Шаблон для штифтов.

При заливке в статор нужно заделать 4 поддерживающих 8 мм штифта. Для того, чтобы они не перекосились, пока сохнет эпоскидка, их крепят на местах с помощью шаблона, который мы сейчас изготовим. Шаблон делается из деревянного бруска 380 х 50 х 25 мм. Размеры должны быть точно выдержаны, иначе штифты потом не совпадут с крепежными цапфами.

a) разметьте центр бруска на самой большой грани (рис. ниже)

b) нарисуйте циркулем две дуги радиусом 178 мм

c) наметьте по 2 точки на каждой дуге, на расстоянии 30 мм друг от друга и в 10 мм от края.

d) Просверлите 4 отверстия 8 мм, лучше всего с помощью сверлильного станка

e) Аккуратно зашкурьте выходные отверстия от заусенец, чтобы не оставлять следа на отливке.

• Бумажный шаблон

Для изготовления статора используется так называемый порошковый стекломат (стекломатериал с порошковым связующим). Чтобы вырезать из него составные части статора, сделайте бумажные шаблоны. Их можно обвести фломастером и вырезать получившуюся фигуру из стекломата.

Оберните форму листом бумаги и наметьте край.

4. Изготовление статора

В этом разделе описан процесс изготовления статора с помощью форм и шаблонов из раздела 3. До того, как приступить к изготовлению отливочных форм, намотайте хотя бы одну катушку, чтобы потом примерять ее в отливочную форму.

4.1 Намотка катушек

• Закрепите на оси катушку с проводом, на одной линии с намоточной машинкой. При намотке на катушку провод должен иметь S-образную форму (как на верхнем рисунке)

• Согните на 90 градусов и закрепите на расстоянии 100мм один из концов проволоки. Не сгибайте проволоку в других местах, иначе катушка не будет компактной.

• Положите согнутый конец в вырез намоточной машинки, чтобы он свободно болтался.

• Нетуго оберните несколько раз согнутый конец проволоки вокруг барашковой гайки

• Возьмите в руку кусок тряпки, возьмитесь за проволоку между катушкой и намоточной машинкой и натяните проволоку

• Вращайте намоточную машинку за ручку

Первый виток ложится возле щечки, к которой прилегает проволока. Последующие витки ложатся один к одному, без зазоров и перехлестов, слой за слоем. Считайте количество витков. Их количество должно быть 100.

• Когда намотка закончена, зафиксируйте катушку витками изоленты в местах, где из нее выходят концы проволоки. Не обрезайте проволоку, пока не сделаете этого – иначе катушка размотается. Обрежьте проволоку на расстоянии 100мм

• Таким же точно образом намотайте еще 5 катушек

• Положите катушки на стол, так чтобы они лежали одним и тем же концом кверху (рис ниже). Первый конец должен быть сверху.

• Пронумеруйте катушки от 1 до 6

• Зачистите эмаль на протяжении 20мм от концов (можно наждачкой или ножом)

• Припаяйте к концам гибкие проводники (рис ниже)

Предлагаемая длина прводников:

Катушки 1 и 6 – 800 мм

Катушки 2 и 5 – 600 мм

Катушки 3 и 4 – 400 мм

• Заизолируйте места пайки кембриками

• Пометьте концы катушек номером катушки и буквой А или В.

А – начальный конец проволоки, В – финальный конец. Не перепутайте.

• Положите катушки во внешнюю форму статора

• Проверьте, что они входят без натяга и что проводники достаточно длинны, чтобы выйти наружу из формы между катушками 3 и 4 (рис ниже).

Все катушки должны быть размещены одинаковыми сторонами кверху.

4.2 Подготовка к заливке

Для заливки статора надо подготовить:

• 6 намотанных катушек

• Эпоксидную смолу, тальк и красящий пигмент (по желанию)

• Стекломат (стеклоткань)

• 4 шпильки 100мм х 8мм

• Тщательно подготовленные отливочные формы. Трите их наждачкой, полируйте, используйте пасту ГОИ, если найдете

Вырежьте куски стеклоткани, используя бумажные шаблоны. Это будут 2 стеклотканевых круга для укладывания во внешнюю форму, а также полоски для того, чтобы проложить стенки внешней формы. Полоски надо делать из двойной стеклоткани, и закладывать 25 мм на взаимное перекрытие полосок.

Когда вы все подготовите, начните заливку. Неплохо прочитать следующий раздел до конца и разобраться досконально во всех деталях.

4.3 Заливка статора

На рисунке ниже нарисована процедура взвешивания смолы и талька. Тальк используется только для объемной заливки (он не добавляется, когда смола мажется тонким слоем для смачивания стеклоткани). Тальк нужен для предотвращения перегрева и упрочнения отливки. При заливке статора смолу нужно будет замешивать несколько раз, при каждом замесе нужна своя дозировка.

сс – это кубический сантиметр

Смешивайте смолу и катализатор тщательно, но медленно, чтобы избежать появления воздушных пузырей. Тальк добавляйте только после размешивания катализатора. Как только смола замешана, сразу используйте ее – через несколько минут она начнет разогреваться и застывать.

Используйте ровно столько катализатора, сколько необходимо. Если в мастерской тепло, катализатора можно лить поменьше. При заливке толстого слоя смолы, также лейте меньше катализатора. Если сомневаетесь, сделайте несколько тестовых замесов смолы с разным количеством катализатора и посмотрите результат.

Начинаем заливку:

• Положите внешнюю форму статора на газету на верстак

• Замесите 200 г смолы, добавьте 3 куб.см. катализатора (и 15-30 куб.см. пигмента для цвета если нужно). При первых двух замесах тальк не добавляется.

• Размажьте смолу тонким слоем по внутренней поверхности внешней формы. Не мажьте верхушку выступа в центре.

• Положите один слой стеклотканевого круга на дно и стеклотканевые полоски на стенки, смажьте стеклоткань сверху смолой, чтобы она тщательно пропитала стеклоткань

• Приклейте второй слой стеклотканевых полосок на стены (второй круг на дно пока не кладите)

• Положите катушки во внешнюю форму. Все провода должны быть собраны вместе и выйти наружу между катушкой №3 и №4

• Смешайте еще 100г смолы и 2 куб.см. катализатора. Вылейте замес на проводники катушек, избегайте образования «озерков» внутри катушек

• Смешайте еще 600г смолы, 9 куб.см. катализатора и 600г талька. Вылейте смесь в пространство между катушек. Смола должна заполнить внешнюю форму и быть вровень с верхом центрального выступа.

• Сильно потрясите форму, чтобы убрать пузыри.

• Смешайте 200г смолы, 3 куб.см. катализатора и 100г талька. Положите второй стеклотканевый диск поверх катушек и смажьте его смолой. Тщательно размажьте смолу.

• Положите внутреннюю форму поверх внешней и вставьте 12мм болт сквозь центральное отверстие в обеих формах. Плоское место на внешней форме должно совпасть с местом выхода проводов от катушек на нижней форме. Уровень смолы поднимется, она может перелиться через край и начать стекать по внешней форме

• Если смолы наоборот, не хватает – смешайте еще 100г смолы и 1,5куб.см. катализатора и залейте в нижнюю форму

• Положите шаблон для штифтов на внешнюю форму, один конец шаблона располагается наж местом выхода проводов. Затяните 12 мм болт гайкой. Вставьте четыре 8-мм шпильки в отверстия, с гайками наверху. Шпильки должны быть погружены в смолу примерно на половину своей длины.

Заливка завершена. Она чуть нагреется и начнет застывать через несколько часов. Лучше поместить отливку в теплое место.

Когда смола застынет полностью, выбейте заливку из формы, как можно более аккуратно. Уберите шаблон со шпилек. Разъедините внешнюю и внутреннюю формы, и аккуратно выбейте отливку из нижней формы мягкими ударами по верстаку или деревянному полу.

5. Изготовление ротора.

Магнитный ротор тоже представляет собой отливку. Сначала соберите все составные части: магнитные пластины, магниты, проволоку из нержавейки (все части указаны ниже), и приступайте к сборке, как описано в этом разделе.

5.1 Магнитные диски

Каждый магнитный ротор собирается на стальном диске толщиной 6 мм. (рис. ниже). Не используйте алюминий или нержавейку в качестве материала, диски должны быть изготовлены из магнитного материала. В диске есть отверстия для крепления к узлу подшипника – в данной инструкции узел подшипника имеет 4 крепежных отверстия диаметром 10мм, расположенных на окружности 102мм. Если вы найдете другой узел подшипника, соответственно внесите изменения в отливочные формы и шаблоны.

В центре диска – отверстие диаметром 65мм. Для крепления к цапфам с резьбой М10 на диске надо просверлить 4 отверстия с резьбой М10 по окружности 220мм. Вверните 4 шпильки длиной 20мм в эти отверстия. Их мы попозже зальем смолой и тем самым обеспечим лучшее крепление отливки к диску.

Магнитные пластины – заготовки под диски должны быть ровные, без повреждений поверхности. Вырезать ровный круг без повреждения поверхности нелегко, как вариант – вместо диска можно сделать восьмиугольник, это позволит использовать отрезной станок. Сначала разметьте квадрат, впишите в него окружность, а затем обрежьте углы под 45 градусов. Длина каждой стороны 116мм. Магниты разместятся по углам восьмиугольника.

Центральное отверстие можно выпилить лобзиком либо на токарном станке. Зачищайте стальные диски, пока они не заблестят. Протрите их спиртом, чтобы удалить жировые загрязнения перед тем, как класть их в отливочную форму.

5.2 Магниты

На каждом роторе по 8 магнитов. У каждого есть северный и южный полюс (см. ниже)

С магнитами обращайтесь аккуратно: они могут повредить гибкие диски, магнитофонные кассеты (если у кого-то это еще осталось), кредитные карты и прочие полезные вещи.

Если магниты слиплись, отделяйте их проскальзыванием друг относительно друга, не применяйте грубую силу. Не допускайте, чтобы магниты неконтролируемо слипались – при столкновении они могут треснуть. Не бейте по ним молотком, в том числе и когда монтируете ротор.

Верхние поверхности магнитов на диске должны чередоваться: С-Ю-С-Ю… Проверяйте это так: каждый готовый к установке магнит подносите к установленному ранее – нижний магнит должен отталкивать верхний (см. рис. ниже). Верхний ставьте рядом, не переворачивая. Когда все магниты стоят на местах, проверьте их еще одним магнитом: он должен последовательно отталкиваться-притягиваться –отталкиваться… и так далее по кругу.

Два магнитных ротора должны притягиваться при совмещении крепежных отверстий. Для этого магниты надо расположить, как показано ниже:

5.3 проволока из нержавейки

При вращении роторов магниты подвергаются действию центробежной силы, которая срывает их с посадочных мест. В нашем первом ГПМ магниты были просто приклеены к дискам. При увеличении скорости вращения магниты просто разлетались в стороны, повреждая статор.

Теперь мы заливаем магниты эпоксидкой. Даже ее недостаточно для удержания магнитов на месте, она должна быть усилена. Обмотайте роторы проволокой, которая будет держать магниты вместе. Стальную проволоку лучше не использовать – она магнитная и понизит общую намагниченность ротора. Надо взять проволоку из нержавеющей стали, это не магнитный материал.

Обмотайте проволоку вокруг магнитов пять оборотов, и обрежьте ее кусачками. Зафиксируйте проволочное кольцо изолентой в нескольких местах, чтобы оно не разматывалось. Когда придет время, мы положим кольцо на место.

5.4 Заливка ротора

Перед началом заливки убедитесь, что у вас все готово:

• Отливочные формы отполированы и зачищены

• Магниты и магнитные диски чистые (их не полируйте!)

• 16 полосок стеклоткани нарезаны (они нужны для размещения между магнитами)

• Проволока из нержавейки обрезана и зафиксирована изолентой

• Шаблон для позиционирования магнитов готов к использованию

Количество смолы, упомянутое ниже, рассчитано на два ротора.

• Вставьте 4 болта сквозь отверстия во внешней форме снизу (как на рис. вверху). Положите стальной диск во внешнюю форму. Сверху положите внутреннюю форму. Проверьте фаску, и положите форму меньшей поверхностью вниз, чтобы ее легче было снять после заливки.

• Смешайте 200г смолы и 3 куб.см. катализатора. Размажьте часть смолы по стальному диску. Добавьте 20г красящего пигмента. Добавьте в оставшуюся смолу 200г талька. Лейте смесь смолы с тальком по краям формы, пока она не заполнится до верха стального диска.

• Положите шаблон для позиционирования магнитов на болты. Положите магниты на стальной диск по шаблону. Помните про чередование полюсов – С-Ю-С… Проверьте взаимное отталкивание и притягивание магнитов, как в разделе магниты, но СНИЗУ. Когда все магниты уложены на места, снимите шаблон и используйте его для второго ротора. Помните, что магниты на двух роторах должны быть размещены «в противофазе», чтобы роторы притягивались. Следите, чтобы магниты не съехали со своих мест.

• Затяните гайки на 4-х болтах и притяните центральный диск формы к стальному диску.

• Смешайте 500г смолы и 7 куб.см. катализатора. Добавьте 300г талька. Положите маленькие ленты из стеклоткани между магнитами и зазором по краю. Добавляйте смолу, пока она смочит стеклоткань. Трясите форму, пока не выйдут все пузыри.

• Положите кольцо из проволоки вокруг магнитов, не допускайте, чтобы оно съехало вниз. Пусть кольцо зависнет не стеклотканевых полосках. Осторожно, не сдвиньте магниты.

• Смешайте 500г смолы и 7 куб.см. катализатора. Добавьте 300г талька. Злейте простарнство между магнитами, пока смола не дойдет до верха формы.

• Оставьте отливку сохнуть несколько часов. Вынимайте ее из формы осторожно, не бейте сильно молотком. А если бьете – то бейте по форме, а не по ротору.

6. Сборка

6.1 Балансировка ротора

Оба ротора надо отбалансировать, иначе при работе ГПМ будет трястись. Весь ГПМ в сборе также надо будет отбалансировать после сборки, так как роторы не могут быть сразу спозиционированы четко по местам. Эта процедура описана в соответствующем разделе.

Для балансировки ротора (рис. ниже), сначала прикрепите к нему шаблон для крепежных отверстий (он же PCD шаблон) четырьмя болтами. Затем отбалансируйте ротор на заостренном стержне (гвозде).

Если ротор будет вращаться без вихляний, то он отбалансирован. Если наблюдаются вихляния в вертикальной плоскости, типа восьмерки на велосипедном колесе, то прикрепите к ротору небольшой грузик или высверлите немного смолы между магнитами, пока ротор не начнет вращаться равномерно. Снимите шаблон, поверните его на 90 градусов, прикрепите его опять к ротору и повторите процедуру.

6.2 Узел подшипника и цапфа

Цапфа (закрепленная с одного конца ось , на которой чего-то вращается) для узла подшипника делается из куска профиля 50 х 25 х4. Найдите точный центр большей поверхности и разметьте на этой поверхности четыре 8мм отверстия в соответствии с шаблоном для штифтов

Отверстие в центре должно быть 25мм в диаметре (или другое, в зависимости от оси, к которой подходит узел подшипника). Сделайте отверстие специальной насадкой на дрель или на токарном станке.

В отверстие 25 мм вварите ось. Очень важно: при сварке ось надо держать максимально прямо (под углом 90 градусов к поверхности).

Узел подшипника (рис. ниже) должен одеваться на ось с небольшим натягом. Внутри – два подшипника 50 х 25 мм. На верхушку узла должна одеваться пластиковая крышка для защиты от пыли.

Не забудьте смазать подшипники. Заполняйте их смазкой только на половину окружности, иначе они не смогут свободно вращаться.

6.3 Сборка ротора и статора

• Найдите или нарежьте 4 куска стержня с резьбой М10 по 200мм длиной. Они будут шпильками, крепящими магнитные роторы к узлу подшипника. К этим же шпилькам будут крепиться лопасти ветряка.

• Завинтите по 6 гаек на каждую шпильку (рис ниже)

• Вставьте шпильки в отверстия в узле подшипника, спереди.

• Наденьте магнитный ротор на свободные концы шпилек

• На концы шпилек, торчащие из ротора, наденьте по гайке, и закрутите те самые ранее одетые на шпильки 6 гаек, так, что ротор окажется крепко привинченным к заднему фланцу узла подшипника. Гайку, прижимающая ротор к фланцу, потом покрасьте, чтобы она не развинчивалась.

• Расположите профиль с вваренной осью так, чтобы ось торчала вертикально, насадите на ось узел подшипника. Не бейте по нему молотком! Затяните фиксирующую гайку, прижимающую узел подшипника к оси. Осторожно, не перетяните гайку. Наденьте пластиковую крышку на узле подшипника.

• крутаните ротор, держа у его поверхности медную проволоку (стальная притянется магнитами, ее лучше не использовать). Поверхности магнитов должны быть выровнены +/- 0,5мм. Если это не так, отрегулируйте положение ротора тонкими прокладками между ротором и фланцем узла подшипника.

• с помощью уровня отрегулируйте параллельность поверхности ротора и профиля. Поверните ротор на 90 градусов и повторите процедуру

• возьмите статор. Закрутите (до низу) по одной 8мм гайке на каждую шпильку, вклеенную в статор.

• Поместите статор поверх магнитного ротора так, чтобы шпильки статора совпали с отверстиями в профиле. Закрутите еще по гайке на концы шпилек.

• крутаните нижний ротор. Плавно опускайте статор вниз, удерживая его параллельно ротору, до чирканья магнитом по статору (услышите характерный звук).

• Отрегулируйте гайками на всех четырех шпильках расстояние в 1мм между ротором и статором

• Наденьте по несколько шайб на 10мм шпильки, крепящие ротор. Затем насадите на шпильки верхний ротор

• Если зазор между верхним ротором и статором оказывается меньше 1мм, добавьте еще шайб, если в каком-то месте больше 1мм, то соответственно уберите шайбу.

• Когда зазор отрегулирован, закрутите на 10мм шпильки сверху по гайке и прочно зафиксируйте верхний ротор

6.4 Электрика

В следующем разделе №7 описано, как присоединить к статору выпрямитель. Я рекомендую два однофазных мостовых выпрямителя. Они выпускаются в блоках 30 х 30мм. Положительные выводы (обычно под прямым углом к остальным) все соединяются с положительным полюсом аккумулятора , вс отрицательные выводы – с отрицательным полюсом. Оставшиеся четыре вывода соединяются с выводами статора (переменный ток). Вам понадобятся 3 вывода из этих четырех, соединенные в соответствие со скоростью вращения (далее будет объяснено).

Провода лучше всего соединять блочными клеммниками, можно их и спаять. При пайке старайтесь не перегреть выпрямитель, для чего перед пайкой прикрутите их к радиатору. Он будет выглядеть примерно так, как на верхнем рисунке, но в приципе подойдет любой кусок алюмния весом грамм в 250.

Все электрические части надо впоследствии спрятать во влагозащитном корпусе

7. Проверка и подключение

До использования ГПМ его следует еще раз проверить: исправить недочеты сейчас намного легче, чем когда ГПМ будет смонтирован на верхушке мачты.

7.1 Проверка механики

Закрепите профиль с осью вертикально в тисках (ось при этом горизонтальна, как и будет при использовании ГПМ в ветряке). Магнитные роторы могут свободно вращаться. Проверьте, что провода не коротят (ГПМ при этом вращается с трудом).

7.1.1 Проверяем свободное вращение роторов.

Закрутите ротор и послушайте звук. Не должно быть никаких шуршаний или поскрипываний при вращении роторов, они должны вращаться свободно несколько секунд и постепенно остановиться. Если они останавливаются резко, значит, где-то проблемы с электрикой или подшипник перезатянут.

Возьмитесь за статор двумя руками. Попытайтесь покачать его туда-сюда, закрутив роторы. Статор не должен касаться роторов. Если все-таки касание есть (определите по звуку), то ГПМ надо разобрать и увеличить зазор между роторами и статором. Или, как вариант, подрегулировать высоту крепления ротора.

Зафиксируйте ротор в позиции, при которой одна из шпилек находится на 3-х часах (рис ниже). Подвесьте грузик в 100г к этой шпильке. Ротор должен повернуться по часовой стрелке. Если он не поворачивается, значит, подшипник перезатянут или смазан слишком обильно.

7.1.2 Проверка баланса.

Роторы мы уже балансировали ранее (см. пункт 6.1 Балансировка ротора). Однако теперь, когда ГПМ окончательно собран, процедуру балансировки надо повторить.

Зафиксируйте ротор так же, как и в предыдущем разделе (рис. выше), повторите проверку с каждой из 4-х шпилек. Пробуйте подвешивать к шпилькам разные грузики. Найдите минимальный вес , который выводит ротор из равновесия. Если для какой-то из шпилек требуется существенно больший вес, то это означает, что ротор не сбалансирован. Поприкрепляйте к ротору небольшие грузики, пока он не будет отбалансирован.

Точно также потом надо будет отбалансировать ротор с прикрепленными к нему лопастями ветряка.

7.2 Проверка электрической части

7.2.1 Проверка соединения катушек

Для проверки электрики полезно иметь мультиметр, но можно обойтись и лампочкой на 3 вольта (см. рис. ниже).

• Соедините провода 1В – 4А, 2В – 5А, 3В – 6А (это последовательное соединение однофазных пар катушек)

• Поставьте диапазон мультиметра на 10В

• Подключите мультиметр или лампочку к 1А и 4В

• Вращайте ротор со скоростью около 1 об/сек

• Мультиметр должен показать около 2В, лампочка должна заморгать

• Повторите тест со следующими парами проводников: 2А и 5В, 3А и 6В. Эффект должен быть аналогичным

Если эффекта нет или он мал, проверьте для начала соединение проводников 1В – 4А, 2В – 5А, 3В – 6А. Если с ними все нормально, то, возможно, при изготовлении статора одна из катушек оказалась реверсной (положенной вверх ногами).

Для выявления такой катушки надо провести следующий тест (см. рис. ниже). Соедините 4В-2А, 5В-3А. Проверьте эффект между 1А и 6В – напряжения быть НЕ ДОЛЖНО, или оно будет пренебрежимо мало. Если напряжение все-таки есть, то последовательно меняйте местами А и В поочередно в каждой паре, пока напряжение не пропадет.

Когда реверсная катушка выявлена, перевесьте правильно ярлычки А и В.

В данном тесте напряжение не равно нулю из-за того, что катушки расположены в статоре на идеальным образом. Если в результате тестов не удается получить напряжение менее 1В, то вам либо придется смириться с более низким выходом мощности вашего генератора на постоянных магнитах, либо изготовить новый статор, обращая внимание на симметричное расположение катушек, строго выдерживая расстояние между ними.

7.2.2 Проверка оборудования постоянного тока

После проведения и успешного завершения всех предшествующих тестов подключите выпрямитель, как на рисунке ниже. Соедините провода 1А, 2А, 3А вместе. Подключите каждый провод 4В, 5В и 6В к одному из входов переменного тока выпрямителя. Это соединение типа «звезда». К выходу подключите лампочку или мультиметр.

Закрутите ротор рукой, около 1 об/сек. Мультиметр должен показывать около 4В (если лампочка подключена параллельно – то 3В). Лампочка должна гореть ровно, а не моргать как в предыдущих тестах.

Если нет напряжения, или лампочка все-таки моргает, то это означает неправильную коммутацию или битый выпрямитель.

Можно обойтись и без лампочки с мультиметром. Просто соедините плюс и минус выпрямителя вместе (сделайте КЗ), и попробуйте вращать ротор. Сопротивление усилию должно быть ощутимым и постоянным. Если ротор «сопротивляется» скачками или подрагивает, то что-то неправильно.

7.2.3 Подключение к аккумулятору: звезда и треугольник

Для низких скоростей вращения генератора на постоянных магнитах соедините обмотки звездой, как в п. 7.2.2

Проверка оборудования постоянного тока.

Для сильного ветра и, соответственно, большего тока, соедините катушки треугольником (см. рис. ниже)

Также можно поставить реле для переключения между звездой и треугольником:

В принципе, можно поставить микроконтроллер для измерения скорости вращения и переключения между звездой и треугольником. Но это вряд ли вписывается в бюджет проекта «своими руками».

По большому счету, можно вообще не переключать соединение звезда – треугольник при изменении скорости ветра, но тогда генератор на постоянных магнитах будет выдавать чуть меньшую мощность. Варианта два:

• Если вы ожидаете в основном низкие скорости ветра, сделайте соединение треугольником и все. Если высокая скорость ветра будет редко, ничего с генератором на постоянных магнитах не случится

• Если у вас все-таки часто дуют сильные ветра, то намотайте по 200 витков катушки проводом 1,2 мм. Потом соедините одну группу катушек звездой, а одну треугольником, как на рисунке ниже.

Кабель от генератора до аккумулятора можно сделать либо 3-х фазным переменного тока, либо постоянного тока. Использование переменного тока лишь чуть-чуть уменьшает потери.

При напряжении 12 В диаметр кабеля должен быть большим. Даже если ток будет всего лишь 15 А, то для расстояния 20м надо использовать кабель с жилами как минимум по 3мм.кв. (если ток постоянный). Даже в таком кабеле потери составят порядка 15%. Для большей длины кабеля надо использовать большие диаметры жил, и чем длиннее, тем толще.

7.2.4 Зарядка аккумулятора

12 Вольт стандартного аккумулятора – безопасное напряжение. Однако, если генератор отключен от аккумулятора и крутится достаточно быстро, то напряжение холостого хода может достичь 50 В, а это довольно чувствительно. Поэтому нагрузку от генератора лучше не отключать.

Другая опасность – короткое замыкание на аккумуляторе, которое может привести к нагреву и воспламенению кабеля. Обязательно ставьте предохранитель на каждый провод , подключенный к плюсовой клемме аккумулятора (см. рис. ниже)

Свинцово-кислотный аккумулятор нельзя разряжать полностью. При пропадании ветра обязательно следите за уровнем зарядки аккумуляторов, и своевременно отключайте нагрузку. Ключевым является уровень напряжения – если оно ниже 11,5 вольт, то аккумулятор нельзя разряжать больше.

Идеальный режим зарядки – малый ток в течение длительного времени. Большой ток допустим только на начальном этапе зарядки, когда аккумулятор разряжен.

Перезарядка батарей тоже вредна – пластины перегреваются и портятся. Если напряжение больше, чем 14 вольт, то зарядку надо прекратить.

Уровень зарядки аккумулятора регулируйте током нагрузки. В принципе, существует недорогое устройство для контроля напряжения аккумулятора и соответственного регулирования тока нагрузки.

8. Дополнительная информация

8.1 Эпоксидка

Полиэстеровая смола

Полиэстер – синтетическое вещество типа пластмассы, используется в при строительстве стеклопластиковых лодок, деталей кузова машин, итп. В полиэстеровой смоле обычно имеются различные добавки – для большей твердости или, наоборот, для большей упругости. Если вам попадется смола с добавкой полиэстера – предварительно расспросите продавца об ее свойствах.

Упрочнители

Есть два варианта упрочнить конструкцию, отлитую из эпоксидки: это добавка перекиси и кобальта.

Кобальт – жидкость пурпурного цвета. Когда купите ее, спросите продавца о пропорциях. Кобальт можно заливать в смолу заранее, но хранить смолу с добавкой кобальта надо в темном месте, иначе она застынет.

Перекись – опасный химикат. Храните его в ПВХ-емкости, в темноте, при температуре ниже 25 градусов. Никогда не смешивайте перекись с кобальтом (разве что кобальт был ранее добавлен в смолу и его концентрация уже низка), иначе смесь взорвется. Добавляйте не больше 1-2% перекиси в смолу, иначе она перегреется.

Безвосковая «воздушная» смола типа «Б»

Эта смола используется при изготовлении стеклопластиковых лодок, когда технология требует последовательного нанесения слоев смолы. Мы не рекомендуем использовать эту смолу для генератора на постоянных магнитах – поверхность отливки не будет твердой. Спрашивайте смолу типа «А», или «смолу для отливки»

Тиксотропическая добавка

Это специальный порошок (очень тонко помолотый кварц), добавлется в смолу для густоты. Для нашей цели он не нужен, но если он уже добавлен в смолу, то ничего страшного.

Стиреновый мономер

Около 35% всей смолы – стиреновый мономер. Это делается для разжижения смолы. Она имеет неприятный запах. В заливочную смолу можно добавить до 10% смолы – стиренового мономера.

Пигмент

Красящий пигмент нужен для придания отливке цвета. Добавьте пигмент (максимум – 10%) в первую заливку, которая будет распределена по всей заливочной форме. Пигмент добавлять необязательно, без него отливки будут прозрачными, а катушки и магниты – хорошо видными. В этом есть свой шарм.

Стеклоткань

Без стеклоткани смола не имеет нужной прочности. Стеклоткань продается в виде листов или нарезки волокон. Используйте стеклотканевые листы для прокладки в формы, а нарезку волокон можно высыпать в смолу, что придаст отливке большую прочность. Особенно имеет смысл проделать это с роторами.

Тальк

Это дешевый наполнитель, который можно смешивать со смолой после добавления в нее пероксида. Тальк делает смолу более густой, и уменьшает ее расход. Пропорция смола : тальк может доходить до 1 : 2 без уменьшения прочности. Тальк также уменьшает нагрев при застывании смолы.

8.2 Использование генератора на постоянных магнитах для мини-ГЭС

Наш генератор на постоянных магнитах идеален как для ГЭС с небольшим перепадом и низкой скоростью потока, так и для ГЭС на более мощном потоке, так как генератор может быть настроен как для генерации всего лишь нескольких ватт, так и нескольких сот ватт.

По сравнению с ветрогенерацией, использование генератора для мини-ГЭС может привести к ржавлению металлических деталей из-за постоянной влажности. Во избежание этого используйте гальванизированные или оцинкованные металлические части.

Для использования генератора на постоянных магнитах для мини-ГЭС к внешнему ротору надо приделать простейшее колесо с лопастями.

Вот некоторые примеры использования генератора на постоянных магнитах для мини-ГЭС:

При больших оборотах генератор выработает больше электроэнергии. Увеличение скорости в 2 раза приведёт к увеличению в два раза напряжения. Если катушки намотаны слишком тонким проводом, он может перегреться и тогда КПД упадет. Можно обдумать использование воды для охлаждения генератора.

Тем не менее, использование генератора на постоянных магнитах в режиме высоких оборотов для мини-ГЭС более безопасно, чем для ветряка: в мини-ГЭС не возникает гироскопических сил, изгибающих генератор при его повороте.

Если вам не нужно напряжение выше 12 вольт, то при высоких оборотах можно изменить коммутацию катушек статора, и соединить их параллельно, а не последовательно. Или можно заранее намотать катушки меньшим количеством витков, но более толстым проводом. Второй вариант более предпочтителен, так как позволит избежать паразитных токов, возникающих и в «звезде», и в «треугольнике».

Источник

Читайте также: Носледние новости России и мира сегодня.

сборка статора, крыльчатки и выбор количества фаз генератора

Самодельный ветряк

Приобретение ветрогенератора — дорогостоящая и не всегда полностью эффективная затея. Образцы ветряков, имеющиеся в продаже, имеют ограниченный срок службы, низкую ремонтопригодность и высокую цену. Покупка такого комплекта не по карману многим потенциальным пользователям. Выходом из положения становится самостоятельное изготовление ветрогенератора, обходящееся гораздо дешевле и позволяющее получить устройство с высокой эффективностью и производительностью.

Самодельный ветряк имеет высокую ремонтопригодность и, как следствие, длительный срок службы. Зачастую конструкцию по ходу эксплуатации модернизируют, улучшают и доводят до максимально возможных параметров, чего нельзя сделать с заводскими комплектами.

Тихоходные ветрогенераторы

Наиболее привлекательными конструкциями ветряков для большинства регионов России являются образцы, дающие высокие показатели на слабых и средних ветрах — тихоходные ветряки. Для них характерна возможность начинать вращение при низких скоростях потока, выдавая достаточное напряжение для питания приборов потребления.

Выработка энергии на таких устройствах производится генераторами, адаптированными к работе с ветряками. Специфика конструкции таких генераторов состоит в высокой чувствительности, поскольку устройство изначально рассчитывается на работу с низкими скоростями вращения.

Для того, чтобы обеспечить заданный режим работы, необходимо обмотку возбуждения исключить из конструкции, заменив ее постоянными магнитами. В результате отпадет необходимость подачи напряжения для образования электромагнитов, индукция станет более стабильной, независимой от источника питания на обмотке ротора. Кроме того, отпадет надобность в щеточном узле, подающем питание на обмотку возбуждения.

Изготовление ротора на постоянных магнитах

Конструкция генератора на постоянных магнитах в каком-то смысле проще, чем с электромагнитным возбуждением. Создание такого устройства может выполняться как на базе готового генератора, так и при помощи подручных материалов.

Модификация автомобильного генератора

Создание ротора на постоянных магнитах требует достаточно серьезного вмешательства в конструкцию. Необходимо уменьшить диаметр на толщину магнитов плюс толщину стальной гильзы, которая одевается на ротор для образования сплошного магнитного потока и одновременно служит посадочной площадкой под магниты. Некоторые специалисты обходятся без гильзы, устанавливая магниты прямо на ротор с уменьшенным диаметром и фиксируя на эпоксидку.

Процесс изготовления требует участия производственного оборудования. В токарный станок зажимается ротор и аккуратно снимается слой с таким расчетом, чтобы установленные магниты вращались с минимальным зазором, но вполне свободно. Установка магнитов производится на пластины ротора с чередованием полюсности.

Наибольшего эффекта удается добиться при установке относительно небольших по размерам магнитов, расположенных рядами в продольном направлении. Достигается ровный и мощный магнитный поток, воздействующий на силовые обмотки статора с равномерной плотностью во всех точках.

Изготовление ротора из ступицы и тормозного диска

Рассмотренный способ относится к готовым генераторам, нуждающимся в небольших изменениях конструкции. К таким устройствам относятся автомобильные генераторы, часто применяющиеся самодеятельными конструкторами в качестве базового устройства. Зачастую генераторы собирают полностью самостоятельно, не имея готового устройства.

В таких случаях действуют несколько иначе. За основу берется автомобильная ступица с тормозным диском. Она качественно отбалансирована, прочна и приспособлена к нагрузкам определенного рода. Кроме того, размер ступицы позволяет разместить по окружности большое число магнитов, позволяя получить трехфазное напряжение.

Магниты с чередованием полюсности размещают на равноудаленном от центра расстоянии. Очевидно, что наибольшее число можно установить, если приклеивать их как можно ближе к наружному краю. Наиболее точным показателем станет размер магнитов, который определит возможность размещения на определенном расстоянии. Число магнитов должно быть четным, чтобы не сбивался ритм чередования полюсов при вращении.

Наклейка магнитов на ступицу производится при помощи любого клея, оптимальным вариантом считается эпоксидная смола, которой заливают магниты полностью. Это защищает их от воздействия влаги или от механических воздействий. Перед заливкой по краю ступицы рекомендуется сделать бортик из пластилина, не позволяющий эпоксидке стекать со ступицы вниз.

Конструкция генератора на автомобильной ступице наиболее удобна при изготовлении вертикального ветряка. Примечательно, что подобную схему можно использовать и без ступицы, на диске, вырезанном из обычной фанеры. Такая конструкция намного легче, позволяет выбирать удобный размер, что делает возможным создание чувствительного и производительного устройства.

Ветряк с аксиальным генератором на неодимовых магнитах

Наиболее сильными магнитами, обладающими оптимальными параметрами для использования в конструкции генератора, являются неодимовые магниты. Они несколько дороже обычных, но превосходят их многократно и дают возможность создать мощное устройство при относительно компактном размере.

Принципиального отличия в конструкции не имеется. Неодимовые магниты изготавливаются в различных формфакторах, позволяющих выбрать наиболее удобный для себя вариант — тонкие продолговатые брусочки, форма таблетки, цилиндры и т.д. если используется металлический ротор, то приклеивать магниты необязательно, они сами по себе с усилием прикрепляются к основанию. Остается лишь залить их эпоксидкой для защиты от коррозии.

Приобрести такие магниты проще всего через Интернет, заодно можно сразу же выбрать самую удобную форму.

Изготовление статора

Статор — это неподвижная часть генератора, несущая силовую обмотку, индуцирующую электрический ток. В зависимости от типа конструкции, статор может быть использован от готового устройства (например, от автомобильного генератора), или изготовлен с нуля самостоятельно. Техника изготовления в каждом случае своя, но принцип остается общий — по окружности, охватывающей вращающийся ротор, располагаются катушки, вырабатывающие переменный ток.

При модификации автомобильного генератора иногда силовые обмотки не трогают, предпочитая изменить конструкцию ротора и на этом остановиться. Чаще всего причиной тому является слабая техническая или теоретическая подготовка, когда мастер имеет весьма смутное представление, как именно подобные вещи делаются. Рассмотрим вопрос внимательнее:

Выбор количества фаз

Многие мастера пытаются облегчить себе задачу, делая генератор на одну фазу. В данном случае простота весьма сомнительная, так как экономия усилий получается только на стадии намотки катушек. Зато при эксплуатации получается неприятный эффект — амплитуда напряжения имеет классический вид, отчего выпрямленный ток имеет пульсирующую структуру.

Скачки противопоказаны аккумуляторам, создают отрицательное воздействие на все узлы комплекса и способствуют быстрому выходу из строя. Появляется вибрация, которая может стать причиной жалоб соседей, источником неприятных ощущений для людей или животных.

Трехфазная конструкция, напротив, имеет более мягкую огибающую, в выпрямленном состоянии ток практически не имеет каких-либо отклонений. Мощность устройства имеет стабильное значение, сохраняется в рабочем состоянии механическая и электрическая часть агрегата.

Выбор между трех- и однофазным устройством однозначно следует делать в сторону трехфазной конструкции. Количество намотанных катушек возрастает, но число витков не настолько велико, чтобы отказываться от более качественного результата из-за призрачной экономии времени.

Модификация статора автогенератора

Автомобильный генератор имеет готовые силовые катушки, плотно уложенные в каналах статора. Для получения качественного результата требуется изменить чувствительность статора, поскольку номинальная частота вращения автомобильного двигателя находится в пределах 2000-3000 об/мин, а на пике может подниматься до 5000-6000 об/мин. Таких параметров ветряк выдать не в состоянии, а использование повышающей передачи значительно снизит мощность крыльчатки.

Решением вопроса становится увеличение количества витков, для чего старые обмотки демонтируются, а на их место наматываются новые, с большим числом витков из более тонкого провода. При этом, нельзя использовать слишком тонкий провод, так как с возрастанием числа витков растет и сопротивление, делающее генератор менее производительным. Необходимо соблюдать «золотую середину», увеличивая количество аккуратно, без излишнего рвения.

Важно! Подобная операция требует расчета, но на практике чаще всего поступают проще — наматывают столько витков, сколько способна вместить конструкция статора. Результат обычно достигается положительный, поскольку слишком большое число витков вместить не получится.

Изготовление статора аксиального типа

Такая конструкция подойдет для генератора аксиального типа, ротор которого создан из ступицы и тормозного диска от автомобильного колеса. Статор имеет форму плоского диска, по окружности которого расположены силовые обмотки. Они должны быть намотаны из достаточно толстого провода, чтобы число витков было достаточным, но и сопротивление не снижало эффективность конструкции. Количество катушек кратно трем, чтобы на каждую фазу приходилось одинаковое количество.

Соединяются они между собой звездой, для каждой фазы соединяются 1, 4, 7, 10 и т.д. При намотке однофазного статора каждая катушка мотается в противоположном направлении — первая по часовой стрелке, вторая — против, затем опять по часовой и т.д. соединяются они последовательно.

Готовый статор устанавливается соосно с ротором. Зазор между катушками и неодимовыми магнитами должен быть минимальным, но ход ротора свободный, без соприкосновения с катушками.

Для защиты от влаги, пыли или прочих воздействий катушки обычно заливают эпоксидной смолой. Для этого предварительно делается по внешнему краю диска статора бортик из пластилина высотой, немного превышающей слой заливки.

Сборка крыльчатки

Крыльчатка должна обеспечивать максимальную чувствительность. Перед тем, как начать создание ветряка, следует подробно изучить метеорологическую обстановку в регионе, направление и скорость преобладающих ветров, частоту и силу шквалистых порывов, возможность ураганов. Эта информация поможет выбрать наиболее подходящую конструкцию ветряка (вертикальный или горизонтальный, размер, количество лопастей и т.п.).

Создание крыльчатки производится из подручного материала на основании параметров генератора. Размер лопастей должен обеспечивать начало вращения при невысоких скоростях потока, но не создавать чрезмерно большой преграды. Это снизит риск падения мачты при сильном порыве или шквале.

Регионы с нестабильными и часто меняющимися ветрами (каких большинство в России) больше подходят для эксплуатации вертикальных конструкций.  Горизонтальные ветряки считаются более эффективными, но нуждаются в установке на высокие мачты, что создает проблемы при обслуживании.

Рабочее колесо ветрогенератора должно быть качественно отбалансировано и прочно соединено. Установка комплекта на крышу дома запрещается, особенно, если в нем проживает несколько семей. Рекомендуется выбирать открытое место на возвышении неподалеку от дома, чтобы длина кабеля не создавала большого сопротивления. Поблизости не должно быть преград, высоких деревьев или зданий, заслоняющих прямой поток ветра.

Рекомендуемые товары

Электрогенератор

| инструмент | Британника

электрогенератор , также называемый динамо , любая машина, которая преобразует механическую энергию в электричество для передачи и распределения по линиям электропередач бытовым, коммерческим и промышленным потребителям. Генераторы также производят электроэнергию, необходимую для автомобилей, самолетов, кораблей и поездов.

Механическая мощность для электрического генератора обычно получается от вращающегося вала и равна крутящему моменту вала, умноженному на вращательную или угловую скорость.Механическая энергия может поступать из ряда источников: гидротурбины на плотинах или водопадах; Ветряные турбины; паровые турбины, использующие пар, получаемый при сжигании ископаемого топлива или в результате ядерного деления; газовые турбины, сжигающие газ непосредственно в турбине; или бензиновые и дизельные двигатели. Конструкция и скорость генератора могут значительно различаться в зависимости от характеристик механического первичного двигателя.

Почти все генераторы, используемые для электроснабжения сетей, вырабатывают переменный ток, полярность которого меняется на фиксированную частоту (обычно 50 или 60 циклов или двойное переключение в секунду).Поскольку несколько генераторов подключены к электросети, они должны работать на одной и той же частоте для одновременной генерации. Поэтому они известны как синхронные генераторы или, в некоторых случаях, генераторы переменного тока.

Генераторы синхронные

Основная причина выбора переменного тока для электрических сетей заключается в том, что его постоянное изменение во времени позволяет использовать трансформаторы. Эти устройства преобразуют электрическую энергию при любом напряжении и токе, которые она генерирует, в высокое напряжение и низкий ток для передачи на большие расстояния, а затем преобразуют ее в низкое напряжение, подходящее для каждого отдельного потребителя (обычно 120 или 240 вольт для бытовых нужд).Конкретная используемая форма переменного тока представляет собой синусоидальную волну, которая имеет форму, показанную на рисунке 1. Это было выбрано, потому что это единственная повторяющаяся форма, для которой две волны, смещенные друг от друга во времени, могут быть добавлены или вычтены и имеют такая же форма возникает в результате. В идеале все напряжения и токи должны иметь синусоидальную форму. Синхронный генератор разработан для получения этой формы с максимальной точностью. Это станет очевидным, когда ниже будут описаны основные компоненты и характеристики такого генератора.

Получите подписку Britannica Premium и получите доступ к эксклюзивному контенту. Подпишитесь сейчас

Ротор

Элементарный синхронный генератор показан в разрезе на рис. 2. Центральный вал ротора соединен с механическим первичным двигателем. Магнитное поле создается проводниками или катушками, намотанными в пазы, вырезанные на поверхности цилиндрического железного ротора. Этот набор катушек, соединенных последовательно, известен как обмотка возбуждения. Положение катушек возбуждения таково, что направленная наружу или радиальная составляющая магнитного поля, создаваемого в воздушном зазоре к статору, приблизительно синусоидально распределяется по периферии ротора.На рисунке 2 плотность поля в воздушном зазоре максимальна снаружи вверху, максимальна внутрь внизу и равна нулю с двух сторон, что соответствует синусоидальному распределению.

Элементарный синхронный генератор.

Encyclopædia Britannica, Inc.

Статор элементарного генератора на рисунке 2 состоит из цилиндрического кольца из железа, обеспечивающего легкий путь для магнитного потока. В этом случае статор содержит только одну катушку, две стороны которой размещены в пазах в утюге, а концы соединены вместе изогнутыми проводниками по периферии статора.Катушка обычно состоит из нескольких витков.

Когда ротор вращается, в обмотке статора индуцируется напряжение. В любой момент величина напряжения пропорциональна скорости, с которой магнитное поле, окруженное катушкой, изменяется со временем, то есть скорости, с которой магнитное поле проходит через две стороны катушки. Таким образом, напряжение будет максимальным в одном направлении, когда ротор повернут на 90 ° из положения, показанного на рисунке 2, и будет максимальным в противоположном направлении на 180 ° позже.Форма волны напряжения будет примерно синусоидальной формы, показанной на рисунке 1.

Конструкция ротора генератора на рисунке 2 имеет два полюса: один для магнитного потока, направленного наружу, и соответствующий полюс для потока, направленного внутрь. Одна полная синусоида индуцируется в обмотке статора за каждый оборот ротора. Таким образом, частота электрического выходного сигнала, измеренная в герцах (циклах в секунду), равна скорости вращения ротора в оборотах в секунду. Чтобы обеспечить подачу электроэнергии с частотой 60 Гц, например, первичный двигатель и скорость ротора должны быть 60 оборотов в секунду или 3600 оборотов в минуту.Это удобная скорость для многих паровых и газовых турбин. Для очень больших турбин такая скорость может быть чрезмерной из-за механического напряжения. В этом случае ротор генератора спроектирован с четырьмя полюсами, разнесенными с интервалом 90 °. Напряжение, индуцированное в катушке статора, которое охватывает аналогичный угол 90 °, будет состоять из двух полных синусоидальных волн на оборот. Таким образом, требуемая частота вращения ротора для частоты 60 герц составляет 1800 оборотов в минуту. Для более низких скоростей, например, используемых в большинстве водяных турбин, можно использовать большее количество пар полюсов.Возможные значения частоты вращения ротора в оборотах в минуту равны 120 f / p , где f — частота, а p — количество полюсов.

Введение — Генератор постоянного магнита

В этом руководстве описывается, как построить «генератор на постоянных магнитах» (PMG). Мы также можем назвать его «генератором переменного тока», потому что он генерирует переменный ток (AC). Он не будет генерировать «сетевое напряжение» или «сетевое питание» переменного тока. Он генерирует низкое напряжение, «трехфазный» переменный ток, а затем преобразует его в «постоянный ток» (DC) для зарядки 12-вольтовой батареи.

PMG (см. Диаграмму 1) состоит из: —

• Статор, содержащий катушки с проволокой

• Два магнитных ротора

• Выпрямитель

Статор содержит шесть витков медной проволоки, залитой стекловолокном. Эта отливка статора устанавливается на корешок; он не двигается. Провода от катушек подают электричество к выпрямителю, который меняет переменный ток на постоянный для зарядки аккумулятора. Выпрямитель установлен на алюминиевом радиаторе для охлаждения.

Магнитные роторы установлены на подшипниках, которые вращают вал.Задний ротор находится за статором и заключен в него. Передний находится снаружи, прикреплен к заднему с помощью длинных шпилек, которые проходят через отверстие в статоре. Лопасти ротора ветряной турбины будут установлены на тех же шпильках. Они будут вращать роторы магнитов и перемещать магниты мимо катушек. Магнитный поток проходит от одного ротора к другому через статор. Этот движущийся магнитный поток производит электроэнергию.

Создание PMG

В этом руководстве описывается, как построить PMG.Прочтите его перед тем, как начать. Раздел 2. — это список материалов и инструментов для работы.

Раздел 3 объясняет, как создавать специальные инструменты (так называемые приспособления) и формы, которые необходимы. С их помощью вы можете построить более одного PMG. Есть много возможных способов изготовления этих приспособлений и форм, но в этом руководстве есть только место, чтобы описать один из способов.

Раздел 4 посвящен статору. В нем описывается, как наматывать катушки из эмалированной медной проволоки и заливать их в смолу с помощью зажимных приспособлений и форм.

Раздел 5 показывает, как построить магнитные роторы с использованием магнитных блоков и стальных дисков, установленных в другой отливке из смолы.

В разделе 6 показано, как собрать детали в единый PMG. В нем объясняется, как построить механические части, как сбалансировать роторы и что требуется для подключения проводки от статора.

Раздел 7 посвящен тестированию PMG. Он содержит процедуры проверки того, что он правильно сбалансирован и готов к использованию. В нем описаны варианты подключения электрического выхода.Здесь также объясняется, как подключить PMG к батарее.

Раздел 8 содержит дополнительную информацию об использовании полиэфирных смол и об использовании PMG для гидроэнергетики.

Возможности этого PMG

Этот PMG предназначен для малых ветрогенераторов (см. Диаграмму 2). Чтобы построить полноценный ветрогенератор, вам также понадобится

• башня: возможно, стальная труба, поддерживаемая растяжками,

• поворотная головка, поворачивающаяся на вершине башни,

• хвост, чтобы держать его обращенным к ветру,

Стержень болтов PMG на головке рыскания.Узел лезвия устанавливается на переднюю часть PMG. Голова и хвост по рысканью должны быть сконструированы таким образом, чтобы ветрогенератор мог поворачиваться от сильного ветра, чтобы защитить себя. (В данном руководстве не описываются лопасти, мачта или головка рыскания.)

На испытаниях в Scoraig

PMG работает на низкой скорости вращения. На диаграмме показана выходная мощность ГПМ, заряжающего 12-вольтную батарею. При 420 оборотах в минуту он вырабатывает 180 Вт, что составляет 15 А при 12 В (15 А x 12 В = 180 Вт).

На более высокой скорости PMG может генерировать больше энергии. Но высокие токи вызывают нагрев катушек, поэтому эффективность ухудшается по мере увеличения выходного тока. Для более высокой скорости лучше заменить обмотки статора, используя провод другого диаметра или изменив способ их подключения.

Если PMG всегда используется на более высоких скоростях, лучше использовать более толстый провод, который может пропускать больший ток, не перегреваясь. Использование более толстого провода означает, что на катушках меньше витков, а это означает, что PMG не будет работать на низкой скорости.

Чтобы использовать один и тот же PMG как для низких, так и для высоких скоростей, можно изменить соединения. Подключить провода статора к выпрямителю можно двумя способами. Они могут быть соединены звездой или треугольником. См. Раздел 7 для подробного описания соединений звезды и треугольника.

График зависимости мощности от скорости см. На диаграмме 3. Звезда начинает работать на малых оборотах (170 об / мин). Дельта дает больше мощности, но только на более высокой скорости. Звезда хороша при очень низких скоростях ветра, а дельта лучше — при сильном ветре.

Более крупная версия этого PMG могла бы выдавать более высокую мощность при более низкой скорости.

3. ГРАФИК СИЛЫ VS. СКОРОСТЬ

200180

р

/

— □ -звезда

/

— ■ — дельта

/

Дж

/

/

П

/

/

/

/

д

100 200 300

Скорость в оборотах./ мин (об / мин)

100 200 300

Скорость в об / мин (об / мин)

Осторожно

Соблюдайте осторожность при сборке и сборке PMG, чтобы магниты не отсоединились. Это может произойти в экстремальных обстоятельствах. Слабые магниты, трущиеся о статор, могут разрушить ГПМ.

• Следуйте всем инструкциям по отливке магнитных роторов — не просто приклеивайте магниты к стальным дискам.

• Не ударяйте молотком по магнитным роторам во время сборки.

• Следите за тем, чтобы зазор между магнитами и статором с обеих сторон составлял не менее 1 мм. (Для тяжелых условий эксплуатации или высокой скорости используйте больший зазор.)

• Не запускайте ГПМ на ветряной турбине на скоростях выше 800 об / мин. (При рыскании ветряной турбины большие гироскопические силы изгибают вал, и магниты могут соприкасаться.)

• Не устанавливайте узел лопастей ротора непосредственно на передний магнитный диск ротора, ни в какой точке вдали от шпилек. Устанавливайте его только на сами шпильки и гайки, которые проходят через диск.

• При установке PMG на опоре рыскания ветряной турбины держите коробчатую часть «хребта» PMG вертикально, а не горизонтально поперек.

Читать здесь: Список материалов и инструментов

Была ли эта статья полезной?

Эксперименты без нагрузки и нагрузки

В этой статье представлены эксперименты и измерения низкоскоростного генератора с кабельной обмоткой на постоянных магнитах для преобразования энергии морского тока. Измерения проводились для холостого хода и номинальной нагрузки (4.44 Ом / фаза) при номинальной скорости (10 об / мин). Для любого режима нагрузки также измерялись магнитные поля в воздушном зазоре. Измерения на генераторе сравнивались с соответствующими имитационными расчетами методом конечных элементов, использованными при проектировании машины. В статье показано, что измерения и соответствующие имитационные модели показывают хорошее согласие. При номинальной скорости измеренные и смоделированные напряжения нагрузки (номинальная нагрузка) отличаются менее чем на 1% для среднеквадратических значений и менее чем на 5% для пиковых значений.На холостом ходу измеренные и смоделированные напряжения имели большие различия, то есть <9% для среднеквадратических значений и <5% для пиковых значений. Гармонический анализ измеренных и смоделированных фазных напряжений и токов показывает только наличие третьей гармоники. Процент гармоник в измеренных данных был сопоставим с соответствующими прогнозами моделирования. Обсуждения и результаты, представленные в документе, могут быть полезны для будущего проектирования эффективных и надежных морских систем преобразования энергии тока.

1. Введение

Для энергетических ресурсов, таких как энергия ветра, волн и приливов, может быть полезно адаптировать генераторы к характеру ресурса. Что касается энергии ветра и волн, несколько конструкций генераторов были представлены как промышленностью, так и академическими кругами [1–9]. До сих пор опубликованных материалов о генераторах, разработанных специально для работы в режиме приливных течений, было меньше. Однако в последние годы в литературе были предложены интересные топологии генераторов, подходящие для судовых турбин, например [9–12].Авторы этой статьи ранее обсуждали преимущества наличия генератора с прямым приводом на постоянных магнитах (PM) с регулируемой скоростью для извлечения энергии из приливных и морских течений и представили моделирование, например [13]. Одними из основных целей проектирования было достижение высокого КПД на низких скоростях, чтобы исключить использование редуктора и поддерживать низкий угол нагрузки, чтобы обеспечить электрическое управление и отключение турбины при высоких скоростях потока.

Для исследования электрических характеристик такой низкоскоростной машины был разработан и сконструирован прототип генератора с номинальной мощностью 5 кВт, 150 В, 10 об / мин и 10 Гц для лабораторных испытаний, см. Рисунок 1 и таблицу 1.Подробное описание электрической и механической конструкции генератора можно найти в [14]. Представленные здесь экспериментальные результаты подтверждают моделирование, ранее представленное в [13, 14]. Генератор разработан для системы с вертикальной осью турбины с фиксированным шагом лопаток и генератором с прямым приводом [15]. Для этого требуется генератор, который может эффективно работать при различных скоростях и нагрузках.

9010


Параметр Значение

Мощность 5 кВт
9019 Скорость линии 9019 150
Частота 10 Гц
Наружный диаметр 2000 мм
Внутренний диаметр 1835 мм
Воздушный зазор 10.5 мм
Количество пазов на полюс и фазу 7/5
Кабелей на паз 6
Ширина магнита 32 мм
Толщина магнита Осевая длина статора 294 мм
Коэффициент суммирования 0,956
Сопротивление на фазу 0,47 Ом
Нагрузка 4,44 Ом на фазу
902

В этом документе представлены результаты работы без нагрузки и при номинальной нагрузке.Измеряются напряжения и токи, а также магнитное поле в воздушном зазоре. Эти измерения служат эталоном для сравнения с соответствующими имитациями метода конечных элементов (МКЭ), использованными для первоначального проектирования генератора [14]. Моделирование работы генератора при работе с переменной скоростью также представлено, чтобы подчеркнуть его способность электрически управлять и тормозить турбину при высоких скоростях потока, которые могут возникать в реках или приливных течениях. Такое управление электрической мощностью предназначено для замены механических систем управления мощностью, таких как механизмы шага лопастей и механические тормоза.

Нагрузочные испытания проводились в первую очередь для оценки производительности машины в условиях номинальной нагрузки. Представлен гармонический анализ измеренных данных и обсуждены возможные причины электромагнитных потерь и гармоник в экспериментальной машине. Результаты и обсуждения, представленные в документе, могут быть полезны для будущего проектирования и строительства генераторов для преобразования энергии морского тока.

2. Генератор конечных элементов Модель

Для электромагнитного анализа и проектирования электрических машин FEM стал более или менее стандартным инструментом.Генератор, представленный в этой статье, был проанализирован в среде конечных элементов ACE (ACE, модифицированная версия 3.1, общая платформа ABB для полевого анализа и моделирования, ABB Corporate Research Center, ABB AB, Corporate Research, 721 78 Västerås, Швеция), на базе на двумерной модели поля осевого сечения генератора.

После того, как геометрия генератора определена, различным подобластям расчетной геометрии присваиваются свойства материала, такие как электрическая проводимость и относительная магнитная проницаемость.Нелинейные ферромагнитные свойства стали статора представлены однозначной кривой BH. Трехмерные концевые эффекты учитываются путем введения импедансов концов катушек в уравнения цепи обмоток статора, а постоянные магниты моделируются с помощью источников поверхностного тока.

Вращающиеся машины обычно имеют условия симметрии, которые позволяют уменьшить необходимую расчетную геометрию. В этом случае используется дробная обмотка с 7/5 пазами на полюс и фазу, и поэтому расчетная геометрия включает сечение из пяти полюсов и 21 паз статора (см. Рисунок 2).


Полная модель генератора описывается комбинированным набором уравнений поля и цепи. Магнитный векторный потенциал внутри генератора описывается формулой 𝜎𝜕𝐴𝑧1𝜕𝑡 + ∇⋅𝜇0𝜇𝑟∇𝐴𝑧 = −𝜎⋅𝜕𝑉𝜕𝑧, (1) где 𝜎 — проводимость, 𝜇 — проницаемость, 𝐴𝑧 — осевая составляющая векторного магнитного потенциала, а 𝑉 — приложенный потенциал (таким образом, член справа обозначает приложенную плотность тока).

Уравнения схемы описываются 𝐼𝑎 + 𝐼𝑏 + 𝐼𝑐𝑈 = 0, (2) 𝑎𝑏 = 𝑈𝑎 + 𝑅𝑠𝐼𝑎 + 𝐿end𝑠𝜕𝐼𝑎𝜕𝑡 − 𝑈𝑏 − 𝑅𝑠𝐼𝑏 − 𝐿end𝑠𝜕𝐼𝑏, 𝑈𝜕𝑡 (3) 𝑐𝑏 = 𝑈𝑐 + 𝑅𝑠𝐼𝑐 + 𝐿end𝑠𝜕𝐼𝑐𝜕𝑡 − 𝑈𝑏 −𝑅𝑠𝐼𝑏 − 𝐿end𝑠𝜕𝐼𝑏, 𝜕𝑡 (4) где, 𝐼𝑏 и ​​𝐼𝑐 — токи проводников в трех фазах 𝑎, 𝑏 и 𝑐 соответственно.𝑈𝑎𝑏 и 𝑈𝑐𝑏 — напряжения на клеммах, а 𝑈𝑎, 𝑈𝑏 и 𝑈𝑐 — фазные напряжения, полученные в результате решения уравнения поля. — сопротивление обмотки, а end𝑠 описывает индуктивность конца катушки. Кроме того, следует отметить, что потери на трение в подшипниках и потери от ветра не учитываются при оценке эффективности из-за низкой скорости вращения и высокого крутящего момента.

3. Параметры генератора

Перед проведением испытаний на машине были измерены некоторые параметры электрической цепи и геометрические параметры экспериментальной машины в условиях простоя.Сопротивление и индуктивность на фазу обмотки составляет 0,475 Ом и 11,5 мГн. Эти значения были измерены с помощью прецизионного моста [16]. Полное описание геометрии генератора см. В [14].

Используется дробная обмотка, и количество пазов на полюс на фазу составляет 1,4, следовательно, угловое смещение между пазами составляет 𝛽 = 42,8∘, а угол разброса по фазе составляет 60 °. Следовательно, коэффициент распределения 𝑘𝑑 = 0,977. В данном случае шаг полюсов составляет 4,2 слота. Разработанная машина укорочена на 35.5 °, а коэффициент шага 𝑘𝑝 = 0,952.

В целях безопасности и во избежание возможных плавающих состояний генератора или нагрузки нейтраль генератора и нагрузки закорочена и заземлена на общую землю источника питания моторного привода. И генератор, и нагрузки подключены по схеме Y.

4. Производительность генератора
4.1. Эксперименты без нагрузки

Испытание генератора без нагрузки проводилось при номинальной скорости 10 об / мин. Когда генератор достиг постоянной скорости, магнитное поле в воздушном зазоре измерялось на зубце статора с помощью измерителя Гаусса / Тесла 7010 [17], то есть датчик Холла был закреплен на одном зубце статора перпендикулярно магнитному потоку. .Обратите внимание, что в воздушном зазоре есть две составляющие магнитного поля: нормальная 𝐵𝑛 и тангенциальная составляющие. Зондом Холла измерялась только нормальная составляющая. Смоделированное значение-поля берется в точке на 1 мм перед зубом статора, как показано на рисунке 2, чтобы соответствовать положению датчика Холла во время измерений. На рисунке 2 также показаны силовые линии магнитного поля в одной секции машины. Измеренная нормальная составляющая магнитных полей в воздушном зазоре без нагрузки показана на рисунке 3 вместе с магнитным полем, предсказанным в результате моделирования.Моделирование показывает, что максимальная нормальная и тангенциальная составляющие магнитного поля в воздушном зазоре составляют около 0,6 Тл и 0,15 Тл соответственно. Разница в нормальной составляющей пика измеренного и рассчитанного магнитных полей составляет около 6%. Сила на единицу площади в воздушном зазоре без нагрузки рассчитывается как 65 кН / м 2 с помощью инструмента моделирования.


Фазовые напряжения без нагрузки были измерены для всех трех фаз, все они были сбалансированы и сдвинуты по фазе на 120 °.Следовательно, только напряжение для одной фазы показано на рисунке 4 вместе с напряжением, предсказанным моделированием. Различия в среднеквадратичных значениях смоделированных и измеренных напряжений показаны в таблице 2. Было обнаружено, что среднеквадратичные значения смоделированных напряжений примерно на 9% выше по сравнению с измерениями. Скорее всего, это связано с неопределенностями измерений и неточностями моделирования, например, в отношении конечных эффектов. Кроме того, небольшие различия в осевой длине ротора и статора из-за конструктивных ошибок не принимаются во внимание при моделировании генератора.Напряжения измерялись с помощью трех пробников напряжения Tektronix P2220 [18].

19 90se8 903 мс )

Испытания без нагрузки Моделирование Эксперименты Разница

Напряжение сети (действ.) 176 В 158 В 10%
Фазное напряжение (пиковое) 134 В 128 В 4%
101 V 92 V 9%


4.2. Эксперименты с номинальной нагрузкой

Испытания генератора под нагрузкой проводились при номинальной скорости 10 об / мин и нагрузке, подключенной по схеме Y, равной 4,44 Ом / фаза. Магнитное поле измеряли так же, как и в случае испытания без нагрузки. Измеренная нормальная составляющая магнитного поля показана на рисунке 5. Также на рисунке 5 показаны магнитные поля в воздушном зазоре, спрогнозированные с помощью моделирования при тех же условиях нагрузки на спроектированном генераторе в точке на 1 мм перед статором. зуб.


Установлено, что рассчитанные максимальные нормальная и тангенциальная составляющие магнитного поля в воздушном зазоре составляют около 0,6 Тл и 0,04 Тл соответственно. Что касается различий в магнитных полях без нагрузки и в условиях нагрузки, видно, что нормальная составляющая магнитного поля не подвергается значительному влиянию ни в одном из условий нагрузки при номинальных скоростях. Сила на единицу площади в воздушном зазоре при номинальной нагрузке составляет около 63 кН / м 2 согласно моделированию.

Фазные напряжения и фазные токи, измеренные в условиях нагрузки, показаны на рисунках 6 и 7, соответственно, вместе с соответствующими значениями, предсказанными с помощью моделирования. Различия в среднеквадратичных значениях смоделированных и измеренных напряжений и токов показаны в таблице 3. Из данных на рисунке 6 установлено, что различия между смоделированными и измеренными среднеквадратичными напряжениями при номинальной нагрузке составляют менее 1%. Однако из рисунка 7 видно, что разница между смоделированными и измеренными среднеквадратичными токами составляет около 4%.Для измерения токов использовались универсальные силовые клещи Metrix MX240 [19]. Для всех измерений напряжения и тока использовался четырехканальный осциллограф Lecroy Wavesurfer 424 [20].

902
901 901 901

Номинальная нагрузка и Моделирование Эксперименты Разница
Тесты пиковой скорости
903 203.1 В %
0,1%
Напряжение сети (действующее значение) 143,5 В 140,6 В 2,0%
Фазное напряжение (пиковое) 109,1 В 114121 901 901 9010
Фазное напряжение (действующее значение) 82,2 В 81,7 В 0,6%
Фазный ток (пиковый) 26,8 A 25,8 A 4,1%
18.9 A 18,2 A 3,7%



Для количественной оценки содержания гармоник в машине измеренные напряжения и токи были преобразованы Фурье. Измерения проводились на частотах дискретизации, более чем в десять раз превышающих высшую гармонику (пятая), обнаруженная при моделировании. В измеренных номинальных токах и напряжениях нагрузки видны только составляющие основной гармоники и третьей гармоники.Моделирование также предсказывает незначительную пятую гармонику. В процентном отношении третья гармоника в измеренных токе и напряжении при номинальной нагрузке составляет 2%, в то время как моделирование предсказывает 6%. В таблице 4 показано содержание гармоник в фазном напряжении при номинальной нагрузке и без нагрузки.


Порядок гармоник напряжения Моделирование Эксперимент

3-й 4.4% Желательно, чтобы гармоники в машине были низкими, поскольку они вызывают дополнительные потери в сердечнике машины и в меди. Более того, в будущем этот тип генератора будет подключаться к выпрямителю.Роль гармоник для работы с регулируемой скоростью синхронного генератора, подключенного к диодному выпрямителю, дополнительно обсуждается в [21].

Мощность, передаваемая на номинальную нагрузку при 10 об / мин, составляет около 4,7 кВт (см. Рисунок 8). Электромагнитные потери в генераторе по результатам моделирования представлены в таблице 5. Потери в меди от измеренных токов и сопротивлений составляют около 0,5 кВт и хорошо согласуются с результатами моделирования. Моделирование предсказывает эффективность около 86% при номинальных условиях для этого генератора.



𝑃Fe Потери в металле 0,25 кВт
𝑃Cu Потери в меди 0,53 кВт

4.3. Моделирование работы с переменной скоростью

Чтобы продемонстрировать способность генератора управлять турбиной и тормозить ее при различных скоростях потока, которые могут возникать в реках или приливных течениях, была смоделирована эффективность генератора с переменной скоростью и показана на рисунке 9 для номинальной нагрузки и нагрузки 0.5 о.е. Видно, что КПД спроектированной машины находится в диапазоне 78–88% в диапазоне скоростей 4–20 об / мин. Поскольку различия в моделировании и измерениях для рассмотренных ранее случаев невелики, можно ожидать, что фактическая эффективность экспериментального генератора будет в том же диапазоне. Это позволило бы электрическое управление турбиной при сохранении хорошей эффективности работы. Для сравнения, моделирование падения напряжения в сети и КПД при номинальной скорости и переменной нагрузке показано на рисунке 10.Видно, что реакция якоря мала и что генератор можно использовать для управления турбиной только с небольшим снижением эффективности.



В реальных морских условиях эффективность всей системы зависит от коэффициента мощности 𝐶𝑝 турбины. Ожидаемый контроль системы заключается в поддержании фиксированного передаточного числа конечных скоростей (TSR), следовательно, поддержание оптимального 𝐶𝑝 для турбины без превышения пределов кавитации путем управления нагрузкой генератора.При более высоких скоростях генератор будет поддерживать турбину на более низком TSR (и, следовательно, на более низком 𝐶𝑝), чтобы ограничить мощность, потребляемую турбиной. Следовательно, генератор будет работать как с изменяющимися скоростями, так и с различными нагрузками, чтобы управлять TSR турбины. Эта стратегия управления была эффективно реализована в случае ветроэнергетических систем [22, 23].

Еще одним важным критерием конструкции является способность генератора эффективно тормозить турбину в предполагаемом рабочем диапазоне, чтобы исключить использование шага лопастей и механических тормозов.Чтобы проиллюстрировать это, генератор был смоделирован с резистивной сбросной нагрузкой 1,5 Ом и сравнивался с мощностью, выдаваемой гипотетической турбиной с вертикальной осью (0,35, выдача 5 кВт при 10 об / мин при потоке воды 1,5 м / с). работает с фиксированным TSR при увеличивающихся скоростях воды, см. рисунок 11. Видно, что генератор безопасно тормозит турбину на скоростях, вдвое превышающих номинальную.


5. Выводы

В этой статье представлены электрические испытания генератора прямого привода с кабельной обмоткой на постоянных магнитах мощностью 5 кВт, 10 об / мин для преобразования энергии морского тока.Испытания без нагрузки и при номинальной нагрузке сравнивались с соответствующими расчетами методом конечных элементов с использованием разработанного генератора. В обоих испытаниях также сравнивались распределения магнитного поля в воздушном зазоре. Установлено, что различия между экспериментами и расчетами не превышают 10%. Гармонический анализ показывает наличие 2% третьей гармоники. КПД спроектированной машины составляет 78–88% в диапазоне скоростей 4–20 об / мин по результатам моделирования. Низкая реакция якоря и высокая перегрузочная способность показывают, что генератор можно использовать для электрического управления и торможения турбины в предполагаемом рабочем диапазоне.

Благодарности

Д-р Арне Вольфбрандт и д-р Карл-Эрик Карлссон выражают благодарность за разработку инструмента моделирования. Искренняя благодарность Ульфу Рингу за руководство и помощь во время строительных работ. Особая благодарность доктору Нельсону Титайи за интересные обсуждения, поддержку и поддержку во время написания. Экспериментальная установка финансировалась Vattenfall AB и Шведским центром преобразования возобновляемой электроэнергии (финансируется Упсальским университетом, Шведским агентством инновационных систем (VINNOVA) и Шведским энергетическим агентством (STEM)).Авторы также выражают признательность Шведскому исследовательскому совету (грант № 621-2009-4946).

Магнитный генератор — Infinity SAV

Барабан магнитного генератора состоит из ротора с неодимовыми задноземельными постоянными магнитами и статора с бифилярными катушками, соединенными медью.

Постоянные магниты равномерно расположены по окружности ротора с одноименными и противоположными полярными полюсами. Бифилярные катушки расположены по окружности статора таким же образом, но с точным угловым выравниванием по отношению к магнитам и параллельно-последовательным соединением друг с другом.

Неодимовый магнит — это самый мощный из имеющихся на сегодняшний день постоянных магнитов. Кристаллическая структура неодимового магнита состоит из микрокристаллических зерен, которые выровнены в мощном магнитном поле во время производства, так что все их магнитные оси направлены в одном направлении. Кристаллическая решетка магнита сопротивляется изменению направления намагничивания, что делает это соединение очень принудительным для размагничивания.

Бифилярная катушка — это электромагнитная катушка, которая содержит две близко расположенные параллельные обмотки и встречную катушку с последовательным соединением.Чтобы правильно увеличить мощность катушки, ее витки намотаны таким образом, чтобы обеспечить наибольшую разность потенциалов между соседними витками или спиралями. Энергия, запасенная в катушке, пропорциональна квадрату разности потенциалов между соседними витками. Благодаря особому материалу сердечника катушки (трансформаторная сталь), емкость для заданного значения разности потенциалов между витками была значительно увеличена.

Магнитный генератор работает и может генерировать энергию за счет взаимодействия постоянных магнитов с бифилярными катушками и возникающей между ними электромагнитной силы.Магниты и катушки направлены друг к другу для создания крутящего момента на роторе. Этот состав барабана генератора разработан для того, чтобы ротор мог вращаться неограниченно долго, пока энергия взаимодействия между постоянными магнитами и бифилярными катушками собирается и распределяется рационально и эффективно.

Как работают генераторы и динамо-машины

Как работают генераторы и динамо-машины — объясните это Рекламное объявление

Нефть может быть любимым топливом в мире, но ненадолго. В современных домах в основном используется электричество. и скоро большинство из нас тоже станет водить электромобили. Электричество очень удобно. Вы можете производить его самыми разными способами, используя все, от угля и нефти до ветра и волн. Вы можете сделать это в в одном месте и используйте его на другом конце света, если хотите. И, как только вы его изготовите, вы можете хранить его в батареях и использовать это дни, недели, месяцы или даже годы спустя.Что делает электрический возможная мощность — и действительно практичная — это превосходный электромагнитный устройство, называемое электрогенератором: разновидность электродвигателя. работа в обратном направлении, которая преобразует обычную энергию в электричество. Давайте подробнее рассмотрим генераторы и узнаем, как они работают!

Фото: Дизельный электрогенератор середины 20 века, сделанный в музее электростанции REA недалеко от Хэмптона, штат Айова. Любезно предоставлены фотографиями в Кэрол М. Хайсмит Архив, Библиотека Конгресса, Отдел эстампов и фотографий.

Откуда берется электричество?

Лучший способ понять электричество — начать с того, что его собственное название: электрическая энергия. Если вы хотите запустить что-нибудь электрические, от тостера или зубную щетку MP3-плеер или телевидение, вам необходимо обеспечить его постоянным запасом электроэнергии. Откуда ты это возьмешь? Есть основной закон физики называется закон сохранения энергии, который объясняет, как можно получить энергия — и как вы не можете. Согласно этому закону существует фиксированный количество энергии во Вселенной и некоторые хорошие новости и некоторые плохие новости о том, что мы можем с этим сделать.Плохая новость в том, что мы не можем создавать больше энергии, чем у нас уже есть; хорошая новость в том, что мы не можем уничтожить любую энергию. Все, что мы можем сделать с энергией, это преобразовать из одной формы в другую.

Фото: Большой электрогенератор, приводимый в движение паром, на геотермальной электростанции «Кожа» компании CalEnergy в округе Империал, Калифорния. Фото Уоррена Гретца любезно предоставлено Министерством энергетики США / Национальной лабораторией возобновляемых источников энергии (DOE / NREL).

Если вы хотите найти электричество для питания своего телевизора, вы не будет производить энергию из воздуха: сохранение энергии говорит нам, что это невозможно.Вы будете использовать энергию преобразуется из какой-либо другой формы в необходимую вам электрическую энергию. Обычно это происходит на электростанции. на некотором расстоянии от вашего дома. Подключите телевизор к розетке, и электрическая энергия течет в него через кабель. Кабель намного длиннее, чем вы думаете: на самом деле он проходит от вашего телевизора — под землей или по воздуху — до электростанция, на которой для вас подготавливается электроэнергия из богатое энергией топливо, такое как уголь, нефть, газ или атомное топливо.В этих экологически чистые времена, часть вашей электроэнергии также будет поступать из ветряные турбины, гидроэлектростанции (которые вырабатывают энергию, используя энергию плотин рек) или геотермальную энергию (внутренняя нагревать). Откуда бы ни пришла ваша энергия, она почти наверняка будет превратился в электричество с помощью генератора. Только солнечные элементы и топливные элементы производить электричество без использования генераторов.

Рекламные ссылки

Как мы можем производить электричество?

Фото: Типичный электрогенератор.Он может производить до 225 кВт электроэнергии и используется для испытаний прототипов ветряных турбин. Фото Ли Фингерша любезно предоставлено Министерство энергетики США / Национальная лаборатория возобновляемых источников энергии (DOE / NREL).

Если вы читали нашу подробную статью о электродвигатели, вы уже довольно много знают, как работают генераторы: генератор — это просто электродвигатель, работающий в обратном направлении. Если ты не прочтите эту статью, вы можете быстро взглянуть, прежде чем читать на — но вот краткое изложение в любом случае.

Электродвигатель — это, по сути, просто плотный моток медной проволоки, намотанный на железный сердечник, который свободно вращается с высокой скоростью внутри мощного постоянного магнита. Когда вы подаете электричество в медную катушку, она становится временный магнит с электрическим приводом — другими словами, электромагнит — и создает вокруг себя магнитное поле. Этот временное магнитное поле противодействует магнитному полю, которое постоянный магнит создает и заставляет катушку вращаться. Немного продуманная конструкция, катушка может непрерывно вращаться в в том же направлении, вращаясь по кругу и питая что угодно из электрическая зубная щетка к электричке.

Фотография: Вращающаяся часть (ротор) типичного небольшого электродвигателя. Электрогенератор имеет точно такие же компоненты, но работает противоположным образом, превращая движение в электрическую энергию.

Так чем же генератор отличается? Предположим, у вас есть электрический зубная щетка с аккумулятором внутри. Вместо того, чтобы позволить батарее питать двигатель, который толкает щетку, что, если бы вы сделали противоположный? Что, если вы несколько раз поворачиваете щетку вперед и назад? То, что вы делали бы, было бы вручную крутить электродвигатель. ось вокруг.Это заставит медную катушку внутри двигателя повернуться постоянно внутри его постоянного магнита. Если вы переместите электрический провод внутри магнитного поля, вы заставляете течь электричество через провод — по сути, вы производите электричество. Так что держи поворачивая зубную щетку достаточно долго, и теоретически вы получите электричества достаточно для подзарядки аккумулятора. По сути, вот как генератор работает. (На самом деле, это немного сложнее, чем это и вы не можете зарядить зубную щетку таким образом, хотя добро пожаловать!)

Как работает генератор?

Возьмите кусок провода и подсоедините его к амперметру (то, что измеряет ток) и поместите его между полюсами магнита.Теперь резко проведите проволокой сквозь невидимое магнитное поле, создаваемое магнитом, и через провод на короткое время протекает ток (регистрируемый на измерителе). Это фундаментальная наука, лежащая в основе электрогенератора, продемонстрированная в 1831 году британским ученым Майклом Фарадеем. (прочитать краткая биография или длинная биография). Если вы переместите провод в противоположном направлении, вы создадите ток, который течет в обратном направлении. (Если вам интересно, вы можете выяснить направление, в котором течет ток, используя то, что называется Правило правой руки или правило генератора, которое является зеркальным отображением правила левой руки, используемого для определения того, как работают двигатели.)

Важно отметить, что вы генерируете ток только тогда, когда вы перемещаете провод через магнитное поле (или когда вы перемещаете магнит мимо провода, что равносильно тому же). Недостаточно просто поднести провод к магниту: для выработки электричества провод должен пройти мимо магнита или наоборот. Предположим, вы хотите производить много электроэнергии. Поднимать и опускать провод в течение всего дня не будет особенным удовольствием, поэтому вам нужно придумать способ, как провести провод мимо магнита, установив тот или иной из них на колесо.Затем, когда вы поворачиваете колесо, проволока и магнит перемещаются друг относительно друга, и возникает электрический ток.

Изображение: простой генератор, подобный этому, вырабатывает переменный ток (электрический ток, который периодически меняет направление на противоположное). Каждая сторона генератора (зеленая или оранжевая) движется вверх или вниз. Когда он движется вверх, он будет генерировать односторонний ток; когда он движется вниз, ток течет в другую сторону. Если вы измеритель, подключенный к проводу, вы не знаете, в какую сторону движется провод: все, что вы видите, — это то, что направление тока периодически меняется на противоположное: вы видите переменный ток.

А теперь самое интересное. Предположим, вы сгибаете проволоку в петлю, помещаете ее между полюсами магнита и размещаете так, чтобы она постоянно вращалась, как на схеме. Вероятно, вы увидите, что при повороте петли каждая сторона провода (оранжевая или зеленая) иногда будет двигаться вверх, а иногда — вниз. Когда он движется вверх, электричество течет в одну сторону; когда он движется вниз, ток будет течь в обратном направлении. Таким образом, базовый генератор, подобный этому, будет производить электрический ток, который меняет направление каждый раз, когда петля провода переворачивается (другими словами, переменный ток или переменный ток).Однако большинство простых генераторов на самом деле вырабатывают постоянный ток — так как же им управлять?

Генераторы постоянного тока

Так же, как простой электродвигатель постоянного тока использует электричество постоянного тока (DC) для создания непрерывного вращательного движения, так и простой генератор постоянного тока производит стабильную подачу электричества постоянного тока, когда он вращается. Как двигатель постоянного тока, Генератор постоянного тока использует коммутатор. Звучит технически, но это всего лишь металлическое кольцо с трещинами в нем, которое периодически меняет местами электрические контакты катушки генератора, одновременно меняя направление тока.Как мы видели выше, простая проволочная петля автоматически меняет направление тока, которое она производит каждые пол-оборота, просто потому, что она вращается, а задача коммутатора — нейтрализовать эффект вращения катушки, обеспечивая создание постоянного тока.

Иллюстрация: Сравнение простейшего генератора постоянного тока с простейшим генератором переменного тока. В этой конструкции катушка (серая) вращается между полюсами постоянного магнита. Каждый раз, когда он поворачивается на пол-оборота, ток, который он генерирует, меняется на противоположный.В генераторе постоянного тока (вверху) коммутатор меняет направление тока каждый раз, когда катушка перемещается на пол-оборота, отменяя реверсирование тока. В генераторе переменного тока (внизу) нет коммутатора, поэтому выходная мощность просто поднимается, опускается и меняет направление вращения при вращении катушки. Вы можете увидеть выходной ток от каждого типа генератора на диаграмме справа.

Генераторы переменного тока

Фотография: Генератор переменного тока — это генератор, который вырабатывает переменный ток (переменный ток) вместо постоянного (постоянного).Здесь мы видим механика, снимающего генератор с двигателя подвесной моторной лодки. Фото Есении Росас любезно предоставлено ВМС США.

Что, если вы хотите генерировать переменный ток (AC) вместо постоянного тока? Тогда вам понадобится генератор, который представляет собой просто генератор переменного тока. Самый простой вид генератора переменного тока похож на генератор постоянного тока без коммутатора. Когда катушка или магниты вращаются мимо друг друга, ток естественным образом растет, падает и меняет направление, давая на выходе переменный ток. Так же, как есть Асинхронные двигатели переменного тока, в которых для создания вращающегося магнитного поля используются электромагниты, а не постоянные магниты, поэтому существуют генераторы, которые работают за счет индукции аналогичным образом.

Генераторы в основном используются для выработки электроэнергии от двигателей транспортных средств. В автомобилях используются генераторы, приводимые в движение их бензиновые двигатели, которые заряжают свои аккумуляторов во время движения (переменный ток преобразуется в постоянный диоды или выпрямительные схемы).

Генераторы в реальном мире

Фото: Генератор ветряной турбины находится сразу за лопастями ротора. (Это цилиндр справа). Фото Джо Смита любезно предоставлено NREL (Национальная лаборатория возобновляемых источников энергии).

Производство электричества звучит просто — и это так. Сложность в том, что нужно приложить огромное количество физических усилий. для выработки даже небольшого количества энергии. Вы поймете это, если у вас есть велосипед с динамо-машиной. фары, работающие от колес: вам нужно немного крутить педали, чтобы фары загорелись — и это просто для производства крошечного количества электричества, необходимого для питания пара лампочек. Динамо — это просто очень маленькое электричество генератор. Напротив, на реальных электростанциях гигантские генераторы электричества приводятся в действие паровыми турбинами.Это немного похоже на вращающиеся пропеллеры или ветряные мельницы, приводимые в движение паром. Пар производится путем кипячения воды с использованием энергии, выделяемой при сжигании угля, масло или другое топливо. (Обратите внимание, как применяется сохранение энергии здесь тоже. Энергия, питающая генератор, поступает от турбина. Энергия, питающая турбину, поступает от топлива. А также топливо — уголь или нефть — изначально поступало с заводов, работающих на энергия Солнца. Суть проста: энергия всегда должна исходить от где-то.)

Сколько мощности вырабатывает генератор?

Генераторы указаны в ваттах (измерение мощности, указывающее, сколько энергии производится каждую секунду). Как и следовало ожидать, чем больше генератор, тем больше мощности он производит. Вот приблизительное руководство от самого маленького до самого большого:

Тип Мощность (Вт)
Велосипед динамо 3
Генератор USB с ручным приводом 20
Ветряная микро турбина 500
Малый дизельный генератор 5000 (5 кВт)
Ветряная турбина (средняя) 2 000 000 (2 МВт)

Переносные генераторы

Фото: Переносной электрогенератор, работающий от дизель.Фото Брайана Рида Кастильо любезно предоставлено ВМС США.

В большинстве случаев мы принимаем электричество как должное. Мы включаем светильники, телевизоры или стиральные машины, не переставая думать, что электрическая энергия, которую мы используем, должна откуда-то поступать. Но что, если вы работаете на улице, в глуши, и нет источник электричества, который вы можете использовать для питания вашей бензопилы или вашего электрическая дрель?

Одна из возможностей — использовать аккумуляторные инструменты с аккумуляторы. Другой вариант — использовать пневматические инструменты, такие как отбойные молотки.Они полностью механические и питаются от сжатый воздух вместо электричества. Третий вариант — использовать переносной электрогенератор. Это просто небольшой бензиновый двигатель (бензиновый двигатель), похожий на компактный двигатель мотоцикла, с прилагается электрогенератор. Когда двигатель пыхтит, дожигая бензин, он толкает поршень взад и вперед, поворачивая генератор и вырабатывающий на выходе постоянный электрический ток. С участием с помощью трансформатора вы можете использовать такой генератор для производите практически любое напряжение, которое вам нужно, в любом месте, где оно вам нужно.В качестве пока у вас достаточно бензина, вы можете производить собственное электричество поставка на неопределенный срок. Но помните о сохранении энергии: кончится газа, и у вас кончится электричество!

Artwork: Генераторные технологии быстро развивались в 19 веке. Английский химик и физик Майкл Фарадей построил первый примитивный генератор в 1831 году. В течение нескольких десятилетий многочисленные изобретатели создавали практические электрические генераторы. Эта («динамо-электрическая машина») была разработана Эдвардом Уэстоном в 1870-х годах как способ «преобразовывать механическую энергию в электрическую с большей эффективностью, чем прежде.«Он имеет статическое внешнее кольцо магнитов (синий) и вращающийся якорь (катушки) в центре (красный). Коммутатор (зеленый) преобразует генерируемый ток в постоянный. Из патента США 180 082, переиздание 8141 Эдварда Уэстона, любезно предоставлено Управлением по патентам и товарным знакам США.

Рекламные ссылки

Узнать больше

На сайте

Возможно, вам понравятся эти другие статьи на нашем сайте по смежным темам:

Видео

  • Демонстрация электрического генератора ?: Превосходное короткое видео доктора Джонатана Хэра и Vega Science Trust очень ясно показывает, как перемещение катушки через магнитное поле может производить электричество.
  • Простой генератор: электрический генератор для научной выставки: Уильям Бити дает пошаговое руководство по созданию простого генератора с использованием простых для поиска компонентов (эмалированный провод, магниты, картон и т. Д.).
  • Велогенератор: Как привести в действие кухонный комбайн с помощью велосипеда, приводящего в действие генератор переменного тока (разновидность электрогенератора). Довольно изящный эксперимент, хотя комментарий мог бы быть немного яснее.

Книги

Для читателей постарше
Для младших читателей

Статьи

Пожалуйста, НЕ копируйте наши статьи в блоги и другие сайты

статей с этого сайта зарегистрированы в Бюро регистрации авторских прав США.Копирование или иное использование зарегистрированных работ без разрешения, удаление этого или других уведомлений об авторских правах и / или нарушение смежных прав может привести к серьезным гражданским или уголовным санкциям.

Авторские права на текст © Chris Woodford 2009, 2020. Все права защищены. Полное уведомление об авторских правах и условиях использования.

Следуйте за нами

Сохранить или поделиться этой страницей

Нажмите CTRL + D, чтобы добавить эту страницу в закладки на будущее, или расскажите об этом своим друзьям с помощью:

Цитировать эту страницу

Вудфорд, Крис.(2009/2020) Генераторы. Получено с https://www.explainthatstuff.com/generators.html. [Доступ (укажите дату здесь)]

Больше на нашем сайте …

Научный проект самодельного генератора

| Sciencing

Обновлено 13 ноября 2018 г.

Ма Вэнь Цзе

Изготовление самодельного генератора — простой проект, который будет хорошо работать на многих научных ярмарках. Простые генераторы постоянного тока (DC) производились более ста лет из общедоступных материалов.Самодельный генератор может быть хорошей основой для объяснения как магнитных, так и электрических принципов.

Материалы

Поскольку базовый генератор очень прост, его можно сделать из легко доступных компонентов. Для базового генератора вам понадобится магнит, немного проволоки и большой гвоздь. Лампа фонарика низкого напряжения может показать, что генератор действительно вырабатывает электричество. Картон станет каркасом для генератора, а недорогая розетка для лампочки позволит легче удерживать лампочку от источников питания от генератора.

Конструкция

Сделайте из картона прямоугольную опорную коробку. Коробка должна быть высотой 8 см, шириной 8 см и глубиной 3,5 см. Проделайте отверстие в коробке на узкой оси. Отверстие должно быть отцентрировано с обеих сторон, так как гвоздь станет осью для магнита. Проденьте гвоздь в коробку и приклейте к гвоздю четыре магнита. Лучше всего подходят сильные керамические магниты. Оберните проволоку вокруг коробки, чтобы гвоздь проткнул проволоку. Провод должен быть изолирован, чтобы не произошло короткого замыкания.Снимите изоляцию с концов провода, подсоедините его к лампочке или патрону и закрутите гвоздь с прикрепленными магнитами. Лампочка должна слабо светиться. В некоторых случаях вам может потребоваться выключить свет, чтобы увидеть слабое свечение. Чтобы луковица стала ярче, крутите ноготь быстрее. Если вы хотите крутить магниты быстрее, вставьте конец гвоздя в электродрель. Будьте осторожны, не вращайте генератор слишком быстро, иначе он может развалиться.

Как это работает

В проводе есть потенциал для электричества.Магнитные поля, окружающие магниты, изменяют полярность атомов в металле, вызывая высвобождение электронов. Чем быстрее магниты вращаются в металлической катушке, тем больше электронов высвобождается и тем выше напряжение, создаваемое генератором. Чем больше катушек проволоки, тем больше напряжение. Если ваш генератор не производит электричество, попробуйте больше катушек провода и убедитесь, что провод не оборван и не закорочен из-за плохой изоляции.

Для более подробного объяснения смотрите видео ниже:

Другие идеи и советы

Если вы хотите сделать генератор, который будет хорошо работать с дрелью, подумайте об использовании оргстекла для блока генератора.Он будет сильнее физически и лучше покажет вращающиеся магниты. Для более сложных научных проектов гвоздь можно заменить осью, которая соединяется с лопастями вентилятора, чтобы сделать ветрогенератор.

Изготовление генератора из электродвигателя

Старый электродвигатель можно использовать в качестве генератора. Электродвигатель состоит из витков проволоки вокруг вращающегося магнита. В электродвигателе электричество проходит через катушки, что заставляет магниты вращаться. Вращающиеся магниты и ось обеспечивали питание любого устройства, использовавшего двигатель.Если вынуть двигатель из устройства и раскрутить ось, он станет генератором. Если вы предпочитаете не делать свой собственный генераторный механизм, можно провести несколько интересных экспериментов с ветроэнергетикой, используя лопасти вентилятора и электродвигатель.

build Ультра-простой электрический генератор, вращающиеся магниты DIY

Все металлы содержат подвижное вещество, называемое «электрическим зарядом». Даже незаряженные провода полностью заряжены! Ведь атомы металла составляют половину положительных протонов и половину отрицательных электронов.Металлы особенные, потому что их электроны не остаются связанными с атомами металлов, вместо этого они летают внутри металла и образуют нечто вроде электрического «жидкость» внутри проводов. Все провода наполнены электрической жидкостью. Современный ученые называют это «электронным морем» или «электронным газом». Жидкость заряд подвижен, и это позволяет металлам быть электрическими проводниками. В подвижный заряд-вещи не невидимый, он придает металлам серебристый блеск. Электронный газ подобна серебристой жидкости. Вроде, как бы, что-то вроде.

Когда круг из проволоки окружает магнитное поле, и затем магнитное поле изменяется, появляется круговое «давление», называемое напряжением. появляется. Чем быстрее изменяется магнитное поле, тем больше напряжение становится. Это круговое напряжение пытается заставить подвижные заряды в проволоку вращать по кругу. Другими словами, движущиеся магниты вызывают изменение магнитных полей, которые пытаются создать электрические токи в замкнутых кругах провода. Движущийся магнит вызывает накачивающее действие вдоль проволоки. Если цепь не замкнута, если есть перерыв, тогда сила накачки не вызовет никакого потока заряда.Вместо этого на концах проводов появится перепад напряжения. Но если цепь «замкнута» или «замкнута», тогда накачивающее действие магнита может заставить электроны катушки начать течь. Движущийся магнит может создают электрический ток в замкнутой цепи. Эффект называется Электромагнитная индукция. Это основной закон физики, и он используется всеми электрогенераторами с катушкой / магнитом.

У генераторов нет только одного круга провода. Предположим, что вокруг много кругов. движущийся магнит.Предположим, что все окружности последовательно соединены с образуют катушку. Небольшие напряжения от всех кругов сложатся вместе. чтобы дать гораздо большее напряжение. Катушка на 100 витков будет иметь сто в разы больше напряжения, чем на однооборотной катушке.

Почему этот генератор переменного тока, а не постоянного тока? Когда магниты переворачиваются, они создают импульс напряжения и тока. Но когда они переворачиваются во второй раз, они создать противоположный импульс? да. Итак, вращающийся магнит делает электрические сигналы, которые идут плюс-минус-плюс-минус? Ага.Это происходит потому, что для создания напряжения и тока полюс магнита должен перемещаться вбок по проводу. Если он проведет по проводу , ничего не произойдет. В нашем маленький генератор, полюса магнита не качаются постоянно по изгиб провода. Вместо этого сначала северный магнитный полюс проходит через одну сторона катушки, и в то же время южный полюс магнита перемещается назад через другую сторону. Два эффекта складываются вместе. Но дальше магнит продолжает вращаться, и теперь противоположные полюса проведите по этим частям катушки.Магнит перевернулся, магнит Полюса поменяны местами, поэтому напряжение на катушке будет обратным. И если лампочка подключена, тогда любой ток тоже будет обратным. Каждый раз магнит делает один полный оборот, он создает прямой импульс, а затем обратный пульс. Быстро крутите магнит, и он издает переменную волну: AC.

Если вам нужен генератор постоянного тока, вам придется добавить специальный реверсивный переключатель. к валу магнита. Это переключатель, который называется «коммутатор». Если вы посмотрите некоторые проекты DIY генераторов постоянного тока, вы увидите, как построить коммутатор выключатель.Но эти генераторы не Ультра Простые!

Теперь о лампочке. Если соединить концы катушки вместе, то всякий раз, когда магнит движется, заряды металла будут двигаться и большой в катушке появится электрический ток. Змеевик слегка нагревается. Что, если вместо этого мы подключим лампочку между концами катушки? А лампочка на самом деле просто кусок тонкой проволоки. Заряды света нить лампы будет проталкиваться. Когда заряды внутри меди провода продеваем в тонкую нить накаливания лампочки, их скорость сильно увеличивается.Когда заряды покидают нить и движутся обратно в медный провод большего размера, они замедляются опять таки. Внутри узкой нити быстро движущиеся заряды нагревают металл. своего рода электрическим «трением». Металлическая нить нагревается настолько, что он светится. Движущиеся заряды также нагревают провода генератора немного, но так как провода генератора намного толще, и поскольку тонкая нить накала лампы замедляет ток во всем змеевике, почти весь нагрев происходит в лампочка накаливания.

Итак, просто подключите лампочку к катушке провода, поместите короткую мощную магнит в катушке, затем быстро переверните магнит. Чем быстрее вы вращаете магнита, чем выше становится сила накачки напряжения, и тем ярче лампочка загорается. Чем мощнее ваш магнит, тем выше напряжение и ярче лампочка. И чем больше в твоих кругах проволоки катушки, тем выше напряжение и ярче лампочка. Теоретически вы должен иметь возможность зажечь обычную лампочку фонарика 3 В, но только если вы может вращать ваши магниты нечеловечески быстро.


Отсоедините один провод от лампочки. Вращайте магнит. В то время как все еще вращая магнит, попросите друга соединить провода вместе так что лампочка снова загорится. Гвоздь по-прежнему крутится так же легко? Продолжайте крутить магнит, пока ваш друг подключается и отключается лампочка. Чувствуете ли вы разницу в том, как сильно нужно крутить гвоздь? Также попробуйте крутить магниты, пока ваш друг подключает генератор. провода вместе (без подключенной лампы).

ТАК ЧТО?

Когда вы запускаете генератор и зажигаете лампочку, вы работает против электрического трения, чтобы создать тепло и свет.Вы можете ПОЧУВСТВОВАТЬ работу, которую выполняете, потому что всякий раз, когда вы подключаете лампочку, вдруг становится труднее провернуть генератор. Когда вы отключаете лампочка, становится легче.

Подумайте об этом так. Если слегка потереть руки, кожа остается прохладным, но если вы сильно потрете руки, кожа станет горячей. Нужно приложить больше усилий, чтобы сильно натереть кожу, чтобы она нагрелась; это требует работы. И точно так же сложно греть лампочку нить накала, это требует работы. Вы крутите вал генератора, генератор проталкивает заряд провода через крошечную нить накала, и если вы не держите вращая магнит, он быстро замедлится.


ПОЧУВСТВУЙТЕ ЭЛЕКТРОНЫ

Когда ваша рука вращает магнит, вы можете почувствовать дополнительную работу, которая требуется зажечь лампочку. Это происходит потому, что ваша рука подключена к течет заряд в лампочке, и когда вы на нее нажимаете, вы можете это почувствовать оттолкнуть вас! Как ваша рука связана с текущими зарядами? Ваша рука крутит гвоздь, гвоздь крутит магнит, магнит толкает невидимые магнитные поля, поля толкайте подвижные заряды, заряды медленно текут через свет нить накала лампы, и крошечная нить вызывает трение о поток заряжается и нагревается.Но тогда происходит обратное! Заряд не может сильно двигаться из-за крошечной нити накала, поэтому она сопротивляется давление со стороны магнитных полей, которые, в свою очередь, сопротивляются давлению от магнита, который выдерживает скручивающее давление гвоздя, который сопротивляется скручивающему давлению ваших пальцев. Итак, в очень реальным способом, вы можете ПОЧУВСТВОВАТЬ электроны в нити накаливания лампочки. Когда вы толкаете их, вы можете ЧУВСТВОВАТЬ их нежелание двигаться дальше. узкая нить!

ВЫКЛЮЧИТЕ ПОЛЕ

Попробуйте изменить положение магнитов.Снимите магниты, затем скотчем их. вокруг гвоздя так, чтобы две стопки цеплялись бок о бок, скорее чем сложены в линию. Крутите магниты. Лампочка все еще загораться? Нет. Это происходит потому, что полюс N одного блока магнитов очень близко к S полюсу другого, и наоборот. Магнитное поле теперь растягивается между двумя стопками магнитов и не распространяется наружу. Большая часть поля находится между соседними противоположными полюсов, поэтому поле не распространяется через катушку.Когда магниты бок о бок, вот так, они образуют один больший, но слабый магнит. На Другие рука, когда вы вместо этого сделаете одну стопку магнитов, поле расширится наружу на много дюймов. Сложенные друг на друга магниты образуют более крупный, но очень сильный магнит. Если вы вращаете стек с одним магнитом, поле прорезает провода и накачивает их электроны в движение.

ИЗМЕРИТЬ НАПРЯЖЕНИЕ И ТОК

Если вы можете получить дешевый Цифровой вольтметр или DVM от Harbour Freight Tools, вы можете измерения.(Как только вы увидите некоторые цифры, вы можете заняться какой-нибудь профессиональной наукой. эксперименты. Это отлично подходит для проектов научной ярмарки.) Вращайте магниты. чтобы зажечь лампочку, затем подсоедините провода счетчика к лампочке соединения. Установите измеритель напряжения переменного тока. Вращайте магниты и смотрите насколько высокое напряжение вырабатывает ваш генератор.

Насколько высоким вы можете сделать напряжение просто пальцами? Или с помощью ручной дрели? Попробуйте просто крутить магниты достаточно быстро, чтобы едва зажечь лампочку в темной комнате.Как мало напряжение необходим? Также попробуйте отключение лампочку, затем измерьте напряжение переменного тока на двух концах катушки. Можете ли вы сказать, осталось ли оно таким же, как когда была подключена лампочка? Намекать: чтобы вращать магниты с постоянной скоростью, используйте электродрель с полностью заряженный аккумулятор. Или, возможно, зацепите гвоздь за электродвигатель и Подключите двигатель к источнику постоянного тока с настраиваемым напряжением.

Примечание: электрическая лампочка имеет сопротивление около 50 Ом. Кроме того, 250 футов # 30 проволока вокруг Сопротивление 21 Ом.Из-за сопротивления провода Генератор может создавать ток не более 60 миллиампер (0,06 ампер.) Если вы намотаете на генератор дополнительный провод №30, он увеличится максимальное напряжение и максимальная мощность. Но поскольку это добавляет больше сопротивление это НЕ увеличивает максимально возможный ток. Увеличить максимально возможный ток, либо раскрутите магниты намного быстрее, замените провод №30 с более толстой проволокой или используйте более прочный тип магнитного материала.


ДВИГАТЕЛЬ ВЫЗОВ!

Есть простой способ превратить ваш генератор в мотор.Он включает в себя использование краски или ленты, чтобы изолировать место на одной стороне гвоздь затем, используя батарею 6 В и провода генератора, касаясь гвоздя, чтобы сформировать переключатель. Вращающиеся магниты поворачивают гвоздь, который включает катушку и выключаемся в нужное время. Сможете ли вы обнаружить уловку?

ПОДГОТОВКА ПОСТОЯННОГО ТОКА, ЗАРЯДКА АККУМУЛЯТОРА

Вы можете изменить этот генератор так, чтобы он создавал постоянный ток, а не переменный. Напряжение все еще очень низкий, поэтому он не очень полезен. Если вращаться очень быстро, вы можете уметь перезаряжать крошечный 1.Аккумулятор 2в. (Может быть, ты мог бы добавить много витков провода к катушке, чтобы увеличить напряжение?)

Преобразовать в DC:

Трудный путь: добавить вращающийся переключатель «коммутатор» а также скользящие металлические «щетки», так что каждый раз, когда магниты поворачиваются наполовину, переключатель меняет местами подключения генератора.

Простой способ: добавить односторонний клапан! Электроклапан называется диодом. или выпрямитель. Если вы подключите диод последовательно с одним из ваших двигателей провода, это будет только пусть заряды текут в одном направлении.Это изменит Переменный ток в односторонний поток (так называемый «пульсирующий постоянный ток»). Попробуйте диоды от Radio Shack, например 1N4000 или 1N4001. К сожалению диоду требуется около 3/4 вольт для протекания любых зарядов, и это напряжение вычитает из вывода вашего генератора. Если ваш генератор выдает только один вольт, диод снизит его до 1/4 вольт. Итак, если вы хотите добавить диод, попробуйте удвоить или утроить количество проводов на ваш генератор. Также попробуйте использовать специальный диод «Шоттки» с меньшим напряжение, чем 0.7 В, например 1N5819 с сайта digikey.com


ИСТОРИЯ «УЛЬТРАПРОСТОГО» ГЕНЕРАТОРА

Работая в техническом магазине в Музее науки в Бостоне, я работал над новыми идеями для экспонатов Зала Электричества в 1988 году. знал, что Эксплораториум имеет выставку электрогенераторов, где Посетитель музея протаскивал пластиковую пластину с катушкой через ряд огромные магниты (магнетронные рупорные магниты от военного радара). загорится маленькая лампочка.Я просто знал, что ДОЛЖЕН был быть способ, который использует более обычные магниты. Так что я сложил стопку из 3-дюймовых громкоговорителей. магниты (эти черные пончики) и размахивали им мимо различных катушек. Наконец, я намотал около пяти фунтов проволоки №26 на кольцо с гвоздями. толкнул в доску, подключил лампочку # 49, затем переместил стопку магниты динамика внутрь и наружу. От этого легко загорелась лампочка.

Примерно в 1994 году я думал об сверхпростом электродвигателе, который позже стал известен в Интернете как «Beakman Motor».»Разве это не было бы круто, если бы дети могли так просто сделать электрический генератор ? Но это должно быть возможно с деталями из магазина Radio Shack, поскольку Radio У Shack была специальная лампочка, а также магниты и катушки провод электромагнита. После нескольких часов экспериментов я понял, что едва мог зажечь лампочку на 20 миллиампер, используя одну катушку провода №30 от радиорубки. Но провод должен был быть ОЧЕНЬ близким к быстрому вращающийся магнит, причем магнит должен был состоять из четырех мощных керамические магниты в стопке.

Чтобы произвести впечатление на всех учителей физики, я постарался сделать детали легкими. в наличии, а стоимость минимально возможна. Чтобы сделать проект популярным, я удостоверился, что никаких инструментов, кроме ножниц, не требуется. Я отказался использовать мяч подшипники или пластмассовые детали. Поэтому я сделал свою картонную коробку для катушка, а для вращающегося вала использовался гвоздь. Чтобы избежать лишних деталей, гвоздь просто зажимается мощными магнитами. Если кто-то еще хочет попробовать чтобы сделать более дешевый или простой электрогенератор, они должны делать лучше чем я сделал!


ВНИМАНИЕ: держите магниты подальше от компьютеров, дисков, видеокассет, цветных Телевизоры, а также из бумажников и кошельков с кредитными картами.Попробуй это: Хранить генератор вдали от вашего цветного телевизора, включите телевизор, начните крутить гвоздь, чтобы магнит вращался быстро, затем поднесите генератор примерно на 2 фута подальше от экрана телевизора. НЕ ПРИНОСИТЕ БЛИЖЕ !!! Продолжайте крутить магниты, и вы увидите крутой эффект шатания на телевизионном изображении, с некоторыми изменениями цвета. Поле магнита искривляет электронный луч, который рисует картинку на экране. Будьте осторожны, если вы Отнесите магнит примерно на 15 см, железный лист внутри телевизионного изображения трубка намагнитится, и искаженные цвета останутся неизменными.

Хотите чрезвычайно мощный двигатель или генератор? Взрослый проект? Те нужно штамповать железные листы для ламината. Но есть другой способ. Посмотрите на Эдисона тактика: он взял 1873 Грамм-кольцевой мотор, модифицированный добавление отдельного тихоходного коммутатора, и продавал их как горячие пирожки.

В динамо-машине Gramme можно выполнять основные «пластинки» из длинной длины железная проволока, обернутая в виде обруча и пропитанная эпоксидной смолой, смолой и т. д. звенеть. Я не знаю если тонкую железную проволоку легко найти, а колючая проволока и проволока для тюков сена — общий.Или купить тороидальный трансформатор и отпилить весь провод от сердечника? Затем оберните все железное кольцо слоем толстой медной проволоки и установить это на маховик. Плоско отшлифуйте внешний обод, чтобы медная спираль стала его собственный коммутатор. Ваш неподвижный статор может быть постоянным магнитом или неламинированный твердые железные блоки, так как эта часть — постоянный ток.

В ранних версиях Эдисона использовались «кисти» из тонкой железной проволоки в качестве щеток, позже замененных блоками скользкий графит.

Но затем иди и делай, как Тесла, во время своей проектной работы для Edison corp. Преобразование конструкции статора Эдисона в компактную цилиндрическую форму, которая обнимает маховик и включает закрытые катушки, а не чрезвычайно длинные магниты-подковы, как у Эдисона Дизайн «длинноногая Мэри Энн».

Motor Triva: электродвигатели были всего лишь лабораторные диковинки до Зеноби Грамм разработал генератор, предназначенный для замены аккумуляторных батарей, поскольку он давал чрезвычайно плавное выходное напряжение постоянного тока.Во время выставки изобретателей помощник случайно подключил неиспользованный Gramme Dynamo до другого, который вращался под действием пара. Второй завелась и побежала как моторчик; как мотор * сотни лошадиных сил *. Что Момент был началом электротехнической эры в промышленности. Но это не так много упоминается в американских учебниках, возможно потому, что это сделало бы Томаса Эдисон выглядел менее гениальным.


НЕ ИСПОЛЬЗУЙТЕ ДРУГИЕ ЧАСТИ. Если лампочка не горит, обычно это потому что использовались разные части.Следовать инструкциям. Если вы поменяли магниты, ничего не получится. Так не используйте разные магниты. Если вы использовали другую лампочку, она не подойдет. Используйте детали из списка, не вносите изменений. Если вы не используете очень тонкий # 30 проволока покрытая лаком, то не пойдет. Так что не используйте другой провод. Не используйте разные детали. Прежде чем тестировать что-либо еще, спросите себя, вы использовали детали из списка деталей? Если вы использовали разные детали, генератор выйдет из строя. Примечание: очень важно использовать детали перечисленные, и не используйте заменители.

ВРАЩАЙТЕ ЕГО БЫСТРО, В ТЕМНОМУ. Иногда ваш генератор работает нормально, но вы не вращаете его достаточно быстро. Или, возможно, тусклое свечение света в ярко освещенной комнате не хватает лампочки. Итак, идите в полумрак. Тогда крутите вещь ДЕЙСТВИТЕЛЬНО БЫСТРО. Попробуйте провернуть его старомодным дрель. (Электродрели не очень быстро вращаются.) Или попробуйте приклеить крошечный колесо к гвоздю, затем потрите колесо о вращающуюся шину вверх ногами велосипед (не езжайте слишком быстро, иначе лампочка перегорит.)

ДОБАВИТЬ БОЛЬШЕ ПРОВОДОВ. Если в вашей катушке больше 250 повороты, тогда лампочка загорится намного ярче. Тонкая катушка # 30 проволоки Radio Shack 200 футов в длину, что дает около 250 оборотов. Если бы вы могли намотать больше витков на катушке, тогда ваша лампочка загорится при более низкой скорости магнита. Купите два комплекта проволоки из Radio Shack, затем используйте обе катушки №30. Соскребите каждый кусочек красного пластикового покрытия со всех концов проводов. потом крутить конец новой катушки до конца старой.Это создает единый более длинный провод. Обязательно намотайте лишнюю проволоку в такой же направление как раньше.

Лучший источник провода: купите большой «Соленоид». от компании, занимающейся доставкой по почте, затем используйте плоскогубцы, чтобы открыть металлический скобка. Отверстие в соленоиде проходит через квадратную стальную пластину и если ты подденьте остальную часть стальной рамы наружу, вы можете удалить квадратную пластину и выньте катушку с проволокой. Снимите ленту и намотайте 600 оборотов на свой генератор. НЕ ИСПОЛЬЗУЙТЕ ДРУГИЕ МАГНИТЫ, используйте большой 2-дюймовый прямоугольный магниты, продаваемые Radio Shack, №64-1899, смотрите их сайт.Или попробуй Образовательные инновации Teachersource.com или попробуйте magnetsrc.com. Они стоят около 2 долларов за штуку и не имеют отверстий в центре. Не используйте магниты Radio Shack размером менее 1 дюйма. Большинство других магнитов слишком слабый и не будет работать, если вы не раскрутите магниты невероятно быстрые, при тысячах оборотов в минуту (оборотов на минут)

ИСПОЛЬЗОВАНИЕ МАГНИТНЫХ МАГНИТОВ
Если вы не можете дождаться почтового заказа нужного магнитов, вместо них вы можете использовать двадцать магнитов Radio Shack 1 «64-1879 Склейте их вместе, чтобы получились два больших магнита.

Вот как я это сделал. Сначала сформировал две стопки магнитов: приклеил десять магниты в двух отдельных стопках по пять магнитов в каждой. Я использовал 5-минутную эпоксидную смолу. Прежде чем клей застынет, отрегулируйте магниты так, чтобы стороны каждого маленького стопки плоские и сотрите излишки эпоксидной смолы. (Чтобы стороны стали плоскими, я положил каждую стопку на алюминиевую фольгу, прижал их, чтобы выровнять магниты, затем отклеил фольгу, когда клей затвердел.) Затем приклейте два из этих стопок по 5 магнитов вместе, так что стопки отталкиваются друг с другом.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *