Skip to content

Элементы металлических конструкций: Металлические конструкции — Википедия – Конструкции и их элементы: металлические, железобетонные и деревянные

Содержание

Конструкции и их элементы: металлические, железобетонные и деревянные

Сопромат

Конструкция – это сложный инженерный объект, составленный из отдельных элементов, которые формируют конструкцию.

Металлические конструкции

Металлические конструкции — это совокупность различных простых металлоизделий, собранных в одно целое и выполняющих роль несущего каркаса, или основы для агрегата, строения или определенного узла.

Важное значение в основных качественных показателях металлоконструкции, имеют ее отдельные элементы, обычно, представляющие собой металлический профиль (балка, двутавр, металлический уголок, листовой прокат, швеллер, ферма и т. д.). Именно от качества данного проката зависит долговечность и надежность всей конструкции.

А также важным пунктом при изготовлении металлических конструкций является соединение отдельных элементов, которое осуществляется следующими способами:

  • Сварка.
  • Болтовое соединение.
  • Клепка.

Для каких бы целей ни предназначалась конструкции из металла, в первую очередь — это конструкторское решение , для которого необходимо производить точные расчеты. С технологической точки зрения, металлоконструкции отличаются простотой изготовления и быстрой сборкой. Металлические конструкции являются важным элементом как в промышленности и строительстве, так и в быту. В основном их составные части производится в заводских условиях, а основная сборка осуществляется уже на строительной площадке.

Виды металлоконструкций

Различных видов металлических конструкций существует довольно большое количество, рассмотрим основные из них:

  • Каркасы строений. Такие конструкции включают в себя профильные элементы — балки, фермы, двутавры, уголки, швеллера и т. д.
  • Ограждающие конструкции — витражи, ворота, оконные переплеты и т. д. Для создания таких изделий используются уголок, листовой прокат, прут.
  • Цельнометаллические конструкции. К ним относятся различные емкости. Изготавливаются из листового проката.
  • Высотные металлоконструкции — опоры линий электропередач, мачты, башни. На их производство в основном идет металлический уголок.
  • Арматура. Данная конструкция делается из проволоки, прутьев, сетки.

Преимущества металлоконструкций

В качестве достоинств таких конструкционных изделий можно выделить следующие показатели:

  • Высокие прочностные характеристики. Данная характеристика обусловлена качествами стали — сопротивление нагрузкам, невосприимчивость к механическим повреждениям, пластичность и т. д. Следует отметить что здания построенные с применением металлоконструкций способны переносить довольно сильные землетрясения.
  • Сезонная независимость. Монтаж металлоконструкций можно производить практически в любую погоду при любой температуре воздуха, что, естественно, ускорят процесс строительства.
  • Простота монтажа. Процесс сборки металлоконструкций не отличается большой сложностью и не требует применения специализированной техники.

Основным недостатком конструкций из металла является их восприимчивость к коррозии, но после обработки антикоррозийными материалами этот нюанс сводится к нулю.

Железобетонные конструкции

Трудно представить нашу жизнь без использования железобетонных конструкций, без этого прочнейшего и технологичного материала не обходится ни одно серьезное строительство, впрочем, и при возведении небольших частных построек он играет не последнюю роль.

Немного истории

Некоторые историки считают, что композитный материал из металлических стержней и связующей смеси изобрел Жозеф Монье в 1867 году, но факты говорят о том, что задолго до того, как Монье запатентовал свои армированные бетонные кадки, материал использовался в разных странах. В России бетон на основе известковой смеси армировался стальными стержнями при строительстве дворца в Царском Селе и случилось это до нашествия Наполеона в 1802 году.

Различия железобетонных конструкций

Постройки из армированного бетона делятся на три типа:

  • монолитные;
  • сборно-монолитные;
  • сборные.

Монолитные конструкции представляют собой тяжелые сооружения, которые затруднительно собрать из отдельных частей, например, фундаменты под высотные здания или элементы гидротехнических объектов, но в последнее время монолитные технологии все чаще применяются при возведении корпусов многоэтажных жилых домов.

Обычно, при строительстве жилья или промышленных предприятий используются обе технологии, то есть железобетонная конструкция – сборно-монолитная. Монолитные и унифицированные сборные детали соединяются сваркой закладных элементов и бетонированием.

Существуют и чисто сборные объекты, они собирается как конструктор, а детали этого «конструктора» изготавливаются в заводских условиях. Использование сборной технологии значительно ускоряет работу, готовые элементы соединяют сваркой или цементным раствором.

Сборные элементы

Различают несколько видов деталей для возведения сборной железобетонной конструкции: балки, фермы, плиты и колонны – это далеко не все, но наиболее востребованные изделия.

Балки

Балка представляет собой деталь с длинной значительно превосходящей поперечные размеры, ее используют при устройстве фундаментов и транспортных магистралей, применяют в качестве перемычек оконных и дверных проемов, основы для тяжелых перекрытий и эстакад. Балка изготавливается по соответствующим стандартам, в зависимости от назначения.

Фермы

Есть несколько типов этих изделий, ферма может быть: сегментной, арочной с раскосами и без раскосов или полигональной. Но любой тип предназначен для сооружения кровли, главное назначение фермы – распределение нагрузки кровельной системы на несущие стены или колонны.

Плиты

Название – железобетонная плита относится к многочисленному классу изделий, используемых в самых разнообразных направлениях строительства, но все они представляют собой прямоугольную плоскую или п-образную конструкцию. В зависимости от назначения, плиты различают: по размеру, форме, прочности, наличию внутренних пустот, теплоизоляционных, влагостойких и морозостойких свойств. Применение железнодорожной плиты актуально при сооружении межэтажных и кровельных перекрытий, для строительства дорог, аэродромов, эстакад и мостов.

Колонны

Железобетонная колона – вертикальный несущий элемент, предназначенный для передачи нагрузки на фундамент. Колонны применяют при возведении каркасных зданий и при сооружении крановых путей в производственных помещениях. Различают колонны для верхних, средних и нижних этажей, а также существуют сплошные бесстыковые изделия. При производстве железобетонной колонны используются тяжелые марки бетона и усиленный арматурный каркас.

Трудно переоценить значение железобетонных конструкций в современной жизни, вся промышленная и жилая инфраструктура, в буквальном смысле, держится на армированном бетоне. А последние разработки доказывают, что перспективность этого материала еще не исчерпана.

Деревянные конструкции

Деревянные конструкции представляют собой строительные конструкции, полностью изготовленные из древесины, в некоторых случая допускается использование металлических элементов для придания прочности соединения.

В настоящее время древесина как конструкционный материал используется в основном в частном домостроении, при возведении одноэтажных строений общественного и промышленного назначения. Кроме того, они находят применение при строительстве небольших пешеходных и автомобильных мостов, хозяйственных построек, а также при декорировании помещений.

Основные виды деревянных конструкций

Основными видами строительных конструкций из дерева являются следующие простые и сложные изделия:

  • Настил. Уложенный вплотную или с зазором ряд досок, закрепленных гвоздями или саморезами.
  • Цельные балки состоят из бревен или досок, установленных на ребро.
  • Составные балки представляют собой изделия из соединенных между собой досок или бруса.
  • Цельные или составные стойки изготавливаются из бревен или досок.
  • Двутавры представляют собой сложный вид балочных конструкций. При изготовлении двутавров используются доски и брус.
  • Фермы являются сложной деревянной конструкцией треугольной трапециевидной прямоугольной формы. Фермы состоят из нижнего и верхнего пояса, раскосов и опорные конструкции.

Кроме вышеназванных деревянных конструкций, существует довольно большое количество других их видов (арка, свод, мачта, лестничные пролеты и т. д.).

Преимущества деревянных конструкций

В качестве достоинств древесины как конструкционного строительного материала выделяются следующие показатели:

  • Эстетическая привлекательность.
  • Относительная стойкость к воздействию химически агрессивных сред.
  • Древесина экологически чистый возобновляемый строительный материал.
  • Легко поддается механической обработке.
  • При соблюдении нормативных требований, возможно перекрытие больших площадей потолочного пространства.
  • Хорошие тепло и звукоизоляционные свойства.
  • После соответствующей обработки обладает огнестойкими качествами.
  • Соединение конструкций можно выполнять с помощью специальных клеевых составов.

Недостатки древесины как строительного материала

Наряду с достоинствами, деревянные конструкции имеют и существенные недостатки:

  • Древесина подвержена гниению, но после обработки специальными пропитками этот недостаток устраняется.
  • Древесина легко воспламеняемый материал. Для усиления огнестойкости требуется специальная обработка.
  • Сравнительно низкие прочностные характеристики (относительно металлических и железобетонных конструкций).
  • Срок службы конструкций из древесины ниже чем у металлических и железобетонных аналогов.
  • Деревянные конструкционные материалы используются человечество с давних времен и в настоящее время спрос на такие изделия не уменьшается, и наверняка будет поддерживаться и в будущем.

Сопромат

Металлические конструкции

Предисловие 4
Введение 6
§ 1. Металлические конструкции в современном строительстве 6
§ 2. Исторический очерк развития металлических конструкций 8
§ 3. Типизация как ведущая, проблема конструирования 24
§ 4. Проблемы повышения качества строительства и принципы советской школы конструирования 26
Раздел I. Элементы металлических конструкций 28
1. Общая характеристика металлических конструкций 28
1.1. Основные свойства металлических конструкций 28
1.2. Область применения металлических конструкций 29

1.3. Основные требования, предъявляемые к металлическим конструкциям 37
1.4. Состав к оформление проекта стальных конструкций 39
2. Основные свойства и работа материалов, применяемых в металлических конструкциях 43
2.1. Виды разрушения материала 43
2.2. Стали и алюминиевые сплавы, применяемые в строительных конструкциях 44
2.3. Структура и работа стали и алюминиевых сплавов под нагрузкой 54
2.4. Работа стали при неравномерном распределении напряжений и ударная вязкость 63
2.5. Работа стали и алюминиевых сплавов при повторных нагрузках 68
2.6. Переход материала в пластическую стадию и условие пластичности 73
2.7. Упруго-пластическая стадия работы материала при изгибе 76
2.8. Закручивание стержней и депланации сечений 86
2.9. Потеря устойчивости центрально сжатых и центрально нагруженных изгибаемых стержней 88
2.10. Работа внецентренно сжатых и сжато-изогнутых стержней 101
3. Основы расчёта металлических конструкций 109
3.1. Предельные состояния конструкций и предпосылки расчёта 109
3.2. Нормативные нагрузки и коэффициенты перегрузки. Сочетания нагрузок 111
3.3. Методика расчёта металлических конструкций по первому предельному состоянию и по допускаемым напряжениям. Расчётные сопротивления и допускаемые напряжения 115
3.4. Основы расчёта растянутых и изгибаемых элементов 122
3.5. Основы расчёта сжатых, внецентренно сжатых и сжато-изогнутых элементов 130
4. Сортамент 141
4.1. Общая характеристика профилей сортамента 141
4.2. Сталь листовая 142
4.3. Уголковые профили 143
4.4. Швеллеры 144
4.5. Двутавры 144
4.6. Облегчённые балки 145
4.7. Тавры 146
4.8. Трубы 146
4.9. Гнутые фасонные профили 146
4.10. Профили из лёгких сплавов 147
5. Сварные соединения 149
5.1. Основы сварки 149
5.2. Типы сварных швов и соединений 155
5.3. Термические воздействия в процессе сварки на работу соединений 160
5.4. Прочность сварных соединений 169
5.5. Расчёт сварных соединений 175
5.6. Контактная точечная сварка 184
6. Заклёпочные и болтовые соединения 187
6.1. Общая характеристика заклёпочных и болтовых соединений 187
6.2. Влияние условий постановки на работу заклёпок и болтов 190
6.3. Работа заклёпочных и болтовых соединений под нагрузкой 194
6.4. Конструктивные решения заклёпочных и болтовых соединений 201
6.5. Расчёт заклёпочных и болтовых соединений 204
7. Основы изготовления стальных конструкций 216
7.1. Требования, предъявляемые к чертежам, необходимым для изготовления конструкций 216
7.2. Общая схема процесса изготовления стальных конструкций 220
7.3. Требования производства и монтажа стальных конструкций к проектированию 221
7.4. Основные операции по изготовлению стальных конструкций в цехах подготовки и обработкой 223
7.5. Сборка, сварка и клёпка отправочных элементов 235
8. Балочные клетки и балки 252
8.1. Типы балок 252
8.2. Определение высоты балок 254
8.3. Компоновка балочных клеток 257
8.4. Настилы балочных клеток 264
8.5. Расчёт и конструирование балок 266
8.6. Стыки балок 297
8.7. Опорные части балок 303
8.8. Сопряжения балок 305
8.9. Комплексные (объединённые) балки 307
8.10. Предварительно напряжённые балки 311
9. Колонны и стойки, работающие на центральное сжатие 321
9.1. Общая характеристика колонн 321
9.2. Сплошные колонны 322
9.3. Сквозные колонны 324
9.4. Выбор расчётной схемы и типа колонны 330
9.5. Подбор сечения и конструктивное оформление стержня колонны 332
9.6. Базы (башмаки) колонны 342
9.7. Оголовок колонн и сопряжение балок с колоннами 354
10. Фермы 358
10.1. Область применениями системы ферм в строительных конструкциях 358
10.2. Компоновка конструкций ферм 359
10.3. Расчёт и действительная работа ферм 373
10.4. Расчётные длины сжатых стержней и предельные гибкости 378
10.5. Типы сечений стержней ферм 380
10.6. Подбор сечений стержней лёгких ферм 387
10.7. Подбор сечений стержней тяжёлых ферм 393
10.8. Узлы лёгких ферм 396
10.9. Конструктивное оформление лёгких ферм и составление рабочих чертежей 407
10.10. Узлы тяжёлых ферм 410
10.11. Предварительно напряжённые фермы 422
Раздел II. Конструкции производственных зданий 428
11. Основные вопросы проектирования конструкций производственных зданий 428
11.1. Задача проектирования и общее понятие о конструктивной форме стального каркаса производственного здания 428
11.2. Основные требования, предъявляемые к конструктивному решению стального каркаса производственного здания 434
11.3. Основные процессы компоновки конструкций цехов 443
11.4. Разбивка сетки колонн 445
11.5. Температурные швы 447
12. Основные поперечные рамы цеха 449
12.1. Системы поперечных рам 449
12.2. Особенности поперечного профиля много пролётных рам 452
12.3. Основные размеры поперечных рам 456
12.4. Конструкции элементов рам 458
12.5. Определение основных размеров поперечной рамы цеха 463
13. Системы покрытий 465
13.1. Основы компоновки конструкций шатра 465
13.2. Системы покрытий 465
13.3. Элементы кровли 468
13.4. Прогоны 473
13.5. Фонари 476
13.6. Бесфонарные здания 480
14. Системы связей 482
14.1. Общие требования, предъявляемые к системам связей 482
14.2. Связи покрытия 482
14.3. Связи между колоннами 490
15. Особенности расчёта и конструирования элементов стального каркаса производственного здания 497
15.1. Основные положения 497
15.2. Нагрузки, действующие на каркас цеха 497
15.3. Особенности расчёта поперечных рам 502
15.4. Особенности конструкций и расчёта элементов покрытия 518
15.5. Особенности конструкций и расчёта колонн 529
15.6. Конструкций и расчёт связей 552
16. Подкрановые балки 558
16.1. Общие сведения 561
16.2. Сплошные подкрановые балки 561
16.3. Сквозные подкрановые балки (подкрановые фермы) 574
16.4. Тормозные конструкции (балки и фермы) 579
16.5. Сопряжение подкрановых балок и тормозных конструкций с колоннами 584
16.6. Подкрановые балки с ездой понизу 584
16.7. Подкрановые балки для консольных катучих кранов 586
16.8. Крановые рельсы и их прикрепление к подкрановым балкам 588
17. Фахверк 591
17.1. Элементы стенового заполнения 591
17.2. Фахверк продольных стен 593
17.3. Торцовый фахверк 596
17.4. Компоновка фахверка при больших проёмах в стенах здания 596
17.5. Особенности конструктивных деталей фахверка 597
Раздел III. Конструкции большепролетных и многоэтажных каркасных зданий 601
18. Конструкции большепролетных и многоэтажных каркасных зданий 601
18.1. Область применения 601
18.2. Основные особенности перекрытий больших пролётов 601
18.3. Несущие элементы большепролетных балочных систем 605
18.4. Рамы больших пролётов 608
18.5. Арки 613
18.6. Компоновка большепролетных конструкций 623
18.7. Обеспечение устойчивости и пространственной жесткости большепролетных конструкций 627
18.8. Купола 630
18.9. Вантовые системы 639
18.10. Стальные каркасы многоэтажных зданий 645
Раздел IV. Листовые конструкции 651
19. Основы листовых конструкций 651
19.1. Общие сведения 651
19.2. Особенности листовых конструкций 651
19.3. Соединения листовых конструкций 654
20. Резервуары 655
20.1. Номенклатура резервуаров, особенности их изготовления и монтажа 655
20.2. Вертикальные цилиндрические резервуары постоянного объёма (общего назначения) 657
20.3. Резервуары специальных типов для хранения светлых нефтепродуктов и сжиженных газов 669
21. Газгольдеры 683
21.1. Назначение и классификация газгольдеров 683
21.2. Газгольдеры переменного объёма 683
21.3. Газгольдеры постоянного объёма 688
22. Трубопроводы большого диаметра 693
22.1. Общая характеристика и классификация трубопроводов 693
22.2. Нагрузки и воздействия на трубопроводы 696
22.3. Основные размеры трубопровода, диаметр трубы и расстояние между опорами 697
22.4. Основы конструирования трубопроводов 697
22.5. Основы расчёта трубопроводов большого диаметра 702
Раздел V. Башенные и мачтовые сооружения 710
23. Особенности башенных и мачтовых сооружений и их нагрузок 710
24. Антенные сооружения 716
24.1. Радиобашни 716
24.2. Радиомачты на оттяжках 725
24.3. Телевизионные опоры 738
25. Опоры линий электропередачи 741
25.1. Основные этапы развития линий электропередачи в СССР 741
25.2. Общая характеристика и типы опор линий электропередачи 741
25.3. Основы расчёта опор и проводов линий электропередачи 747
Раздел VI. Основы экономики стальных конструкций 747
26. Основы экономики стальных конструкций 750
26.1. Экономия стали 750
26.2. Структура стоимости стальных конструкций 757
26.3. Мероприятия по снижению стоимости стальных конструкций 760
Добавления к тексту 770
Оглавление 774
Опечатки 778

СТО 02494680-0035-2004 «Система проектной документации для строительства. Конструкции металлические. Состав и оформление рабочих чертежей марки КМ»

На главную | База 1 | База 2 | База 3
Поиск по реквизитамПоиск по номеру документаПоиск по названию документаПоиск по тексту документа
Искать все виды документовДокументы неопределённого видаISOАвиационные правилаАльбомАпелляционное определениеАТКАТК-РЭАТПЭАТРВИВМРВМУВНВНиРВНКРВНМДВНПВНПБВНТМ/МЧМ СССРВНТПВНТП/МПСВНЭВОМВПНРМВППБВРДВРДСВременное положениеВременное руководствоВременные методические рекомендацииВременные нормативыВременные рекомендацииВременные указанияВременный порядокВрТЕРВрТЕРрВрТЭСНВрТЭСНрВСНВСН АСВСН ВКВСН-АПКВСПВСТПВТУВТУ МММПВТУ НКММПВУП СНЭВУППВУТПВыпускГКИНПГКИНП (ОНТА)ГНГОСТГОСТ CEN/TRГОСТ CISPRГОСТ ENГОСТ EN ISOГОСТ EN/TSГОСТ IECГОСТ IEC/PASГОСТ IEC/TRГОСТ IEC/TSГОСТ ISOГОСТ ISO GuideГОСТ ISO/DISГОСТ ISO/HL7ГОСТ ISO/IECГОСТ ISO/IEC GuideГОСТ ISO/TRГОСТ ISO/TSГОСТ OIML RГОСТ ЕНГОСТ ИСОГОСТ ИСО/МЭКГОСТ ИСО/ТОГОСТ ИСО/ТСГОСТ МЭКГОСТ РГОСТ Р ЕНГОСТ Р ЕН ИСОГОСТ Р ИСОГОСТ Р ИСО/HL7ГОСТ Р ИСО/АСТМГОСТ Р ИСО/МЭКГОСТ Р ИСО/МЭК МФСГОСТ Р ИСО/МЭК ТОГОСТ Р ИСО/ТОГОСТ Р ИСО/ТСГОСТ Р ИСО/ТУГОСТ Р МЭКГОСТ Р МЭК/ТОГОСТ Р МЭК/ТСГОСТ ЭД1ГСНГСНрГСССДГЭСНГЭСНмГЭСНмрГЭСНмтГЭСНпГЭСНПиТЕРГЭСНПиТЕРрГЭСНрГЭСНсДИДиОРДирективное письмоДоговорДополнение к ВСНДополнение к РНиПДСЕКЕНВиРЕНВиР-ПЕНиРЕСДЗемЕТКСЖНМЗаключениеЗаконЗаконопроектЗональный типовой проектИИБТВИДИКИМИНИнструктивное письмоИнструкцияИнструкция НСАМИнформационно-методическое письмоИнформационно-технический сборникИнформационное письмоИнформацияИОТИРИСОИСО/TRИТНИТОсИТПИТСИЭСНИЭСНиЕР Республика КарелияККарта трудового процессаКарта-нарядКаталогКаталог-справочникККТКОКодексКОТКПОКСИКТКТПММ-МВИМВИМВНМВРМГСНМДМДКМДСМеждународные стандартыМетодикаМетодика НСАММетодические рекомендацииМетодические рекомендации к СПМетодические указанияМетодический документМетодическое пособиеМетодическое руководствоМИМИ БГЕИМИ УЯВИМИГКМММНМОДНМонтажные чертежиМос МУМосМРМосСанПинМППБМРМРДСМРОМРРМРТУМСанПиНМСНМСПМТМУМУ ОТ РММУКМЭКННАС ГАНБ ЖТНВННГЭАНДНДПНиТУНКНормыНормы времениНПНПБНПРМНРНРБНСПНТПНТП АПКНТП ЭППНТПДНТПСНТСНЦКРНЦСОДМОДНОЕРЖОЕРЖкрОЕРЖмОЕРЖмрОЕРЖпОЕРЖрОКОМТРМОНОНДОНКОНТПОПВОПКП АЭСОПНРМСОРДОСГиСППиНОСНОСН-АПКОСПОССПЖОССЦЖОСТОСТ 1ОСТ 2ОСТ 34ОСТ 4ОСТ 5ОСТ ВКСОСТ КЗ СНКОСТ НКЗагОСТ НКЛесОСТ НКМОСТ НКММПОСТ НКППОСТ НКПП и НКВТОСТ НКСМОСТ НКТПОСТ5ОСТНОСЭМЖОТРОТТПП ССФЖТПБПБПРВПБЭ НППБЯПВ НППВКМПВСРПГВУПереченьПиН АЭПисьмоПМГПНАЭПНД ФПНД Ф СБПНД Ф ТПНСТПОПоложениеПорядокПособиеПособие в развитие СНиППособие к ВНТППособие к ВСНПособие к МГСНПособие к МРПособие к РДПособие к РТМПособие к СНПособие к СНиППособие к СППособие к СТОПособие по применению СППостановлениеПОТ РПОЭСНрППБППБ-АСППБ-СППБВППБОППРПРПР РСКПР СМНПравилаПрактическое пособие к СППРБ АСПрейскурантПриказПротоколПСРр Калининградской областиПТБПТЭПУГПУЭПЦСНПЭУРР ГазпромР НОПРИЗР НОСТРОЙР НОСТРОЙ/НОПР РСКР СМНР-НП СРО ССКРазъяснениеРаспоряжениеРАФРБРГРДРД БГЕИРД БТРД ГМРД НИИКраностроенияРД РОСЭКРД РСКРД РТМРД СМАРД СМНРД ЭОРД-АПКРДИРДМРДМУРДПРДСРДТПРегламентРекомендацииРекомендацияРешениеРешение коллегииРКРМРМГРМДРМКРНДРНиПРПРРТОП ТЭРС ГАРСНРСТ РСФСРРСТ РСФСР ЭД1РТРТМРТПРУРуководствоРУЭСТОП ГАРЭГА РФРЭСНрСАСанитарные нормыСанитарные правилаСанПиНСборникСборник НТД к СНиПСборники ПВРСборники РСН МОСборники РСН ПНРСборники РСН ССРСборники ценСБЦПСДАСДАЭСДОССерияСЗКСНСН-РФСНиПСНиРСНККСНОРСНПСОСоглашениеСПСП АССП АЭССправочникСправочное пособие к ВСНСправочное пособие к СНиПСправочное пособие к СПСправочное пособие к ТЕРСправочное пособие к ТЕРрСРПССНССЦСТ ССФЖТСТ СЭВСТ ЦКБАСТ-НП СРОСТАСТКСТМСТНСТН ЦЭСТОСТО 030 НОСТРОЙСТО АСЧМСТО БДПСТО ВНИИСТСТО ГазпромСТО Газпром РДСТО ГГИСТО ГУ ГГИСТО ДД ХМАОСТО ДОКТОР БЕТОНСТО МАДИСТО МВИСТО МИСТО НААГСТО НАКССТО НКССТО НОПСТО НОСТРОЙСТО НОСТРОЙ/НОПСТО РЖДСТО РосГеоСТО РОСТЕХЭКСПЕРТИЗАСТО САСТО СМКСТО ФЦССТО ЦКТИСТО-ГК «Трансстрой»СТО-НСОПБСТПСТП ВНИИГСТП НИИЭССтП РМПСУПСССУРСУСНСЦНПРТВТЕТелеграммаТелетайпограммаТематическая подборкаТЕРТЕР Алтайский крайТЕР Белгородская областьТЕР Калининградской областиТЕР Карачаево-Черкесская РеспубликаТЕР Краснодарского краяТЕР Мурманская областьТЕР Новосибирской областиТЕР Орловской областиТЕР Республика ДагестанТЕР Республика КарелияТЕР Ростовской областиТЕР Самарской областиТЕР Смоленской обл.ТЕР Ямало-Ненецкий автономный округТЕР Ярославской областиТЕРмТЕРм Алтайский крайТЕРм Белгородская областьТЕРм Воронежской областиТЕРм Калининградской областиТЕРм Карачаево-Черкесская РеспубликаТЕРм Мурманская областьТЕРм Республика ДагестанТЕРм Республика КарелияТЕРм Ямало-Ненецкий автономный округТЕРмрТЕРмр Алтайский крайТЕРмр Белгородская областьТЕРмр Карачаево-Черкесская РеспубликаТЕРмр Краснодарского краяТЕРмр Республика ДагестанТЕРмр Республика КарелияТЕРмр Ямало-Ненецкий автономный округТЕРпТЕРп Алтайский крайТЕРп Белгородская областьТЕРп Калининградской областиТЕРп Карачаево-Черкесская РеспубликаТЕРп Краснодарского краяТЕРп Республика КарелияТЕРп Ямало-Ненецкий автономный округТЕРп Ярославской областиТЕРрТЕРр Алтайский крайТЕРр Белгородская областьТЕРр Калининградской областиТЕРр Карачаево-Черкесская РеспубликаТЕРр Краснодарского краяТЕРр Новосибирской областиТЕРр Омской областиТЕРр Орловской областиТЕРр Республика ДагестанТЕРр Республика КарелияТЕРр Ростовской областиТЕРр Рязанской областиТЕРр Самарской областиТЕРр Смоленской областиТЕРр Удмуртской РеспубликиТЕРр Ульяновской областиТЕРр Ямало-Ненецкий автономный округТЕРррТЕРрр Ямало-Ненецкий автономный округТЕРс Ямало-Ненецкий автономный округТЕРтр Ямало-Ненецкий автономный округТехнический каталогТехнический регламентТехнический регламент Таможенного союзаТехнический циркулярТехнологическая инструкцияТехнологическая картаТехнологические картыТехнологический регламентТИТИ РТИ РОТиповая инструкцияТиповая технологическая инструкцияТиповое положениеТиповой проектТиповые конструкцииТиповые материалы для проектированияТиповые проектные решенияТКТКБЯТМД Санкт-ПетербургТНПБТОИТОИ-РДТПТПРТРТР АВОКТР ЕАЭСТР ТСТРДТСНТСН МУТСН ПМСТСН РКТСН ЭКТСН ЭОТСНэ и ТЕРэТССЦТССЦ Алтайский крайТССЦ Белгородская областьТССЦ Воронежской областиТССЦ Карачаево-Черкесская РеспубликаТССЦ Ямало-Ненецкий автономный округТССЦпгТССЦпг Белгородская областьТСЦТСЦ Белгородская областьТСЦ Краснодарского краяТСЦ Орловской областиТСЦ Республика ДагестанТСЦ Республика КарелияТСЦ Ростовской областиТСЦ Ульяновской областиТСЦмТСЦО Ямало-Ненецкий автономный округТСЦп Калининградской областиТСЦПГ Ямало-Ненецкий автономный округТСЦэ Калининградской областиТСЭМТСЭМ Алтайский крайТСЭМ Белгородская областьТСЭМ Карачаево-Черкесская РеспубликаТСЭМ Ямало-Ненецкий автономный округТТТТКТТПТУТУ-газТУКТЭСНиЕР Воронежской областиТЭСНиЕРм Воронежской областиТЭСНиЕРрТЭСНиТЕРэУУ-СТУказУказаниеУказанияУКНУНУОУРврУРкрУРррУРСНУСНУТП БГЕИФАПФедеральный законФедеральный стандарт оценкиФЕРФЕРмФЕРмрФЕРпФЕРрФормаФорма ИГАСНФРФСНФССЦФССЦпгФСЭМФТС ЖТЦВЦенникЦИРВЦиркулярЦПИШифрЭксплуатационный циркулярЭРД
Показать все найденныеПоказать действующиеПоказать частично действующиеПоказать не действующиеПоказать проектыПоказать документы с неизвестным статусом
Упорядочить по номеру документаУпорядочить по дате введения

Монтаж металлических конструкций: особенности соединений, оборудование, стоимость

От промышленных зданий требуется высокая прочность и надежность при минимальных затратах на строительство как времени, так и средств. Наибольшую эффективность показывают здания со стальной несущей конструкцией. Качество постройки во многом зависит от того, насколько правильно выполнен монтаж металлоконструкций. Интерес представляет монтаж колонн, подкрановых балок ферм, фахверка и настила.

монтаж металлоконструкций при возведении промышленных (складских) помещений

монтаж металлоконструкций при возведении промышленных (складских) помещений

Монтаж колонн

Большинство металлических колонн размещается на сплошном фундаменте из бетона. Кода они готовятся к монтажу, на них наносят отметки, обозначающие продольную ось и верх фундамента. При установке колонны удерживают одним из таких способов:

  • При помощи анкерных болтов, которые заделаны в фундамент. После того, как колонна выверена по двум перпендикулярным осям, места соединения заливаются цементным раствором.
  • Напрямую фундаментной поверхностью, которая возводится до отметки фрезерованной подошвы у колонны. В этом случае цементный раствор дополнительно не подливается.
  • С использованием стальных опорных листов. У них верхняя поверхность строгается. Заливка цементного раствора выполняется при необходимости.

Для удержания колонн с широкими башмаками и высотой до 10 м достаточно использовать одни только анкерные болты. Колонны с большей высотой и узкими башмаками необходимо также поддерживать расчалками в той плоскости, где жесткость конструкции минимальна.

  • Крепление расчалок выполняется в верхней части колонны до того, как она будет поднята и размещена.
  • Другой конец расчалок крепится к якорям или элементам фундамента, расположенных неподалеку.
  • После того, как расчалки полноценно натянуты, стропы с колонны можно убирать.
  • Полностью снимать расчалки разрешается только после того, как колонна закреплена при помощи постоянных элементов. Обеспечить устойчивость колонне можно подкрановыми балками или связями, которые размещаются после монтажа первых двух колонн, соединенной подкрановой балкой.

Когда выполняется монтаж колонн, размещаемых на фундаменте, то в ходе процесса их крепят анкерными болтами. Любые металлические прокладки, подкладываемые под основание, обязательно привариваются. В свою очередь, колонны, на верхних ярусах также скрепляются болтами или сваркой. На это соединение приходится высокая нагрузка, поэтому его прочность тщательно просчитывается при проектировании.

крепление металлических колонн при помощи анкерных болтов крепление металлических колонн при помощи анкерных болтов

Монтаж элементов металлических конструкций с помощью выверки достаточно трудоемкий и длительный по времени. Поэтому в последнее время все больше используется способ монтажа, который не требует выверки. Такой метод позволяет, как улучшить качество конструкции, так и сократить сроки, требуемые для возведения здания.

Безвыверочный монтаж требует подготовки металлоконструкции в процессе изготовки и непосредственно на стройплощадке. Чтобы увеличить точность конструкции, используются следующие технологические приемы:

  • Раздельное изготовление башмака и опорной плиты;
  • Фрезерование торцов двух ветвей колонн;
  • Строгание опорных плит;
  • Наличие 4 приваренных планок на опорной плите с нарезанными отверстиями для размещения болтов;
  • Наличие осевых рисок на ветвях колонн.

Когда монтаж производится без выверки, то колонны опирают на стальные плиты. В таком варианте фундамент изначально бетонируется ниже проектного значения на 50-60 мм, а после установки плиты его заливают цементным раствором.

Опорная плита размещается при помощи регулировочных болтов на опорных планках, которые бетонируются полностью в фундамент заподлицо, по аналогии с закладными деталями. Опорная поверхность плиты выставляется гайками таким образом, чтобы разница фактической отметки от проектного положения составляла не более 1,5 мм.

Когда ведется установка колонны, то осевые риски, нанесенные на ветвях, совмещаются с рисками на опорных плитах. Это обеспечивает достаточную точность размещения, после чего колонну крепят анкерными болтами. В этом случае не требуется дополнительно выверять колонну по высоте или осям. После того, как установлены расчалки, на колонны можно монтировать подкрановые балки. Когда подкрановые балки совмещены по осевым рискам с колоннами, их не требуется дополнительно выверять. После закрепления балок с колонн снимаются расчалки.

Монтаж подкрановых балок

Данные балки устанавливаются после монтажа пары колонн. Во время подъема балка удерживается при помощи двух оттяжек. Для приема её на высоте монтажники располагаются на подмостках, площадках и монтажных лестницах. Задача рабочих – удержать балку от касания с установленными ранее элементами конструкции и придать ей нужное положение. Для контроля над спуском балки имеются риски на консоли. Для устранения вертикального отклонения используются стальные подкладки, размещаемые под балкой. Для временного крепления балки используются анкерные болты.

монтаж подкрановых балок

монтаж подкрановых балок

Если производится монтаж подкрановых балок на колонны с фрезерованными подошвами, фундамент которых забетонирован до проектного значения, или колонны на строганных металлических плитах, то достаточно выверить положение балок по главной оси.

Монтаж ферм

Перед установкой ферму необходимо подготовить – собрать, обустроить лестницами и расчалками. Её разворот поперёк пролета выполняется за счет расчалок. Для временного крепления также используются расчалки, а еще распорки, оттяжки и кондуктора. Ферма выверяется по осевым рискам, которые находятся на торцах.

Для подъема ферм используют траверсы одного или двух кранов, это зависит от массы и размеров поднимаемой конструкции. Их строповка производится исключительно в узлах верхнего пояса, иначе в стержнях могут возникнуть значительные изгибающие усилия. Обычно строповка выполняется в 4 точках при помощи траверс, снабженными полуавтоматическими захватами с дистанционным управлением. Если в процессе монтажа элементы конструкции испытывают значительные нагрузки, то их усиливают стальными трубами или пластинами из дерева.

Первая ферма, поднимаемая краном, разворачивается оттяжками в требуемое положение так, чтобы до верха колонн оставалось 0,5-0,7 м. Ферму опускают на монтажные столики, находящиеся на колоннах. Временное крепление производится болтами, после чего её положение выверяется и конструкция крепится окончательно. Для защиты от раскачивания ферма во время подъема удерживается 4мя гибкими оттяжками.

Последующая работа по монтажу металлоконструкций этого типа проводится аналогично. Вторую установленную ферму соединяют с первой с использованием прогонов, распорок и связей. Там образуется жесткая пространственная конструкция. Фермы соседних рядов соединяются болтами для повышения жесткости.

Монтаж настила

Промышленные здания со стальным или железобетонным каркасом зачастую обшиваются стальным профилированным настилом. Это способствует уменьшению массы строения. Высокую эффективность показывают профилированные панели, снабженные утеплителем. Они позволяют значительно экономить тепло, что достаточно важно в климатических условиях нашей страны.

Для настила используют листы из нержавеющей стали, которая дополнительно покрыта антикоррозионным составом. Применяют листы длиной 3-12 м, шириной 0,86-0,85 м и толщиной 0,8-1 мм. Длина листов обычно кратна 3 м и выбирается при проектировании в зависимости от расположения прогонов ферм. Стандартная высота продольных гофр – 60-80 мм.

Перед установкой листы соединяются в карты, так как монтировать листы отдельно весьма трудоемко, учитывая то, что все работы необходимо вести на высоте. Сборка выполняется на горизонтальных стендах, на которых имеются уголки по размерам карт. Соединение листов выполняется при помощи заклепок или точечной сваркой. Если используются заклепки, то отверстия в разложенных листах просверливаются вручную. Расстояние между отверстиями прописывается в проекте и обычно составляет 50-60 мм. В полученные отверстия помещаются заклепки, после обработки которых получается единая карта требуемого размера.

Строповка выполняется согласно схеме, в зависимости от размеров карты. Настил укладывается на прогоны или блоки перекрытия. Прогоны размещаются на узлах ферм, а, если фермы создаются из прямоугольных профилей замкнутого строения, то прямо на верхние пояса ферм. Размещение карт из профилированных листов выполняется с использованием рисок, отмечающих место укладки.

Для крепления к прогонам требуется оборудование для монтажа металлоконструкций, которое позволяет быстро соединить их с листами при помощи дюбелей или электрозаклепок. Наиболее распространено крепление гайковертом, который затягивается винты диаметром 6 мм с пластмассовыми или стальными шайбами под головкой.

Соединение металлоконструкций сваркой

Большая часть монтажных соединений выполняется при помощи сварки, меньшая – болтами, еще реже используются заклепки. Это оказывает виляние на стоимость монтажа металлоконструкций – сварные соединения наиболее дешевые. Соединение заклепками наиболее трудоемкое, однако, в некоторых случаях необходимо использовать только его. Примером может быть здание кузнечнопрессового цеха, для создания несущей металлоконструкции которого нельзя применять болты или сварку – от постоянной вибрации, создаваемой кузнечным оборудованием, эти соединения неизбежно разрушатся.

Сварку используют, когда требуется жесткое соединение конструкций, с плотным прилеганием элементом и водо- и газонепроницаемым швом. Только таким способом соединяют листовые конструкции в кожухах доменных и термических печей, резервуарах, пылеуловителях и газгольдерах. Среди опорных конструкций сварное соединение используют для стыков колонн с подкрановыми балками и стропильными фермами. Элементы стальных конструкций можно сваривать с элементами железобетонных. В таких случаях профили привариваются к закладным деталям.

207t

Для получения качественного шва свариваемые детали плотно прижимаются друг к другу. В основном для этого используются грубые монтажные болты. В некоторых случаях для создания соединения используются дополнительные металлические стыковочные накладки.

Колонны, высота которых превышает 18 м, для транспортировки разделяются на отправочные элементы, размеры которых зависят от средств, используемых для транспортировки. Для монтажа части колонн собираются в единое целое. Стыки колонн при возведении одноэтажных зданий промышленного назначения обычно выполняются в части над краном, выше подкрановых балок. Торцы основной и надкрановой частей колонн, обработанные фрезерованием, стыкуются и свариваются по контуру стыка. Чтобы повысить жесткость соединения, используют стыковые листовые накладки.

p0003

Для монтажа подкрановых балок их опирают на соответствующие плиты колонн и соединяют сначала болтами, а затем заваривают. Дополнительные крепление балки производится к надкрановой части колонны при помощи тормозных конструкций. Они также первоначально присоединяются болтами и привариваются протяженным швом. Соединение ферм с колоннами выполняется аналогично.

Когда выполняется монтаж зданий из металлоконструкций, то большую важность имеет качество выполняемых сварных швов. Они проверяются внешним осмотром, которым можно определить отклонения от геометрических размеров, порезы, непровар или крупные поры. Поверхность шва должна быть гладкая или в мелких чешуйках, а наплавленный материал – одинаковую плотность. Допустимые размеры отклонений и дефектов указаны в нормативных документах.

Соединение металлоконструкций болтами

Болтовые соединения могут выполняться болтами различной точности в зависимости от назначения соединений и воспринимаемых им нагрузок. В основном используются крепежные изделия нормальной и повышенной точности. Для соединений, которые подвергаются нагрузке на срез, запрещено использовать болты нормальной и грубой точности.

Отверстия под болты высверливают или продавливают таким образом, чтобы диаметр отверстия превышал внешний диаметр болта на 2-3 мм. Это упрощает сборку, однако делает их менее стойкими к деформациям. По этой причине болты, относящиеся к грубым и нормальным по классу точности, используются только тогда, когда один элемент непосредственно опирается на другой. Примеры – соединения на опорных столиках, планках и фланцах.

6-revit_structure_91

Соединения, в которых используются болты повышенной точности, являются альтернативой заклепочным соединениям в труднодоступных местах. Для таких соединений диаметр отверстий выполняется больше диаметра болта на величину до 0,3 мм. При соблюдении этого требования болты сидят в отверстиях весьма плотно и хорошо выдерживают сдвигающую нагрузку.

Высокопрочные болты являются наиболее эффективными крепежными элементами. В них сочетается высокая несущая способность со значительной устойчивостью к деформациям. Такие болты могут использовать вместо заклепок практически во всех соединениях. Затяжка гаек для таких болтов производится ключами с храповым механизмом, что позволяет контролировать усилие затяжки.

12

Номенклатура и область применения металлических конструкций

ВОПРОС 1.Номенклатура и область применения металлических конструкций. Основные особенности металлических конструкций. Достоинства и недостатки металлических конструкций. Принципы проектирования металлических конструкций. Организация проектирования. Требуемые свойства металлов и методы их оценки.

Применение металлических конструкций по виду конструктивной формы и назначению можно разделить на восемь областей.

1) Промышленные здания. Конструкции одноэтажных промышленных зданий в виде цельнометаллических или смешанных каркасов, в которых по железобетонным колоннам устанавливаются металлические конструкции покрытия здания («шатер») и подкрановые пути.

2)Большепролетные покрытия зданий. Здания общественного назначения (спортивные сооружения, рынки, выставочные павильоны, театры и некоторые здания производственного характера (ангары, авиасборочные цехи, лаборатории), имеющие большие пролеты (до 100-150 м).

3) Мосты, эстакады. Как и большепролетные покрытия, мосты имеют разнообразные системы: балочную, арочную, висячую, комбинированную.

4) Листовые конструкции. В виде резервуаров, газгольдеров, бункеров, трубопроводов большого диаметра и различных сооружений доменного комплекса, химического производства и нефтепереработки.

5) Башни и мачты. Применяются для радиосвязи и телевидения, в геодезической службе, в опорах линий электропередачи. Сюда же можно отнести надшахтные копры, нефтяные вышки, дымовые и вентиляционные трубы и промышленные этажерки.

6) Каркасы многоэтажных зданий.

7) Крановые и другие подвижные конструкции. Сюда относят всевозможные металлические конструкции мостовых, башенных, козловых кранов и кранов-перегружателей, конструкции крупных экскаваторов и разнообразных строительных машин, затворы и ворота гидротехнических сооружений, конструкций отвальных мостов.

8) Прочие конструкции. К ним относятся конструкции промышленности по использованию атомной энергии, конструкции радиотелескопов, лыжные трамплины и др.

    1. Основные особенности металлических конструкций

Во-первых, исходным материалом для всех МК является прокатный металл, выпускаемый по единому стандарту (сортаменту): лист, уголок, швеллер, двутавр, труба и т. п. Из этого материала компонуются все разнообразные конструктивные формы.

Во-вторых, все конструкции объединены одним технологическим процессом их изго­товления, в основе которого лежат холодная обработка металла (резка, гибка, образование отверстий и т.п.) и соединение деталей в конструктивные элементы и комплексы (сборочно-сварочные или сборочно-клепальные операции).

1.2.1 МК обладают следующими достоинствами:

Надежность МК обеспечивается близким совпадением их действительной работы (распределение напряжений и деформаций) с расчетными предположениями.

Легкость. Из всех изготовляемых в настоящее время несущих конструкций (железобетонные, каменные, деревянные) МК являются наиболее легкими. Вес конструкции зависит от отношения объемного веса материала к его расчетному сопротивлению:

1/м

Индустриальность. МК в основной своей массе изготовляются на заводах, оснащенных современным оборудованием, что обеспечивает высокую степень индустриальности их изготовления.

Непронициамость. Металлы обладают не только значительной прочностью, но и высокой плотностью, обеспечивающей непроницаемость для газов и жидкостей. Плотность металла и его соединений, осуществляемых с помощью сварки, является необходимым условием для изготовления и возведения листовых конструкций.

МК имеют и недостатки, ограничивающие их применение. Для нейтрализации этих недостатков необходимы специальные меры.

Коррозия. Незащищенная от действия влажной атмосферы, а иногда (что еще хуже) атмосферы, загрязненной агрессивными газами, сталь корродирует (окисляется), что постепенно приводит к се полному разрушению.

Небольшая огнестойкость. У стали при t =+200°С начинает уменьшаться модуль упругости, а при t =+600°С сталь полностью переходит в пластическое состояние. Принципы проектирования металлических конструкций

При проектировании МК, как и всяких других, должны учитываться следующие основные требования.

Элементы металлических конструкций — Энциклопедия по машиностроению XXL

Изображения швов элементов металлических конструкций  [c.125]

Пример 70. Элемент металлической конструкции (рис. 69), несущий растягивающую нагрузку, выполнен  [c.117]

Примером элемента металлических конструкций, работающего на срез, может служить заклепка (рис. 73, а). При некоторой величине действующих сил Р стержень заклепки может срезаться по сечению аЬ. Частный случай среза — скалывание деревянных элементов по плоскостям, параллельным волокнам древесины.  [c.81]

Исследования усталости элементов металлических конструкций проводятся как у нас (ЛПИ им. М. И. Калинина, Институт электросварки им. Е. О. Патона, Институты МПС и др.), так и за рубежом (ФРГ, США, Англия и др.).  [c.147]


Эффективные коэффициенты концентрации напряжений типовых элементов металлических конструкций, полученные в лаборатории ПТМ, в виде сводной таблицы опубликованы в работах [9, 16].  [c.152]

Все детали крановых механизмов и элементы металлических конструкций должны быть изготовлены из кондиционных материалов.  [c.949]

При установке приставных лестниц па высоте, на подкрановых балках, элементах металлических конструкций и т. п. необходимо прикрепить верх и низ лестницы к конструкциям.  [c.735]

Все существующие в настоящее время методы испытаний могут быть подразделены на полевые, натурные и лабораторные. Первые два типа испытаний проводят в естественных условиях, они требуют длительного времени (месяцы) и различаются тем, что в первом случае о коррозионной стойкости материала судят по поведению образцов-свидетелей, устанавливаемых в интересующие узлы эксплуатирующегося оборудования, а во втором — испытаниям подвергают опытные образцы аппаратов (или конструкций). Результаты обоих указанных типов испытаний не обладают высокой надежностью. В случае полевых испытаний это связано с тем, что воздействие агрессивной среды на образцы-свидетели и элементы металлической конструкции не всегда полностью совпадает. Например, при проведении коррозионных испытаний образцов-свидетелей в потоке движущейся жидкости условия ее течения вблизи их поверхности могут существенно отличаться от реализуемых на поверхности элементов оборудования (может возникать локальная турбулизация потока, застойные зоны, кавитационные эффекты и др.).  [c.142]

Нри коррозионном мониторинге на стадии эксплуатации оборудования используются такие методы непрерывного (или периодического) контроля его состояния, как визуальный осмотр осмотр труднодоступных участков оборудования при помощи телеметрических систем определение технологических свойств коррозионной среды (окислительно-восстановительного потенциала, наличия продуктов растворения элементов металлической конструкции, изменения концентрации коррозионно-активных агентов и др.) определение потенциала металла определение скорости коррозии образцов-свидетелей определение электрического сопротивления образцов-свидетелей ультразвуковая, магнитометрическая и акустическая дефектоскопия.  [c.148]


Начало применения заклепок для соединения элементов металлических конструкций относится к двадцатым годам прошлого  [c.164]

В некоторых элементах металлических конструкций растягивающая сила не проходит посредине привариваемой полки. Например, в уголке растягивающая сила проходит через центр тяжести сечения (рис. 12.17).  [c.172]

Склеивание как метод сборки неподвижных и неразъемных соединений получило в последнее время большое распространение. Особенно быстро внедряется склеивание элементов металлических конструкций самолетов, ракет и др. Склеиваются преимущественно пластмассы, стекла, керамика, легкие сплавы- алюминиевые, магниевые, реже — стали углеродистые нержавеющие, титан и др.  [c.367]

Эта задача является весьма важной для оптимального проектирования простейших композиционных материалов — многослойных пластин и оболочек, когда все слои — из одного и того же материала. Наиболее дешевая и простая технология соединения металлических слоев — холодная прокатка с использованием специальных плакировочных адгезионных пленок. Можно ожидать, что в ближайшем будущем будут изготовляться таким способом все важнейшие, несущие толстостенные элементы металлических конструкций (атомные и химические реакторы, сосуды давления, трубопроводы, броня танков, корпуса судов и подводных лодок и т.д. [1]). Эта технология позволит также освоить более прочные марки сталей, которые при старой технологии были малонадежны.  [c.217]

Разработан метод определения склонности и начальных стадий МКК металлографическим путем непосредственно на элементах металлических конструкций, находяш.ихся в эксплуатации или изъятых из изделий при проведении технического обслуживания. Шлифы делают в продольном сечении. После шлифования, обезжиривания и травления поверхности определяют расположение границ зерен. Замкнутые границы зерен характеризуют склонность металла к МКК или ее начало.  [c.24]

При анализе причин отказа (повреждения) и разрушения элементов металлических конструкций часто полезна информация о форме  [c.33]

При полностью хрупком разрушении элементов металлических конструкций, когда величина пластической деформации не превышает и десятых долей процента, шевронный рельеф, как правило, на поверхности хрупкого разрушения не образуется. Это же свойственно и случаю, когда сталь разрушается по межкристаллитному механизму (см. п. 2.3.2).  [c.45]

Деформационное старение в зонах и элементах металлических конструкций, испытывающих малоцикловую усталость и перегрузку в результате накопления при пластической деформации дефектов  [c.150]

Ш.З. Расчет элементов металлических конструкций на осевую силу  [c.367]

Для рам тележек могут применяться стали тех же марок, что и для изготовления расчетных элементов металлических конструкций мостов, а также стали типа СтЗ наряду с использованием для конструкций мостов сталей других марок.  [c.438]

Расчетные нагрузки на металлические конструкции строительных башенных кранов и их сочетания по ГОСТ 13994—81 даны в табл. II 1.3.4 и соответствуют методике расчета по предельным состояниям. В ГОСТ 13994— 81 даны сочетания нагрузок для расчета на прочность и устойчивость конкретных элементов конструкций. Условия прочности и устойчивости крана и элементов металлических конструкций имеют вид  [c.477]

Низкоуглеродистые стали общего назначения применяют для деталей, требующих в процессе изготовления гибки, резки, пробивки отверстий без последующего отжига или холодной высадки с большим деформированием материала (элементы металлических конструкций, котлов и других резервуаров, крепежные изделия — заклепки, винты, шайбы). Основными материалами металлических крановых и строительных конструкций являются стали СтЗ и СтЗкп.  [c.31]

Возможность экстраполяции имеющихся для элементов металлических конструкций Велеровских кривых до числа циклов 10 экспериментально пока не проверена.  [c.158]

В 1873 г. один из изобретателей железобетона, француз Ж. Монье получил патент на мосты из этого материала. В мостостроении открывались большие перспективы, появилась возможность устранить многие затруднения [3, с. 90]. Проблема строительства мостов особо остро стояла в колониальных владениях капиталистических стран, эксплуатировавших их природные богатства. Для сооружения мостов обычно применяли тесаные камни точных размеров и железо специальных марок. Для укладки на место тяжелых камней и элементов металлических конструкций требовались мощные подъемные механизмы и особые транспортные приспособления. Частые перебои в доставке этих материалов нередко вызывали приостановку работ. Между тем применение железобетонных конструкций не требовало д.тя транспортировки крупных средств, так как большую часть их компонентов составляют широко распространенные в природе песок и гравий, которые можно было добывать на месте строительства.  [c.202]

Армирующие углеродные волокна являются хрупкими и не обладают способностью к пластическим деформациям. Этот фактор ограничивает выбор методов переработки металлокомпозитов. Как указывалось выше, анизотропия механических характеристик армированных углеродными волокнами материалов дает возможность получать материалы с регулируемыми свойствами. Это достигается в процессе формования готового изделия из полуфабрикатов. При использовании армированных металлов в самолетостроении часто возникает необходимость последующих технологических операций соединения изделий из армированных металлов с деталями из других металлических материалов, частичное усиление армированными металлами элементов металлических конструкций и т. д. Однако обычная сварка армированных металлов затруднена. Поэтому необходимо прибегать к методу диффузионной сварки и другим способам соединения металлов, не требующим плавления металла. Другой путь решения этой задачи — соединять детали из металлокомпозитов с элементами из чистых металлов в процессе формования ме-таллокомпозита.  [c.245]

Элементы металлических конструкций складов удобрений должны быть защищены комбинированными покрытиями (табл. 25.9). Такие системы покрытий можно использовать для закладных и крепежных деталей. Перед окраской поверхность следует очистить от продуктов коррозии, окалины, жировых и других загрязнений по ГОСТ 9.402—80, при этом предпочтительна гидропестсо-струйная или дробеструйная очистка. Допускается также использование модификаторов и грунтовок-модификаторов (ПРЛ-2, 444, П-2, ЭВМ1ГИСИ, ЭВА-0112).  [c.47]

При установлении причин разрушения элементов металлических конструкций в ряде случаев неоценимую услугу оказывает строение изломов. Наличие кристаллического излома указывает на возможный температурный диапазон происшедшего треш инообра-зования или разрушения. Рассмотрим конкретный пример. В марте 1995 г. произошло разрушение паропровода Р-20 от Новогорьковской ТЭЦ Нижновэнерго до нефтехимического завода АО НОРСИ в Кс-тове. Паропровод был изготовлен из труб диаметром 377 мм с толш и-ной стенки 9 мм из стали 20. Рабочие параметры пара = 300 °С, Рр = 2 МПа. Общая длина паропровода 3555 м (рис. 2.20). Разрушение произошло на расстоянии 2800 м от ТЭЦ на участке длиной около 150 м. Разрушение имело взрывной характер с разбросом отдельных фрагментов паропровода на расстояние до 15 м от места разрыва. Однако каких-либо выпучин, вздутий, утонений стенок в зоне разрыва паропровода не выявлено.  [c.41]

За последние годы в области теории краностроения достигнуты крупные успехи, что нашло отражение в настоящем справочнике. Первый том дополнен материалами о нагрузках, о раскачивании груза на пространственных канатных подвесах, в нем нашли отражение также вероятностные методы расчета в крано-строении, метод расчета пределов выносливости элементов металлических конструкций, принципы оптимального проектирования крановых металлических конструкций и др.  [c.5]

Для элементов конструкций круговой цилиндрической формы, расположенных на большой высоте, необходимо производить поверочный расчет на резонанс (в поперечном к ветру направлении), когда периоды срыва вихрей ветра равны периоду собственных колебаний конструкции, при критической скорости ветра Уир = 5djx, где d — диаметр элемента конструкции (м), для конструкций с малой коничностью (с уклоном не более 0,01) — диаметр его сечения на уровне 2/3 высоты т период собственных колебаний при условии аэродинамической силы Р (z) (Н/м) на уровне г при колебаниях элементов металлической конструкции круговой цилиндрической формы Р z) = = Р (г) [0.60 ], где Ро — амплитуда интенсивности на уровне свободного конца балки консольного типа или в середине пролета однопролетной шарнирно опертой балки, Ро —v ipd/6,4 а (г) — относительная ордината прогибов для первой формы собственных колебаний для двухопорной балки, шарнирно опертой по концам, а (г) = sin лг//.  [c.58]

Недоводеев В. Я., Серлин Л. Г. Параметрическая оптимизация стержневых элементов металлических конструкций портала/УМеханика и процессы управления. Динамика и прочность машин, приборов и аппаратуры. Саратов,  [c.423]

Основным элементом металлической конструкции кран-балки (см. т. 2, разд. IV, гл. 2) является прокатный двутавр, по нижним полкам которого перемещается электроталь (тележка). Номер профиля двутавра выбирают из условий прочности, в том числе в зависимости от местного изгиба нижних полок (см. рис. II 1.1.25), устойчивости и жесткости в вертикальной плоскости (см. ниже) необходимая горизонтальная жесткость, обеспечивается для самых малых пролетов только концевыми подкосами, а для больших пролетов—одно- или двусторонними горизонтальными связями. Согласно правилам Госгортехнадзора [0.51 ], на кран-балках устройство галерей и площадок для обслуживания механизмов и электрооборудования, не обязательно. Для большйх пролетов (свыше 11 м), когда несущей способности прокатной двутавровой балки недостаточно, последняя должна быть усилена или подвешена к несущей конструкции моста. При этом возможны разнообразные решения [0.10, 0.21, 0.64].  [c.425]


МЕТАЛЛИЧЕСКИЕ КОНСТРУКЦИИ • Большая российская энциклопедия

МЕТАЛЛИ́ЧЕСКИЕ КОНСТРУ́КЦИИ, кон­ст­рук­ции, вы­пол­нен­ные из ме­тал­лов и их спла­вов и при­ме­няе­мые в строи­тель­ст­ве и др. от­рас­лях ма­те­ри­аль­но­го про­из-ва. Под­раз­де­ля­ют­ся на сталь­ные кон­ст­рук­ции и кон­ст­рук­ции из лёг­ких спла­вов (алю­ми­ние­вых спла­вов и ти­та­но­вых спла­вов). По ха­рак­те­ру со­еди­не­ния эле­мен­тов ме­ж­ду со­бой раз­ли­ча­ют М. к. свар­ные, клё­па­ные и с бол­то­вы­ми со­еди­не­ния­ми (см. Со­еди­не­ния в строи­тель­ных кон­ст­рук­ци­ях).

Стальные конструкции (С. к.)

Ис­ход­ным ма­те­риа­лом всех С. к. яв­ля­ют­ся про­кат­ные и гну­тые про­фи­ли, тру­бы и лис­ты, из­го­тов­лен­ные из строи­тель­ных ста­лей. С кон. 20 в. в М. к. из ста­ли ши­ро­ко ис­поль­зу­ют ре­гу­ли­ро­ва­ние уси­лий за счёт пред­ва­ри­тель­но­го на­пря­же­ния, ра­цио­наль­но­го раз­ме­ще­ния шар­нир­ных уз­лов и т. п.

Гл. дос­то­ин­ст­ва – вы­со­кая проч­ность, экс­плуа­тац. на­дёж­ность и спо­соб­ность эф­фек­тив­но ра­бо­тать на сжа­тие, рас­тя­же­ние и из­гиб. Осн. не­дос­тат­ки: под­вер­жен­ность кор­ро­зии, что тре­бу­ет пе­рио­дич. на­не­се­ния спец. за­щит­ных по­кры­тий и по­вы­ша­ет за­тра­ты на со­дер­жа­ние; хлад­но­лом­кость, ог­ра­ни­чи­ваю­щая ис­поль­зо­ва­ние в рай­онах с низ­ки­ми от­рица­тель­ны­ми темп-ра­ми, где не­об­хо­ди­мо при­ме­нять до­ро­го­стоя­щие ле­ги­ро­ван­ные ста­ли.

С. к. ши­ро­ко при­ме­ня­ют в не­су­щих кар­ка­сах зда­ний разл. на­зна­че­ния (в т. ч. вы­сот­ных) как в гра­ж­дан­ском, так и в пром. строи­тель­ст­ве, в со­ору­же­ни­ях свя­зи и энер­ге­ти­ки (ан­тен­ны, мач­ты, опо­ры ЛЭП), в ре­зер­вуа­рах, тру­бо­про­во­дах и т. п., при строи­тель­ст­ве мос­тов и эс­та­кад, бу­ро­вых плат­форм (ста­цио­нар­ных и пла­ву­чих), а так­же кра­но­вых и по­движ­ных кон­ст­рук­ций (гид­ро­тех­нич. за­тво­ры и во­ро­та, кон­ст­рук­ции стар­то­вых ком­плек­сов ра­кет и т. п.). В ог­ра­ж­даю­щих кон­ст­рук­ци­ях С. к. ис­поль­зу­ют в ви­де про­фи­ли­ро­ван­ных на­сти­лов (как са­мо­стоя­тель­но, так и в со­ста­ве кро­вель­ных и сте­но­вых па­не­лей) и в не­су­щих кон­ст­рук­ци­ях вит­ра­жей и на­вес­ных фа­са­дов. Раз­ра­бо­та­ны ти­по­вые ре­ше­ния наи­бо­лее час­то при­ме­няе­мых кон­ст­рук­тив­ных эле­мен­тов зда­ний и со­ору­же­ний.

Кон­ст­рук­тив­ные фор­мы С. к. от­ли­ча­ют­ся боль­шим раз­но­об­ра­зи­ем. Они мо­гут быть как пло­ско­ст­ны­ми (бал­ки, фер­мы, ра­мы, ар­ки, ван­ты), так и про­стран­ст­вен­ны­ми (стерж­не­вые, ви­ся­чие с гиб­ки­ми или жё­ст­ки­ми ни­тя­ми и лис­то­вые). При срав­ни­тель­но не­боль­ших про­лё­тах и на­груз­ках при­ме­ня­ют в осн. бал­ки и ко­лон­ны сплош­но­го се­че­ния, из­го­тов­лен­ные из про­кат­ных про­фи­лей или свар­ные из лис­тов. Они про­сты в из­го­тов­лении, но ме­нее вы­год­ны по за­тра­там ма­те­риа­ла. Бал­ки мо­гут быть вы­пол­не­ны бис­таль­ны­ми (т. е. из двух ма­рок ста­ли разл. проч­но­сти, где сталь по­вы­шен­ной проч­но­сти при­ме­ня­ет­ся толь­ко в наи­бо­лее на­пря­жён­ных уча­ст­ках поя­сов), пред­ва­ри­тель­но на­пря­жён­ны­ми, с пер­фо­ри­ро­ван­ной ли­бо гоф­ри­ро­ван­ной стен­кой. Это по­зво­ля­ет дос­тичь су­ще­ст­вен­ной эко­но­мии ста­ли, но по­вы­ша­ет тру­до­ём­кость из­го­тов­ле­ния. В зда­ни­ях с боль­ши­ми про­лё­та­ми и зна­чит. на­груз­ка­ми при­ме­ня­ют со­став­ные ре­шёт­ча­тые эле­мен­ты (ко­лон­ны и фер­мы), по­зво­ляю­щие ми­ни­ми­зи­ро­вать рас­ход ма­те­риа­ла. В тя­жё­лых кон­ст­рук­ци­ях ра­цио­наль­ны шпрен­гель­ные бал­ки или ком­би­ни­ров. сис­те­мы, где бал­ка под­кре­п­ле­на гиб­кой за­тяж­кой или ре­шёт­кой. Наи­бо­лее рас­про­стра­не­ны од­но­про­лёт­ные бал­ки и фер­мы, про­стые в из­го­тов­ле­нии и мон­та­же. В ин­ди­ви­ду­аль­ных про­ек­тах зда­ний, а так­же в мос­тах разл. на­зна­че­ния час­то ис­поль­зу­ют не­раз­рез­ные и кон­соль­ные бал­ки и фер­мы, ко­то­рые бо­лее эко­но­мич­ны и име­ют мень­шую вы­со­ту.

При про­лё­тах св. 100 м, в т. ч. при строи­тель­ст­ве мос­тов, осо­бен­но вы­год­ны ароч­ные и ви­ся­чие сис­те­мы. В по­кры­ти­ях спор­тив­ных и зре­лищ­ных со­ору­же­ний хо­ро­шо за­ре­ко­мен­до­ва­ли се­бя сталь­ные мем­бран­ные по­кры­тия [напр., ве­ло­трек в Кры­лат­ском в Мо­ск­ве раз­ме­ром 138×168 м с сед­ло­вид­ны­ми мем­бра­на­ми (1979), ви­ся­чее мем­бран­ное по­кры­тие Олим­пий­ско­го ста­дио­на в Мо­ск­ве 224×183 м (1980)], а так­же про­стран­ст­вен­ные сет­ча­тые сис­те­мы ре­гу­ляр­но­го строе­ния – т. н. струк­тур­ные кон­ст­рук­ции. К не­дос­тат­кам по­след­них от­но­сят­ся по­вы­шен­ная тру­до­ём­кость из­го­тов­ле­ния и слож­ность мон­та­жа.

При строи­тель­ст­ве до­мен­ных пе­чей, газ­голь­де­ров, бун­ке­ров и си­ло­сов, ды­мо­вых и вен­ти­ляц. труб и т. п., для ко­то­рых ха­рак­тер­но со­че­та­ние ди­на­мич. на­гру­зок, воз­дей­ст­вие аг­рес­сив­ных сред, вы­со­ких тем­пе­ра­тур и дав­ле­ний, при­ме­ня­ют в осн. лис­то­вые кон­ст­рук­ции.

Рис. 1. Телевизионная башня в Ташкенте (1985).

С. к. эф­фек­тив­ны при воз­веде­нии вы­сот­ных со­ору­же­ний. Напр., в 1985 в Таш­кен­те вве­де­на в экс­плуа­та­цию уни­каль­ная по кон­ст­рук­ции те­ле­ви­зи­он­ная баш­ня выс. 375 м, не­су­щий ствол ко­то­рой из­го­тов­лен из стерж­не­вых кон­ст­рук­ций, а опор­ная тре­но­га – из лис­то­вых (рис. 1).

Конструкции из лёгких сплавов

Гл. дос­то­ин­ст­ва М. к. из лёг­ких спла­вов – ма­лый вес, дол­го­веч­ность, вы­со­кая со­про­тив­ляе­мость кор­ро­зии (бла­го­да­ря че­му они, как пра­ви­ло, не ну­ж­да­ют­ся в за­щит­ных по­кры­ти­ях). Наи­боль­шее рас­про­стра­не­ние по­лу­чи­ли алю­ми­ние­вые кон­ст­рук­ции. Тех­но­ло­гич­ность и де­ко­ра­тив­ные ка­че­ст­ва алю­ми­ние­вых спла­вов спо­соб­ст­ву­ют ши­ро­ко­му ис­поль­зо­ва­нию кон­ст­рук­ций из них в ог­ра­ж­даю­щих эле­мен­тах и от­де­лоч­ных де­та­лях зда­ний. В то же вре­мя в свя­зи с вы­со­кой стои­мо­стью алю­ми­ния его при­ме­не­ние в не­су­щих кон­ст­рук­ци­ях до сер. 20 в. бы­ло ог­ра­ни­чен­ным, т. к. пря­мое ко­пи­ро­ва­ние ха­рак­тер­ных для ста­ли кон­ст­рук­тив­ных схем ока­зы­ва­лось не­эф­фек­тив­ным. Так­же от­ри­ца­тель­но ска­зы­ва­лись низ­кий мо­дуль уп­ру­го­сти алю­ми­ния (в 3 раза мень­ше, чем у ста­ли) и его вы­со­кий ко­эф. тем­пе­ра­тур­но­го рас­ши­ре­ния (вдвое боль­ше, чем у ста­ли).

По­ло­же­ние из­ме­ни­лось в 1966, ко­гда в СССР бы­ла пред­ло­же­на ка­че­ст­вен­но но­вая кон­ст­рук­ция из алю­ми­ния, со­вме­щаю­щая не­су­щие и ог­ра­ж­даю­щие функ­ции, – про­стран­ст­вен­ный блок по­кры­тия, вклю­чаю­щий 2 про­доль­ные фер­мы и при­кре­п­лён­ные к ним кро­вель­ную и по­то­лоч­ную об­шив­ки из ру­лон­но­го лис­та. При­ме­не­ние та­ких бло­ков да­ёт су­ще­ст­вен­ную эко­но­мию в стои­мо­сти строи­тель­ст­ва. Ма­лый собств. вес при зна­чит. раз­ме­рах в пла­не и лёг­кость об­ра­бот­ки алю­ми­ния по­зво­ля­ют из­го­тав­ли­вать бло­ки на строй­пло­щад­ке, ми­нуя пред­при­ятия строй­ин­ду­ст­рии, про­во­дить ско­ро­ст­ной мон­таж по­кры­тия без при­ме­не­ния тя­жёлых гру­зо­подъ­ём­ных ме­ха­низ­мов, а вы­со­кая стой­кость к кор­ро­зии де­ла­ет воз­мож­ным ис­поль­зо­ва­ние в кон­ст­рук­ци­ях ру­лон­ных лис­тов ми­ним. тол­щи­ны. По этой тех­но­ло­гии по­строе­ны Ле­до­вый дво­рец «Кры­лья Со­ве­тов» (Мо­ск­ва, 1980, про­лёт 60 м), по­кры­тие кон­церт­но­го за­ла «Юби­лей­ный» (Ял­та, 1983, рас­кры­ваю­щая­ся кров­ля) и др. Кро­ме то­го, при­ме­не­ние алю­ми­ния в не­су­щих кон­ст­рук­ци­ях зда­ний при­во­дит к зна­чит. об­лег­че­нию фун­да­мен­тов и кар­ка­са.

В хи­мич., неф­тя­ной и др. от­рас­лях пром-сти из алю­ми­ние­вых спла­вов из­го­тав­ли­ва­ют ре­зер­вуа­ры и тру­бо­про­во­ды; для нужд с. х-ва в РФ час­то при­ме­ня­ют­ся ан­гар­ные те­п­ли­цы с алю­ми­ние­вым кар­ка­сом про­лё­том до 36 м и алю­ми­ние­вые зер­но­хра­ни­ли­ща спи­раль­но-на­вив­но­го ти­па, ко­то­рые су­ще­ст­вен­но ме­нее тру­до­ём­ки в из­го­тов­ле­нии, чем сталь­ные.

Рис. 2. Алюминиевый мост через реку Сагеней (Канада, 1950).

За ру­бе­жом (пре­им. в США и Ка­на­де) алю­ми­ние­вые кон­ст­рук­ции с ус­пе­хом при­ме­ня­ют при строи­тель­ст­ве ав­то­до­рож­ных мос­тов (рис. 2) и осо­бен­но при их ре­кон­ст­рук­ции, где за­ме­на су­ще­ст­вую­ще­го сталь­но­го или жел.-бе­тон. про­лёт­но­го строе­ния на алю­ми­ние­вое по­зво­ля­ет уве­ли­чить ши­ри­ну мос­та за счёт сни­же­ния собств. ве­са про­ез­жей час­ти. Бла­го­да­ря ма­ло­му ве­су эф­фек­тив­но ис­поль­зо­ва­ние алю­ми­ния в под­виж­ных (сбор­но-раз­бор­ных) кон­ст­рук­ци­ях и бы­ст­ро­воз­во­ди­мых зда­ни­ях, раз­движ­ных кров­лях, раз­вод­ных мос­тах, а так­же при ре­кон­ст­рук­ции зда­ний.

Ти­та­но­вые кон­ст­рук­ции ха­рак­те­ри­зу­ют­ся, кро­ме ка­честв, об­щих для всех М. к. из лёг­ких спла­вов, вы­со­ки­ми жа­ро­проч­но­стью и из­но­со­стой­ко­стью, что при при­ме­не­нии в ря­де об­лас­тей тех­ни­ки ком­пен­си­ру­ет их боль­шую стои­мость. М. к. из ти­та­но­вых спла­вов ши­ро­ко ис­поль­зу­ют в авиа­ции (в т. ч. в кон­ст­рук­ци­ях ре­ак­тив­ных дви­га­те­лей), в су­до­строе­нии (для об­шив­ки кор­пу­сов и при из­го­тов­ле­нии греб­ных вин­тов), в хи­мич. пром-сти, в цвет­ной ме­тал­лур­гии, ма­ши­но­строе­нии, элек­тро­ни­ке, ядер­ной и крио­ген­ной тех­ни­ке. Ти­та­но­вый про­кат при­ме­ня­ют так­же в строи­тель­ст­ве для из­го­тов­ле­ния на­руж­ных об­ши­вок, де­ко­ра­тив­ной об­ли­цов­ки, внутр. от­дел­ки зда­ний. Из ти­та­но­вых спла­вов вы­пол­не­ны, напр., об­шив­ки мо­ну­мен­та «По­ко­ри­те­лям кос­мо­са» и па­мят­ни­ка Ю. А. Га­га­ри­ну в Мо­ск­ве.

Историческая справка

Рис. 3. Мост через реку Северн (Великобритания, 1779).

Как стро­ит. ма­те­ри­ал ме­талл при­ме­нял­ся из­древ­ле. Напр., уже в Древ­нем Ки­тае и, по ря­ду ис­точ­ни­ков, в Ин­дии строи­ли при­ми­тив­ные ви­ся­чие мос­ты с це­пя­ми из отд. же­лез­ных звень­ев. С 14 в. для стро­ит. кон­ст­рук­ций ис­поль­зо­ва­лось сва­роч­ное же­ле­зо в ви­де ко­ва­ных бру­сков или по­лос с ко­ва­ны­ми зам­ко­вы­ми со­еди­не­ния­ми. В 16–17 вв. в кон­ст­рук­ци­ях по­кры­тий зда­ний поя­ви­лись фер­мы и ку­по­ла из сва­роч­но­го же­ле­за про­лё­том 15–18 м. С 18 в. в ка­че­ст­ве ма­те­риа­ла для М. к. ши­ро­ко при­ме­нял­ся чу­гун, хо­ро­шо ра­бо­таю­щий на сжа­тие. В до­мах, по­стро­ен­ных в 18–19 вв., ис­поль­зо­ва­лись эле­мен­ты из чу­гу­на: ко­лон­ны, бал­ки, фер­мы, ле­ст­ни­цы. Од­ним из пер­вых круп­ных со­ору­же­ний из чу­гу­на был мост, воз­ве­дён­ный в Ве­лико­бри­та­нии в 1779 че­рез р. Се­верн (рис. 3, см. Айронбридж). К нач. 19 в. бы­ло по­строе­но зна­чит. ко­ли­че­ст­во чу­гун­ных мос­тов и по­кры­тий ароч­но­го ти­па в гражд. и пром. зда­ни­ях. Од­на­ко раз­ви­тие М. к. сдер­жи­ва­лось не­дос­тат­ка­ми чу­гу­на: низ­кой проч­но­стью при рас­тя­же­нии и ди­на­мич. воз­дей­ст­ви­ях, а так­же воз­мож­но­стью со­еди­не­ния чу­гун­ных эле­мен­тов толь­ко при по­мо­щи бол­тов. Изо­бре­те­ние в 1820 спо­со­ба со­еди­не­ний ме­тал­лич. де­та­лей по­сред­ст­вом за­клё­пок спо­соб­ст­во­ва­ло рос­ту ко­ли­че­ст­ва кон­ст­рук­ций из сва­роч­но­го же­ле­за – в пер­вую оче­редь мос­тов с мно­го­про­лёт­ны­ми ре­шёт­ча­ты­ми фер­ма­ми про­лё­та­ми до 100 м. С 1880-х гг. бла­го­да­ря ос­вое­нию мар­те­нов­ско­го, бес­се­ме­ров­ско­го и то­ма­сов­ско­го про­цес­сов на сме­ну чу­гу­ну и сва­роч­но­му же­ле­зу при­шла сталь, об­ла­даю­щая бо­лее вы­со­ки­ми ме­ха­нич. ха­рак­те­ри­сти­ка­ми. В кон. 19 в. воз­ве­дён ряд круп­ных объ­ек­тов из ста­ли: мост че­рез Вол­гу вбли­зи Сыз­ра­ни (Н. А. Бе­ле­люб­ский, 1880), Брук­лин­ский мост в Нью-Йор­ке (Дж. Рёб­линг, 1883), Эй­фе­ле­ва баш­ня в Па­ри­же (А. Г. Эй­фель, 1889), ви­ся­чие по­кры­тия Ни­же­го­род­ской яр­мар­ки (В. Г. Шу­хов, 1896). Изо­бре­те­ние элек­тро­свар­ки Н. Н. Бе­нар­до­сом (1882) и Н. Г. Сла­вя­но­вым (1888) от­кры­ло но­вый этап в раз­ви­тии и со­вер­шен­ст­во­ва­нии ме­тал­лич. кон­ст­рук­ций.

Фото Н. В. Шарыкиной Рис. 4. Зал ускорителя элементарных частиц (Протвино, 1964).

Пер­вая стро­ит. кон­ст­рук­ция из лёг­ких спла­вов – кар­низ зда­ния стра­хо­во­го об­ще­ст­ва в Мон­реа­ле – из­го­тов­ле­на в 1896 из алю­ми­ния, а с кон. 1920-х гг. на­ча­лось его ши­ро­кое при­ме­не­ние в строи­тель­ст­ве. Стро­пиль­ные фер­мы из алю­ми­ние­вых спла­вов впер­вые при­ме­не­ны в 1946 (Бит­тер­фельд, Гер­ма­ния, про­лёт 32 м), впо­след­ст­вии в ми­ре воз­ве­дён це­лый ряд зда­ний и со­ору­же­ний с не­су­щи­ми алю­ми­ние­вы­ми кон­ст­рук­ция­ми. В 1964 в Про­тви­но по­строе­но зда­ние экс­пе­рим. за­ла ус­ко­ри­те­ля эле­мен­тар­ных ча­стиц с не­су­щи­ми ар­ка­ми про­лё­том 90 м (рис. 4). Осн. вклад в ста­нов­ле­ние отеч. шко­лы про­ек­ти­ро­ва­ния и рас­чё­та М. к. вне­сли В. Г. Шу­хов, Н. С. Стре­лец­кий, Е. О. Па­тон, С. А. Иль­я­се­вич, Н. П. Мель­ни­ков, А. Ф. Бе­лов, Г. Д. По­пов, Е. И. Бе­ле­ня, С. В. Та­ра­нов­ский, В. И. Тро­фи­мов и др.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *