Skip to content

Ферритная сталь – Ферритная нержавеющая сталь, цена — от поставщика «Auremo». Купить сегодня. Соответствие ГОСТ и международным стандартам / Auremo

Нержавеющие стали

    
    Нержавеющая сталь, (сложнолегирована сталь) является стойкой против появления ржавчины в атмосферных условиях и коррозии в агрессивных средах. Главный легирующий элемент нержавеющей стали — Cr (содержание 12-20%). Кроме того, нержавеющая сталь содержат элементы, которые сопутствуют железу в его сплавах (С, Si, Mn, S, Р) и элементы, вводимые в сталь для придания ей нужных физико-механических свойств и коррозионной стойкости (Ni, Mn, Ti, Nb, Co, Mo). Чем выше содержание Cr в стали, тем выше ее сопротивление коррозии и жаропрочность; при содержании Cr 12% и более сплавы являются нержавеющими в обычных условиях и в слабоагрессивных средах, 17% и более — коррозионностойкими и в более агрессивных окислительных и других средах, в частности в азотной кислоте крепостью до 50%. Коррозионная стойкость нерж. стали объясняется тем, что на поверхности контакта хромсодержащего сплава со средой образуется тончайшая защитная пленка окислов либо др. нерастворимых соединений. Немаленькое значение при этом имеют однородность металла, которое соответствует состояние поверхности, отсутствие у стали склонности к межкристаллитной коррозии. В сильных кислотах (соляной,

серной — которая образуется в дымоходах, фосфорной, плавиковой и их смесях) высокую коррозионную стойкость показывают сложнолегированные нерж. стали и сплавы с более высоким содержанием Ni с присадками Mo, Cu, Si в разных сочетаниях. При этом для каждых конкретных условий (температура и концентрация среды) выбирается соответствующая марка стали.

    По химическому составу нержавеющие стали подразделяются на хромоникелевые, хромистые и хромомарганцевоникелевые (более 100 марок). По структуре хромистые нерж. стали подразделяются на полуферритные, мартенситные и ферритные . Наилучшую стойкость против коррозии имеют хромистые Н. с. мартенситного типа в полированном состоянии. Хромистые нерж. стали находят применение в качестве конструкционного материала для клапанов гидравлических прессов, которые турбины лопаток, арматуры крекинг-установок, режущего инструмента, пружин, предметов быта.

  Нержавеющие стали обычно делятся на 3 немаленькие группы, в зависимости от их структуры:
 ♦ аустенитные стали обычно содержат 16-25% хрома, 6-14% никеля, кое-когда 2-6% молибдена и маленькое число иных элементов. Стали это группы — максимально широко используемые и представляют 60-70% мирового потребления. Область их применения довольно-таки широка.
 ♦ ферритные стали (кое-когда называемые хромистые стали) содержат по большей части 12-20% хрома. Кое-какие марки могут содержать маленькое число титана и молибдена. Коррозионная стойкость и иные свойства хуже чем у аустенитных сталей, но из-за более низкой стоимости ферритные стали используются для меньше ответственного применения.
мартениститные нержавеющие стали применяются в специальных случаях, когда требуется высокая твердость и прочность. Дальше будут рассматриваться по большей части аустенитные марки. Области применения аустенитных нержавеющих сталей.

    Различают аустенитные нерж. стали, которые не склонны к межкристаллитной коррозии, так называемые стабилизированные — с добавками Ti и Nb. Резкое понижение склонности нерж. стали к межкристаллитной коррозии достигается также сокращением содержания углерода (до 0.03%). Стабилизированные аустенитные нерж. стали применяются для изготовления сварной аппаратуры, которая работает в агрессивных средах (при этом после сварки термическая обработка не обязательна). В качестве жаропрочного и жаростойкого материала данные стали используются для изготовления изделий, которые подвергаются воздействию температур 550-800 °С. Стали, которые склоны к межкристаллитной коррозии, после сварки, обычно, подвергаются термической обработке (для деталей, которые сварены роликовой или точечной сваркой, термическая обработка не требуется). Хромомарганцевоникелевые и Хромоникелевые нерж. стали находят широкое применение в промышленности и быту. Для высоконагруженных элементов конструкций, которые работают при повышенных температурах (до 550 °С), применяются так называемые мартенситно-стареющие нерж. стали аустенитно-мартенситного типа, которые обладают значительной прочностью (sb = 1200-1500 Мн/м2, либо 120-150 кгс/мм2), высокой вязкостью и отличной свариваемостью.

 

В последнее время на рынке дымоотводящих труб и газоходов стали появляться случаи использования нержавеющих сталей не аустенитного, а ферритного класса.

Основные недостатки нержавеющих сталей ферритного класса (AISI 430, 439, 409, аналоги по Российской классификации 08Х17Т, 15Х25Т, 08Х13, 08Х18Т1) по сравнению со сталями аустенитного класса (AISI 304, 321, 316, аналоги по Российской классификации 08Х18Н10, 12Х18Н10Т, 10Х17Н13М2Т, 20Х23Н18) следующие:

♦ Неупрочняемые при термообработке.
♦ Ферритные стали склонны к охрупчиванию при длительном использовании в диапазоне температур от 300 до 600.

♦ Вязкость может быть до некоторой степени ограничена при низких температурах и в заготовках крупного сечения (переход пластичность-хрупкость).


ВНИМАНИЕ:
Срок службы дымоходных труб, изготовленных из ферритных нержавеющих сталей, толщиной 0,5 мм от 1 года составляет менее 2-х лет!

ВНИМАНИЕ:
Сварка швов ферритных нержавеющих сталей должна производиться с особой осторожностью.

ВНИМАНИЕ:
Рекомендуемая максимальная температура применения в течение длительного времени (до 10 000 час) до 800°С установлена только для нержавеющих сталей аустенитного класса. Для ферритных нержавеющих сталей данные условия использования категорически запрещены!

ВНИМАНИЕ:
Отличить ферритную сталь от аустенитной можно с помощью магнита — ферриная сталь обладает магнитными свойствами в отличии от аустенитной.

Ферритные стали, характеристика | Marcegaglia RU

 

Ферритные нержавеющие стали – это нержавеющие стали, в которых основным легирующим элементом является хром. Содержание этого элемeнта в сплаве колеблется от 11 до 30%.

Хорошей новостью является то, что ферритные стали (серия-400), имея достаточно низкую и стабильную цену и хорошие технические характеристики ждут за кулисами, готовые выйти на сцену и оказаться превосходными как альтернативный материал для многих практических приложений, где на первый взгляд могут справиться «только аустенитные» стали.

Ферритные нержавеющие стали представляют собой в основном железо и хромовые сплавы (10,5% мин.), они не содержат дорогой никель. Цена на хром, элемент, который делает нержавеющую сталь особенно устойчивой к коррозии, исторически относительно стабильна. Некоторые ферриты содержат легированные добавки, такие как молибден, что позволяет улучшить характеристики.

Ферритные нержавеющие стали разделяет большую часть механических свойств и характеристик коррозионной стойкости с их кузинами – более дорогими, аустенитными сталями и даже превышают их по некоторым параметрам. Зачем платить никель, если вам он не нужен? Те кто ищут альтернативное решение дорогой аустенитной стали могут вздохнуть с облегчением.

Ферриты представляют собой технически идеальное и доступное решение чтобы в полной мере использовать уникальные характеристики нержавеющей стали.

Используемые ФЕРРИТНЫЕ марки сталей:

  • 1.4509 – AISI 441 – 08Х18ГБ
  • 1.4510 – AISI 439 – 08Х17Т
  • 1.4512 – AISI 409 – 08Х12Т1
  • 1.4016 – AISI 430 – 12Х17

Производство продукции из других марок сталей и сплавов осуществляется по запросу.

 

ООО «MАРЧЕГАЛИЯ РУ» г. ВЛАДИМИР
ул. Большая Нижегородская, 92Б
г. Владимир 600020 — PO BOX 8
Тел.: +7 (4922) 40-56-56
[email protected]

Ферритные стали

Ферритные стали обязаны своим названием ферриту. Так называется фазовая составляющая сплавов железа. При ближайшем рассмотрении это оказывается твердый раствор легирующих элементов и углерода, находящийся в α-железе. Одна из его особенностей – наличие кубической объемоцентрированной решетки. Часто феррит выступает как составляющая и других структур.

Современные ферритные нержавеющие стали выделяются своей устойчивостью к коррозии. Они лучше всего показывают себя при использовании в тех средах, которые не содержат ионов хлора. При использовании в таких средах, они остаются качественными и во многом не уступают хромоникелевым аналогам. Существует ряд сред, в которых такого типа стали превосходят описанные аналоги и показывают лучшую устойчивость, в том числе к коррозийному растрескиванию.

Такая разновидность продукции хорошо поддается дополнительному легированию. Это помогает улучшать характеристики состава и расширять границы его использования.

В таблице ниже представлены химические свойства сталей такого типа в зависимости от использования различных легирующих элементов:

Таблица 1. Хромистые ферритные стали: химический состав.

Марка сталиCSiMnCrMoSPпрочих элементов
08X13≤0,08≤0,8≤0,812,0..14,0≤0,025≤0,030≥6(C+N) Ti
08Х17Т16,0…18,0≤0,0350,50…0,80 Ti
08Х23С2Ю1,5… 1,80,4…0,722,0…24,0≤0,015≤0,030Не регламентируется
04Х14Т3Р1Ф (ЧС-82)0,02…0,06≤0,6≤0,513,0…16,000,0200,0252,3 …3,5 Ti, 1,1 … 1,8 V
ЭП 882-ВИ≤0,015≤0,516,5…18,51,5…2,0≤0,020≤0,0250,15…0,35 Nb
ЭП 904-ВИ≤0,012≤0,3180,1 …0,4 Nb, 2,2 …3,5 А1
15Х25Т≤0,08≤0,8≤0,829,0…27,0≤0,025≤0,0350,5 …0,9 Ti

Центральные свойства и особенности использования материала

При использовании такой разновидности продукции потребуется учитывать ряд значимых особенностей, накладывающих ограничения или расширяющих возможности применения. Среди таких особенностей можно выделить:

  • Высокая стойкость к коррозии. Как уже было отмечено, особенно такая стойкость проявляется в условиях, когда в среде не присутствуют ионы хлора. Еще один показатель – возможность сохранения стабильных характеристик использования при воздействии азотной кислоты. Такого типа материал хорошо выдерживает язвенную коррозию, а также растрескивание и коррозийное повреждение под высоким напряжением. Специалисты называют оптимальной коррозийную стойкость стали после медленного охлаждения и после отжига при повышенных температурах.
  • Сталь выдерживает достаточно высокий нагрев, так как закаляется при повышенных температурах.
  • При обработке образует достаточно уязвимые сварные швы. Потому к варке потребуется подходить с осторожностью (об этом будет дополнительно рассказано ниже).
  • Материал отличается высокой прочностью и хорошо переносит механическое воздействие.

Центральные области применения

Описанные выше возможности объяснили обширную область применения ферритных сталей. В зависимости от конкретной марки стали, она может использоваться при создании деталей высокотемпературного оборудования, внутренних элементов химических аппаратов. Не менее значимая область использования – создание змеевиков пиролиза, а также различного рода контейнеров и емкостей.

Использование определяется при анализе технических характеристик конкретной марки. Для того чтобы читатель получил лучшее представление о таких механических свойствах, мы собрали их в рамках отдельной таблицы, приведенной ниже:

Таблица 2. Хромистые ферритные стали: механические свойства, не менее.

Марка сталиσв, МПаσ0,2,МПаδ5, %ψ,%KCU, Дж/см2Примеры использования
08Х13590410206010Внутренние устройства химических аппаратов
08Х17Т37217
08Х23С2Ю4901060Змеевики пиролиза
04Х14Т3Р1Ф500320152010Стеллажи ядерного топлива,
контейнеры
ЭП 882-ВИ3722452260Заменитель Сг — Ni аустенитных сталей
ЭП 904-ВИ44032324Детали высокотемпературного оборудования
15Х25Т1420Внутренние устройства химических аппаратов

Особенности сварки

О том, можно ли сваривать ферритные стали, что получается в итоге и какие характеристики имеют получаемые швы, существует масса противоречивых сведений.

Свариваемость таких типов стали напрямую зависит от их состава. При ограничении в составе C и N удается добиться хороших показателей свариваемости. Также во многом параметры отличаются в зависимости от уровня содержания углерода. К примеру, если углерода и азота ~0,020 %, материал приобретает хорошую пластичность и высокую ударовязкость, а при сваривании не становится хрупким. Показатель хрупкости сварных соединений хромистых ферритных сталей связан содержанием в твердом растворе примесей внедрения.

Также стоить обратить внимание на то, что при правильном выборе материала сварные соединения хромистых ферритных сталей будут устойчивы к коррозии. Это актуально также при использовании в агрессивных средах. Одной из возможностей повышения качества шва, является легирование с использованием титана или ниобия. Это дополнительно повышает стойкость к появлению межкристаллической коррозии. Причем такая стойкость остается неизменной и после термической обработки.

В таблице ниже собраны основные рекомендации по тепловому режиму сваривания такого типа стали. Их соблюдение гарантирует, что материал будет оставаться прочным и получит высокий уровень устойчивости к различного рода внешним типам воздействия.

Таблица 3. Рекомендации по тепловому режиму сварки хромистых ферритных сталей.

Марка сталиТемпература подогрева, оСПродолжительность хранения до термической обработки, чТермическая обработка
08Х13150…250Не ограниченоОтпуск при 680…700оС
08Х13 (плакирующий слой биметалла)без подогреваНе регламентируется
08Х17Т, 15Х25Т150…200
08Х17Т, 15Х25Т (плакирующий слой биметалла)без подогрева
08Х23С2Ю200 …250Не допускаетсяОтжиг при 900оС
ЭП 882-ВИ, ЭП 904-ВИбез подогреваНе регламентируется

Помимо этого, при работе с ферритными сталями от специалистов требуется использовать правильное оборудование и нужный способ сварки. Предусмотрена возможность сварки с использованием ручного дугового, электронно-лучевого и лазерного метода. Вопрос выбора зависит от того, какая марка стали используется вами на данный момент.

Подробности выбора определенного типа воздействия в зависимости от марки стали приведены в таблице ниже:

Таблица 4. Способы сварки, сварочные материалы и механические свойства свариых соединеиий хромистых ферритных сталей.

Марка сталиСпособ сварки, сварочные материалыМеханические свойства сварных соединений
σв, МПаKCU, Дж/см2
08Х13Ручная дуговая сварка:
— электроды Э-10Х25Н13Г2 ОЗЛ-6, ЦЛ-25,
Э-10Х25Н13Г2Б ЦЛ-9, Э-08Х20Н15ФБ АНВ-9,
Э-10Х20Н15Б АНВ-10
5405
— электроды Э-2Х13 УОНИ-13НЖ, АНВ-1, ЦЛ-51590
АДС:
проволока Св-07Х25Н12Г2Т, Св-06Х25Н12ТЮ,
Св-06Х25Н12БТЮ,
флюс АН-26с, АНФ-14, ОФ-6, АН-18
540
АрДС:
проволока CB-06X25Н12Т, Cв-06Х25Н12БТЮ,
Cв-07X25Н12Г2Т, аргон
08Х17ТРДС:
электроды Э-10Х25Н13Г2Б ЦЛ-9, УОНИ-10Х17Т.
АДС:
проволока Св-10ХI7Т, флюсы АНФ-6, ОФ-6
440
08Х23С2ЮРДС:
электроды ЦТ-33, ЦТ-38
500
04Х14Т3Р1ФЭлектронно-лучевая и лазерная сварка
ЭП 882-ВИРДС:
электроды Э-10Х25Нl3Г2 ЦЛ-25, ЦТ-45, ЭА-400/10Т.
АрДС:
проволока Св-02ХI8М2Б-ВИ, аргон
372
ЭП 904-ВИРДС:
электроды ЦТ-52
390

АрДС:
проволока Св-02Х19Ю3Б-ВИ, аргон
372

5

15Х25ТРДС:
электроды 3иО-7, ЭА-48М/22, АНВ-9, АН9-10.
АрДС:
проволока Св-07Х25Н 13, аргон
АДС:
проволока Св-07Х25Н13,
флюсы АН-26с, АНФ-14, ОФ-6, АН-16
440

5

Правильное использование сварки, а также точный расчет области применения в зависимости от марки способны обеспечить долговременное использование сталей ферритного типа.

Сегодня такая разновидность получила большое распространение в промышленности, часто встречается в различных областях производства материалов. При использовании материала и работе с ним рекомендуем ориентироваться на приведенные в тексте таблицы. Они помогут избежать распространенных ошибок, изменения свойств стали и поддержания высокого качества конечного продукта при его сварке, нагреве или охлаждении.

Нержавеющие хромистые (ферритные и мартенситные) стали.

Нержавеющие (коррозионностойкие) и жаростойкие стали и сплавы, основа которых железо и никель — это важнейшая категория специальных конструкционных материалов, которая нашла применение во многих отраслях промышленности. Повышенная стойкость против равномерной коррозии в широкой гамме коррозионно-активных сред различной степени агрессивности — отличительная особенность нержавеющих и жаростойких сталей и сплавов.

Многие нержавеющие стали кроме того обладают стойкостью против специальных видов коррозии, таких как межкристаллитная, питтинговая, щелевая коррозии и коррозионное растрескивание.

Основной легирующий элемент, придающий стали коррозионную стойкость в окислительных средах это Cr — хром. Хром способствует образованию на поверхности нержавеющей стали защитной плотной пассивной пленки окисла Сr2O3. Достаточная для придания коррозионной стойкости нержавеющей стали толщина пленки образуется при добавлении к сплаву не менее 12,5% хрома. Хром и железо в сплаве образуют твердый раствор.

Стоимость хрома сравнительно невысока, он не является дефицитным компонентом. Поэтому хромистые нержавеющие стали относительно недорогие и, обладая достаточно хорошим комплексом технологических свойств, находят широчайшее применение в промышленности. Из хромистых нержавеющих сталей изготавливаются элементы оборудования, работающего при высоком давлении и температуре в условиях воздействия агрессивных сред.

Хром, которым легируются нержавеющие стали обеспечивает не только коррозионную стойкость сталей в окислительных средах, но и формирует их структуру, механические и технологические свойства и жаропрочность. Образуемый хромом и железом непрерывный ряд твердых растворов при концентрациях начиная с 12,5% и выше, способствует формированию в хромистых нержавеющих сталях различной структуры, обеспечивающей многообразие их свойств.

Углерод в составе хромистых нержавеющих сталей.

Кроме хрома на формирование физико-механических свойств хромистых сталей, значительное влияние оказывает содержание углерода. Структуру нержавеющей стали в зависимости от содержания углерода разделяют на три главных класса: мартенситная, мартенситно-ферритная и ферритная. Это нашло отражение в классификации нержавеющих сталей по ранее действующему ГОСТ 5632-72 «Стали высоколегированные и сплавы коррозионностойкие, жаростойкие и жаропрочные».

Углерод содержащийся в составе нержавеющей стали, в том числе и в хромистой, это нежелательный элемент. Углерод слишком активный компонент, связывая хром в карбиды, он обедняет твердый раствор, тем самым понижая коррозионную стойкость нержавеющей стали. Кроме того повышенное содержание углерода требует повышения температуры закалки до 975-1050оС, для более полного растворения карбидов хрома.

В качестве примера серьезного влияния углерода на структуру и свойства нержавеющей стали рассмотрим сталь с содержанием 18% Cr. Например сталь 95Х18 в составе которой содержится 0,9-1,0%С и имеющая структуру мартенсита, обладает высокой твердостью (>55HRC), но коррозионная стойкость ее умеренная. А нержавеющие стали 12Х17, 08Х17Т, 08Х18Т1, со структурой феррита, имеют наоборот, низкую твердость и высокие коррозионные свойства.

Ферритные нержавеющие стали.

Нержавеющие стали с содержанием Cr более 12,5% и с минимальным количеством углерода имеют структуру феррита и называются ферритными. Коррозионная стойкость хромистых ферритных нержавеющих сталей во многих агрессивных средах может превосходить многие хромоникелевые аустенитные нержавеющие стали, при этом они не склонны к коррозионному растрескиванию под напряжением. При дополнительном легировании кремнием и алюминием хромистые ферритные нержавеющие стали могут быть использованы при производстве оборудования, работающего в окислительных условиях при высоких температурах.

Недостатком, сдерживающим более широкое применение хромистых ферритных нержавеющих сталей сдерживается из-за чрезмерной хрупкости их сварных соединений. Высокая чувствительность к надрезу при нормальной температуре делает их так же непригодными для изготовления оборудования, работающего под давлением, при ударных и знакопеременных нагрузках. Ферритные нержавеющие стали используют для изготовления ненагруженных устройств и изделий.

Для обеспечения свариваемости хромистых ферритных нержавеющих сталей необходимо ограничением в иx составе не только углерода, но и азота. Нержавеющие ферритные стали, с суммарным содержанием углерода и азота не более 0,020% обладают большей пластичностью и повышенной ударной вязкостью, а значит меньшей хрупкостью при сварке. Но технология производства таких сталей усложнена, так как необходимо использование вакуумных печей или продувка расплава аргоном или аргоно-кислородной смесью.

Нержавеющие стали ферритного класса при нагреве не изменяют состав структуры, твердый раствор лишь становится более однородным. Поэтому для увеличения коррозионной стойкости можно использовать термическую обработку.

Мартенситные нержавеющие стали

Хромистые нержавеющие стали, в составе которых содержится повышенное количество углерода имеют структуру мартенсита. Для обеспечения заданных коррозионных и других свойств, мартенситные стали дополнительно легируются никелем и другими химическими элементами. Никель взаимодействуя с углеродом стабилизирует структуру нержавеющей стали, а молибден, вольфрам, ванадий, ниобий вводят для повышения жаропрочности сталей.

Прочность обычных мартенситных хромистых нержавеющих сталей остается удовлетворительной прочностью при температурах до 500оС, то дополнительное легирование элементами, образующими соединения с углеродом поднимают этот порог до 650оС. Это позволяет использовать легированные мартенситные хромистые нержавеющие стали для изготовления элементов современного энергетического оборудования. Молибден и вольфрам, кроме того, снижают хрупкость при длительной эксплуатации при высоких температурах.

Стали мартенситного класса, такие как 20Х13, 30Х13, 40Х13, 65Х13 и др., обладают повышенной твердостью и используются для изготовления режущего инструмента, и элементов оборудования работающих на износ. Термическая обработка сталей этой группы заключается в закалке и отпуске на заданную твердость.

Мартенситные нержавеющие стали так же склонны к хрупкому разрушению в закаленном состоянии, что усложняет технологию их сварки. Содержание углерода в мартенситных сталях, как правило, превышает 0,10%, и это приводит к образование холодных трещин в процессе охлаждения мартенсита, после нагрева электросваркой. При снижении содержания углерода дополнительным легированием вязкость мартенсита повышается, однако при этом возникает другая опасность, а именно образование структурно-свободного феррита, который, так же является причиной высокой хрупкости стали.

Для предотвращения образования холодных трещин мартенситные нержавеющие стали сваривают при температуре воздуха ≥0оС и применяют предварительный и сопутствующий подогрев до 200 …450оС. Температура подогрева назначается в зависимости от склонности стали к закалке.

Мартенситно-ферритные нержавеющие стали.

К этому классу относят стали с частичным γ→α превращением. Термокинетическая диаграмма у этих сталей состоит из двух областей превращения. При температурах >600оС при низкой скорости охлаждения возможно образование ферритной составляющей структуры. При большой скорости охлаждения <400oС наблюдается бездиффузионное превращение аустенита в мартенсит. Количество образовавшегося мартенсита зависит от содержания углерода и скорости охлаждения.

Коррозионная стойкость нержавеющих сталей мартенситно-ферритного класса зависит от содержания в них хрома. При содержании 17%Cr достигается стойкость в 65%-ной азотной кислоте при 50оС, при дальнейшем повышении концентрации хрома расширяется область применения хромистых нержавеющих сталей в различных средах. Мартенситно-ферритные стали находят довольно широкое применение для изготовления нефтехимической аппаратуры и энергетического оборудования.

По свариваемости мартенситно-ферритные нержавеющие стали так же являются неудобными материалами. В связи с неизбежной подкалкой при сварке сварные соединения мартенситно-ферритных сталей склонны к образованию трещин замедленного разрушения.

Другие особенности хромистых нержавеющих сталей.

Коррозионная стойкость хромистых нержавеющих сталей напрямую зависит от содержания хрома, чем выше, тем лучше. В настоящее время хромистые нержавеющие стали по доле содержания хрома подразделяют на три типа: содержащие 13%Сr; содержащие 17%Сr, и нержавеющие стали содержащие 25—28% Сr.

Стали 08X13 и 12X13 обладающие повышенной пластичностью, используются для изготовления деталей, подвергающихся ударным нагрузкам, таки как турбинные лопатки, арматура для крекинг-установок, предметы домашнего обихода.

Из нержавеющих сталей 30X13 и 40X13, со структурой мартенсита после термической обработки изготавливают измерительный и медицинский инструменты, пружины и другие коррозионностойкне детали, от которых требуется высокая твердость или прочность.

При концентрации хрома выше 20% и дополнительном легировании молибденом хромистые нержавеющие стали приобретают стойкость против питтинговой коррозии. По стойкости против коррозиионного растрескивания хромистые нержавеющие стали ферритного класса превосходят аустенитные хромоникелевые стали типа 08Х18Н10Т.

Введение карбидообразующих элементов, например титана, значительно повышает стойкость сварных соединений из хромистой нержавеющей стали против межкристаллитной коррозии. Это так же позволяет снизить склонность структуры стали к росту зерна (сталь 08Х18Т1). Дополнительное замедление роста зерна ферритных нержавеющих сталей происходит также при микролегировании поверхностно-активным элементами, такими как церий. Микролегирование церием использовано, в частности, в стали 08Х18Тч (ДИ-77). Положительный эффект от введения редкоземельных элементов достигается только в определенных количественных пределах и при соблюдении технологического процесса.

Как уже говорилось на снижение хладноломкости ферритных нержавеющих сталей значительное влияние оказывают примеси внедрения — углерод и азот. При суммарном содержании углерода и азота ≤ 0,01% работоспособность сварных соединений из высокохромистых ферритных нержавеющих сталей при отрицательных температурах значительно возрастает. Чувствительность ферритных нержавеющих сталей к хладноломкости повышает и наличие в сплаве фосфора, кислорода, серы, марганеца, кремния и это накладывает повышенные требования к технологии выплавки.

При снижении суммарного содержания углерода и азота до 0,010-0,015%, повышается стойкость нержавеющей стали против межкристаллитной коррозии. При превышении содержания этих компонентов требуется введение в состав нержавеющей стали дополнительных стабилизаторов — титана и ниобия.

Высокохромистые нержавеющие стали становятся склонными к охрупчиванию при неправильной термической обработке. Развивается так называемая «475оС-хрупкость» нержавеющей стали, которая правда носит обратимый характер и устраняется новой термической обработкой.

Качество поверхности горячекатаного и холоднокатаного листа из хромистых ферритных титаносодержащих нержавеющих сталей повышается при легировании кремнием (сталь 04Х15СТ. Легирование кремнием повышает сопротивление точечной коррозии за счет обогащения кремнием верхних слоев защитной пленки.

Особую группу ферритных нержавеющих сталей составляют так называемые «суперферриты», в которых более жестко ограничен состав элементов-примесей (01Х18М2Т-ВИ, 01Х25М2Т-ВИ, 01Х25ТБЮ-ВИ). Эти нержавеющие стали обладают повышенным уровнем пластичности и вязкости сварных соединений и устойчивы против питтинговой коррозии и коррозионного растрескивания в большинстве агрессивных сред.

Из нержавеющей стали 12X17 изготавливают теплообменники, трубопроводы и баки для кислот. Введение молибдена (12Х17М2Т) делает нержавеющую сталь стойкой даже в органических кислотах (уксусной, муравьиной). Для изготовления шарикоподшипников, работающих в агрессивных средах, используют сталь 95X18 (0,9—1,0% С, 17—19% Сr).

Приглашаем к сотрудничеству

Ферритная нержавеющая сталь — Большая Энциклопедия Нефти и Газа, статья, страница 1

Ферритная нержавеющая сталь

Cтраница 1

Ферритные нержавеющие стали по коррозионной стойкости в средах, не содержащих ионы хлора, не уступают классическим хро-моникелевым сталям аустенитного класса и обеспечивают чистоту находящегося в них продукта. Наиболее слабым местом как по прочности, так и по коррозионной стойкости в этих сталях являются сварные соединения. Само понятие свариваемости включает в себя отсутствие коррозионно-активных участков металла в шве и зоне термического влияния ( з.т.в.) сварного соединения, определение которых трудоемко и неоднозначно.  [1]

Ферритные нержавеющие стали магнитны и имеют объемно-центрированную кубическую решетку. Их применяют для отделки автомобилей и в качестве конструкционного материала в производстве азотной кислоты.  [2]

Ферритные нержавеющие стали, вязкие при высоком содержании хрома, стойкие против коррозионного растрескивания, язвенной коррозии и коррозии под напряжением.  [3]

Ферритные нержавеющие стали, а также феррито-аустенитные стали обрабатываются сравнительно легко, аустенитные стали и сплавы — значительно труднее. Объясняется это склонностью таких сталей к наклепу; незначительная деформация приводит к сильному упрочнению металла. В процессе любой операции холодной обработки это в свою очередь может привести к поломке инструмента и повреждениям поверхности металла в виде задирсв, царапин, ссадин и забоин. Шероховатая поверхность с различными дефектами благоприятна для развития коррозии. Так, например, при фрезеровании могут быть дефекты в виде вырывания металла. При разметке не рекомендуется вычерчивать вспомогательные линии и осуществлять кернение, так как поврежденные участки будут очагами коррозии.  [4]

Ферритные нержавеющие стали обладают оптимальной коррозионной стойкостью после медленного охлаждения с температур 925 С или после отжига при 650 — 815 СС.  [5]

Для ферритных нержавеющих сталей по сравнению с аустенитными характерен больший перенос массы в среде натрия, особенно при содержании в них хрома менее 10 — 12 % и при температурах более 550 С. Для сталей с содержанием хрома, превышающим 12 %, интенсивность переноса массы та же, что и для хромоникелевых сталей, однако их стойкость в гораздо большей степени, чем стойкость хромоникелевых сталей, зависит от содержания в жидком металле кислорода.  [6]

Сенсибилизация ферритных нержавеющих сталей наблюдается при температурах, превышающих 925 С; стойкость к межкристаллитной коррозии восстанавливается при кратковременном ( 10 — 60 мин) нагреве при 650 — 815 С. Следует отметить, что эти температурные интервалы заметно отличаются от соответствующих интервалов для аустенитных нержавеющих сталей. Скорость межкристаллитной коррозии и степень поражения сталей обоих классов в этих растворах примерно одинаковы. Однако в сварных изделиях разрушения в ферритных сталях происходят как в области, непосредственно прилегающей к месту сварки, так и самом сварном шве, а в аустенитных сталях разрушения локализованы в околошовной зоне.  [7]

Пайка ферритных нержавеющих сталей ( с 13 % Сг) серебряными припоями не снижает коррозионной стойкости паяных соединений, так как эти стали склонны к интеркристаллитной коррозии только после закалки с температуры выше 900 С.  [8]

Для ферритных нержавеющих сталей область температур, при которых происходит сенсибилизация, лежит выше 925 С. Стойкость к межкристаллитной коррозии возвращается при кратковременном нагреве ( приблизительно от 10 до 60 мин) при температурах от 650 до 815 С.  [9]

Вспучивание ферритных нержавеющих сталей наблюдалось, когда они были катодно защищены в морской воде. Вероятно, это происходило вследствие того, что были применены защитные плотности тока выше минимальной величины, необходимой для полной защиты. Если при контакте активных металлов с мартенситными нержавеющими сталями образуются гальванические пары, то нержавеющая сталь ( катод) может разрушиться вследствие выделения на ней водорода.  [10]

Поверхность ферритной нержавеющей стали 430 примерно через год после начала экспозиции в морской атмосфере частично покрывается ржавчиной. Более высокое содержание хрома ( 17 / о) по сравнению со сталью 410 повышает стойкость к питтинговой коррозии.  [12]

В высокохромистых ферритных нержавеющих сталях ( после закалки или нормализации с высоких температур) наиболее быстро растворяются в слабоокислительных условиях неравновесные обогащенные железом карбиды хрома, которые выпадают по границам зерен в процессе охлаждения. В дур — дНОдные алюмине наибольшей скоростью растворения обладает интерметаллид СиАЬ, в то время как обедненный твердый раствор растворяется гораздо медленнее.  [13]

Соединения из ферритной нержавеющей стали, паяемой стандартными серебряными припоями, подвержены щелевой коррозии. Поэтому пайку этой стали производят серебряными припоями, дополнителыш легированными никелем ( 2 — 2 5 %), образующим тонкий слой между паяемым материалом и швом, предотвращающий развитие коррозионных разрушений. Пайка графитизи-рованной стали, а также чугуна производится с предварит, удалением графита химич. Паяемые соединения из стали в основном создаются методами капиллярной пайки; контактно-реактивная пайка стали практически не применяется.  [14]

Соединения из ферритной нержавеющей стали, паяемой стандартными серебряными припоями, подвержены щелевой коррозии. Поэтому пайку этой стали производят серебряными припоями, дополнительно легированными никелем ( 2 — 2 5 %), образующим тонкий слой между паяемым материалом и швом, предотвращающий развитие коррозионных разрушений. Пайка графитизи-рованной стали, а также чугуна производится с предварит, удалением графита химич. Паяемые соединения из стали в основном создаются методами капиллярной пайки; контактно-реактивная пайка стали практически не применяется.  [15]

Страницы:      1    2    3    4

Ферритные стали

(стали ферритного класса)

Темы: Сварка стали.

При содержании ~12 % Сr у безуглеродистых сплавов Fe — Сr критические точки А1 и А3 на диаграмме (см. рис. 1 на странице Хромистые стали) сливаются. При дальнейшем увеличении содержания хрома сплавы не претерпевают превращений. Стали, структура которых соответствует этой области диаграммы Fe — Сr, относят к ферритным.

Хромистые ферритные стали (табл. 1 и 2) во многих агрессивных средах превосходят по коррозионной стойкости хромоникелевые аустенитные стали, не склонны к коррозионному растрескиванию под напряжением.

При дополнительном легировании кремнием и алюминием хромистые стали могут быть использованы для оборудования, работающего в окислительных условиях при высоких температурах.

Другие страницы по теме

Ферритные стали

(стали ферритного класса):

Широкое применение хромистых ферритных сталей с обычным содержанием углерода и азота сдерживается из-за чрезмерной хрупкости их сварных соединений. Высокая чувствительность к надрезу при нормальной температуре делает их непригодными для изготовления оборудования, работающего под давлением, при ударных и знакопеременных нагрузках. Такие ферритные стали используют для изготовления ненагруженных устройств и изделий.

Хорошая свариваемость хромистых ферритных сталей обеспечиваетcя ограничением в иx составе C и N, образующиx твердые растворы внедрения. Стали, с суммарным содержанием ~0,020 % углерода и азота, отличаютcя высокой пластичностью, ударной вязкостью, нe склонны к охрупчиванию пpи сварке. Производство таких сталей возможно в вакуумных печах или с внепечной обработкой (продувкой расплава аргоном или аргон о-кислородной смесью).

Стали, произведенные в открытых печах, вследствие относительно высокого содержания углерода и азота имеют низкую пластичность и ударную вязкость, что затрудняет проведение не только сварки, но и других технологических операций (гибки, вальцовки). Повышению пластичности сталей 08Х 13, 08Х17Т и 15Х25Т способствует их про катка при пониженных температурах (до 820… 850оС). В этом случае относительное удлинение проката увеличивается до A5 = 25 %, а ударная вязкость достигает 80 дж/см2 . Улучшению свойств сталей, как и сварных соединений, способствует также термический отпуск при 760оС.

Сварочный нагрев отрицательнo влияет нa пластичность хромистых ферритных сталей, уcугубляет иx склонность к хрупкому разрушению. Высoкую хрупкость сварных соединений cвязывают c ростoм величины зерна в 3ТВ.

Интенсивный рост зерна при сварке не удается предотвратить и у сталей с низким содержанием углерода и азота. Однако этот процесс не вызывает их охрупчивания в зоне термического влияния. Это свидетельствует о том, что хрупкость сварных соединений хромистых ферритных сталей связана главным образом с содержанием в твердом растворе примесей внедрения.

Образование холодных трещин в сварных соединениях хромистых ферритных сталей обусловлено резким охрупчиванием металла в ЗТВ. В связи с этим сварку, гибку и правку при изготовлении узлов и деталей из сталей с обычным содержанием примесей рекомендуют проводить с нагревом до 150…200оС. Существенному повышению пластичности сварных соединений способствует термический отпуск при 760оС с последуюшим быстрым охлаждением (табл. 4).

Таблица 1. Хромистые ферритные стали : химический состав .

Марка стали C Si Mn Cr Mo S P прочих элементов
08X13 ≤0,08 ≤0,8 ≤0,8 12,0..14,0 ≤0,025 ≤0,030 ≥6(C+N) Ti
08Х17Т 16,0…18,0 ≤0,035 0,50…0,80 Ti
08Х23С2Ю 1,5… 1,8 0,4…0,7 22,0…24,0 ≤0,015 ≤0,030 Не регламентируется
04Х14Т3Р1Ф (ЧС-82) 0,02…0,06 ≤0,6 ≤0,5 13,0…16,00 0,020 0,025 2,3 …3,5 Ti, 1,1 … 1,8 V
ЭП 882-ВИ ≤0,015 ≤0,5 16,5…18,5 1,5…2,0 ≤0,020 ≤0,025 0,15…0,35 Nb
ЭП 904-ВИ ≤0,012 ≤0,3 18 0,1 …0,4 Nb, 2,2 …3,5 А1
15Х25Т ≤0,08 ≤0,8 ≤0,8 29,0…27,0 ≤0,025 ≤0,035 0,5 …0,9 Ti
Таблица 2. Хромистые ферритные стали : механические свойства, не менее.
Марка стали σв, МПа σ0,2,МПа δ5, % ψ,% KCU, Дж/см2 Примеры использования
08Х13 590 410 20 60 10 Внутренние устройства химических аппаратов
08Х17Т 372 17
08Х23С2Ю 490 10 60 Змеевики пиролиза
04Х14Т3Р1Ф 500 320 15 20 10 Стеллажи ядерного топлива,
контейнеры
ЭП 882-ВИ 372 245 22 60 Заменитель Сг — Ni аустенитных сталей
ЭП 904-ВИ 440 323 24 Детали высокотемпературного оборудования
15Х25Т 14 20 Внутренние устройства химических аппаратов

Механические свойства сварных соединений зависят от применяемых сварочных материалов (табл. 4).

При использовании аустенитных сварочных материалов металл шва отличается высокой пластичностью, ударной вязкостью. При сварке однородными с основным металлом сварочными материалами с обычным содержанием примесей внедрения металл шва и сварные соединения отличаются высокой хрупкостью. Лишь в случае низкого содержания примесей в присадочной проволоке при АрДС сталей ЭП 882-ВИ и ЭП 904-ВИ могут быть достигнуты высокие значения пластичности и ударной вязкости у металла шва.

Сварные соединения всех хромистых ферритных сталей коррозионно-устойчивы во многих агрессивных средах. Легирование металла шва ниобием (или титаном) обеспечивает стойкость против межкристаллитной коррозии как в исходном после сварки состоянии, так и после термической обработки.

Таблица 3. Рекомендации по тепловому режиму сварки хромистых ферритных сталей.

Марка стали Температура подогрева, оС Продолжительность хранения до термической обработки, ч Термическая обработка
08Х13 150…250 Не ограничено Отпуск при 680…700оС
08Х13 (плакирующий слой биметалла) без подогрева Не регламентируется
08Х17Т, 15Х25Т 150…200
08Х17Т, 15Х25Т (плакирующий слой биметалла) без подогрева
08Х23С2Ю 200 …250 Не допускается Отжиг при 900оС
ЭП 882-ВИ, ЭП 904-ВИ без подогрева Не регламентируется

Таблица 4. Способы сварки, сварочные материалы и механические свойства свариых соединеиий хромистых ферритных сталей.

Марка стали Способ сварки, сварочные материалы Механические свойства сварных соединений
σв, МПа KCU, Дж/см2
08Х13 Ручная дуговая сварка:
— электроды Э-10Х25Н13Г2 ОЗЛ-6, ЦЛ-25,
Э-10Х25Н13Г2Б ЦЛ-9, Э-08Х20Н15ФБ АНВ-9,
Э-10Х20Н15Б АНВ-10
540 5
  — электроды Э-2Х13 УОНИ-13НЖ, АНВ-1, ЦЛ-51 590
  АДС:
проволока Св-07Х25Н12Г2Т, Св-06Х25Н12ТЮ,
Св-06Х25Н12БТЮ,
флюс АН-26с, АНФ-14, ОФ-6, АН-18
540
  АрДС:
проволока CB-06X25Н12Т, Cв-06Х25Н12БТЮ,
Cв-07X25Н12Г2Т, аргон
08Х17Т РДС:
электроды Э-10Х25Н13Г2Б ЦЛ-9 , УОНИ-10Х17Т.
АДС:
проволока Св-10ХI7Т, флюсы АНФ-6, ОФ-6
440
08Х23С2Ю РДС:
электроды ЦТ-33, ЦТ-38
500
04Х14Т3Р1Ф Электронно-лучевая и лазерная сварка
ЭП 882-ВИ РДС:
электроды Э-10Х25Нl3Г2 ЦЛ-25, ЦТ-45, ЭА-400/10Т.
АрДС:
проволока Св-02ХI8М2Б-ВИ, аргон
372
ЭП 904-ВИ РДС:
электроды ЦТ-52
390
АрДС:
проволока Св-02Х19Ю3Б-ВИ, аргон
372 5
15Х25Т РДС:
электроды 3иО-7, ЭА-48М/22, АНВ-9, АН9-10.
АрДС:
проволока Св-07Х25Н 13, аргон
АДС:
проволока Св-07Х25Н13,
флюсы АН-26с, АНФ-14, ОФ-6, АН-16
440 5

  • < Мартенситно-ферритные стали
  • Мартенситные стали >

Сталь ферритная — Энциклопедия по машиностроению XXL

Хромистые стали ферритные и мартенситно-ферритные обладают некоторой склонностью к межкристаллитной коррозии (м. к. к.). Особо высокую склонность к м. к. к. они приобретают после быстрого охлаждения с высоких температур. Для восстановления стойкости против м. к. к, возможно применение высокого отпуска, причем его температура и длительность  [c.270]

Кроме того, существуют стали ферритного и аустенитного классов.  [c.173]


Стали ферритного класса  [c.266]

Хорошие свойства стали ферритного класса приобретают после горячей обработки давлением и кратковременного отжига при 760— 780° С при этом возникает мелкозернистая структура (рис. 15.7).  [c.267]

Упрочнению ультразвуком поддаются низкоуглеродистые стали, стали ферритного и аустенитного классов и цветные металлы, зффект упрочнения которых особенно велик.  [c.178]

Влияние состава и структурных особенностей на зависимость Ста—0—е становится тем слабее, чем выше температура деформации. Исключение составляют высокохромистые ферритные стали, у которых явление рекристаллизации не осложнено действием упрочняющих примесей и при высоких температурах рекристаллизация развивается значительно сильнее, чем у других сталей. Этим можно объяснить отличающийся от других сталей высокий скоростной эффект у сталей ферритного класса, содержащих не менее 23% Сг. Большой скоростной эф-  [c.474]

Для высокохромистых сталей ферритного класса значение п заметно выше, чем у сталей перлитного класса.  [c.476]

Сталь с легированной хромом и никелем поверхностью рекомендуется для замены нержавеющих сталей ферритного класса и в отдельных средах — аустенитного.  [c.206]

Ферритный класс. Стали ферритного типа при нагреве и охлаждении не имеют превращений а- у состоят из твердого раствора с а-решеткой. Некоторые стали этого класса при высоких температурах попадают в двухфазную область a-f-y [19] и относятся к полуферритным сталям. Примером полу-ферритной стали является 17%-ная хромистая нержавеющая сталь с 0,10% С марки XI7. Режимы термических обработок, которым подвергаются эти стали, приведены в табл. 5.  [c.99]

Установлено, что хромоникелевые аустенитные стали менее устойчивы к коррозии при 540—600°С в расплавленном свинце, чем стали ферритного и перлитного типов. Более низкая устойчивость хромоникелевых сталей объясняется избирательным, растворением никеля в свинце.  [c.90]


Стали ферритного класса по сравнению с аустенитными при обычных комнатных 1ем-пературах имеют меньшую пластичность при холодной пластической деформации их механическая прочность увеличивается в меньшей степени (при этом значительно падает удлинение) они обладают большей способностью к рекристаллизации, причем процесс рекристаллизации протекает при относительно более низких температурах и сопровождается значительным падением ударной вязкости В области высоких температур феррит обладает более высокими пластическими свойствами и низкой сопротивляемостью деформации и т. п.  [c.10]

Физические свойства хромистых нержавеющих коррозионностойких стале ферритного, мартенсито-ферритного и мартенситного классов  [c.14]

Температурный режим горячей обработки давлением И отжига хромистых сталей ферритного, мартенсито-ферритного и мартенситного классов  [c.16]

ВЫСОКОХРОМИСТЫЕ СТАЛИ ФЕРРИТНОГО КЛАССА  [c.20]

Одним из существенных недостатков высокохромистых сталей ферритного класса, кроме указанных, является их склонность к охрупчиванию в результате нагрева металла в интервале температур 450—500° С. Этот вид охрупчивания чаще всего наблюдается на ферритных сталях, содержащих 25—30% Сг, и проявляется в снижении ударной вязкости, относительного удлинения, уменьшении электросопротивления, повышении модуля упругости, твердости и коэрцитивной силы [141.  [c.22]

Для сталей ферритного класса желательно, чтобы температура окончания операции горячей деформации была возможно ниже 700° С).  [c.52]

Стали ферритного класса, например, склонны к росту зерна и под воздействием сварочного нагрева сильно снижаются их пластические свойства. Ударная вязкость при этом значительно падает.  [c.54]

Кремний подобно хрому действует как ферритообразующий элемент, сильно ограничивая у-область. Это приводит к тому, что стали с малым содержанием С уже при 6% Сг и 2% Si относятся к сталям полуферритного типа, а при большем содержании Si — к сталям ферритного типа, не имеющим превращений у а..  [c.129]

По данным работы [17], длительная прочность перлито-ферритного ковкого чугуна при 425° С (соответствующая испытаниям в течение 4000 ч) одинакова с литой сталью марки 25Л после отжига, в то время как кратковременная прочность стали при этой температуре выше, чем чугуна. При температурах более высоких, чем 500°, длительная прочность феррито-перлитного чугуна оказывается меньше, чем указанной стали. Ферритный ковкий чугун при всех температурах имеет длительную и кратковременную прочность ниже, чем сталь. Сопротивление ползучести ковкого чугуна выше, чем серого, но ниже, чем высокопрочного чугуна.  [c.124]

Также может быть получен класс аустенитных сталей. При достаточно высоком содержании. элементов, раси1иряющих у-область, получаются стали, в которых сохраняется аустенит при охлаждении до комнатной температуры. Следовательно, кроме доэвтектоидного, эвтектоидного, заэвтектоидного п ледебурнтного классов, могут еще быть легированные стали ферритного и аустанитного классов .  [c.360]

Сталь Х28, содержащая до 27—30% Сг и 0,15% С, принадлежит к сталям ферритного класса и не подвергается закалке. Стали Х17 и Х28 обладают достаточно высокой пластичностью как в горячем, так и в холодном состоянии. Однако сварка для них опасна вследствие пониженной пластичности сварных швов и появления в зоне термического влияния склонности к меж-кристаллитиой коррозии.  [c.217]

Для сталей ферритного класса влияние положительной асимметрии цикла на кинетику усталостных трещин бьио учтено следующим образом [42]  [c.301]

Анализ экспериментального материала, полученного на сталях ферритного, перлитного и аустенитного классов, и никелевых сплавах показал, что если величина пластической деформации, накопленной до агонийной стадии разрушения, >2%, то длительная прочность образцов с кольцевыми подрезами средней жесткости (теоретический коэффициент концентрации напряжений А =4%) не ниже соответствующей прочности гладких образцов — материал не чувствителен к надрезу. Следовательно, в условиях дли-  [c.73]

В настоящее время накоплен достаточный материал о количественном и качественном влиянии легирующих добавок на свойства малоуглеродистых низколегированных сталей ферритно-перлитного класса. Интервалы содержаний легирующих элементов в данных сталях составляют лищь некоторую часть от их предела растворимости в а-железе.  [c.66]

В качестве примера можно рассмотреть анализ и оценку V, VIII и IX уровней дерева целей. При анализе V уровня была поставлена задача разработки литейной сваривающейся стали ферритно-перлитного класса. Для решения ее был использован ряд прогностических приемов составление банка данных и обработка его с использованием методов параметрического прогнозирования, оценка установленных закономерностей на основе экспертного опроса, методы математического моделирования.  [c.220]

Элементы, стоящие в строке 1, являются основными егирующими добавками к сталям ферритно-перлит-юго класса. Распределение этих элементов по частоте (X использования в легирующем комплексе для еталей количеством углерода не более 0,20% (по данным ОСТа и ТУ) (рис. 33) показало, что в большинстве лучаев для легирования применяется комбинация из  [c.221]

Самой высокой коррозионной устойчивостью в расплавленном свинце обладают тантал и ниобий. Железо, углеродистая сталь, хромистые и хромоникелевые стали имеют хорошую устойчивость до 500—600°С. При более высоких температурах она понижается, так как наблюдается растворение преимущественно по границам зерен. Стали перлитного типа устойчивы к действию свинца при температурах до 600°С. Хромистые нержавеющие стали ферритного и мартенсигного типов (1X13, Х17) обладают высокой коррозионной устойчивостью до 540°С.  [c.90]

К первой группе относят металлы и сплавы, обладающие удовлетворительными механическими характеристиками при обычных климатических температурах (до —50 °С) углеродистые стали ферритного и мартенсит-ного классов, некоторые низколегированные и инструментальные стали и композиционные материалы на основе кобальта.  [c.309]

Химический состав хромистых нержавеющих коррозионностойких сталей ферритного, мартенсито-феррнтного и мартенситного классов  [c.12]

Механические свойства хромистых нержавеющих сталей ферритного, мартенсито-ферритного и иартенситного классов после оптимальной термической обработки  [c.15]

Такая склонность к росту зерна и хрупкому разрушению в производстве и переработке толстолистовых высокохромистых сталей Х25Т, Х28, а также 0XI7T или других сталей ферритного класса вызывает значительные трудности.  [c.20]

Ввиду повышенной склонности сталей ферритного класса к росту зерен необходимо стремиться к увеличению скоростей сварки и достаточно интенсивному охлаждению шва и околошовной зоны, не допуская сильного перегрева металла при формировании сварного шва. Соблюдение этих условий также способствует повышению сопротивляемости стали межкристаллитпой коррозии.  [c.22]

Наиболее важными особеииостяии рассматриваемых технологических процессов для нержавеющих сталей являются следующие. При горячей деформации сталей ферритного класса во избежание значительного роста зерна и снижения  [c.51]

По сравнению с указанными двухфазными сталями значительно менее технологичны стали ферритного класса 0Х17Т, Х25Т и др.  [c.65]

При вальцовке, раскрое и отбортовке толстолистовой стали ферритного класса (например, марок 0Х17Т, Х25Т и др.) необходимо проводить подогрев металла, в том числе сварных соединений до температуры 100° С, благодаря чему значительно улучшаются технологические свойства стали, в частности, повышаю1ся удлинение и ударная вязкость.  [c.66]

При температурах ниже 600° С во многих случаях стали ферритного или мар-тенситного класса имеют явные преимущества по сравнению с малолегированными.  [c.122]

Характерным примером сталей ферритного класса является сталь 12X17 (табл. 9). Отожженная при 780 и 850°С, она имеет предел выносливости соответственно 240 и 270 МПа, Закалка стали от 1100°С с последующим отпуском при 580 и 550°С привела к повышению временного сопротивления на 140-150 МПа и не оказала существенного влияния на предел выносливости. Условный предел коррозионной выносливости этой стали составляет 130—150 МПа и мало зависит от режимов термической обработки.  [c.61]

Образование — Тепловой эффект 6—166 Ферритнап сталь — см. Сталь ферритная Ферритные сплавы — 3—331 Феррованадий — Химический состав 6 — 5 Ферровольфрам — Химический состав 6 — 5 Ферродинамические приборы 1 (1-я) — 524 Ферромагнитные материалы — Кривые намагничивания 3 — 180  [c.319]

A i 1 1 Ar 1 Сталь ферритного или полул ферритного класса 7,12  [c.689]


Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *