Skip to content

Электрический ток это что – Что такое электрический ток? Условия существования электрического тока: характеристики и действия

Содержание

Электрический ток. Источники электрического тока (Гребенюк Ю.В.)

На этом уроке мы поговорим об одном из важнейших понятий в жизни современного человека – электрическом токе. Без него невозможно представить себе нашу жизнь: мы заряжаем мобильные телефоны, смотрим телевизор, разогреваем еду в микроволновке – и всё это невозможно себе представить без направленного упорядоченного движения заряженных частиц, которые мы не можем разглядеть даже под микроскопом. Об электрическом токе, условиях его существования, классификации веществ по их способности проводить электрический ток, а также об источниках тока и пойдёт речь на уроке.

На предыдущих уроках мы поговорили об электрических зарядах, электрическом поле и взаимодействии заряженных частиц. Однако прежде мы не говорили о движении заряженных частиц. Наш сегодняшний урок восполнит этот пробел. Наверное, многие из вас на вопрос «Что бы вы взяли с собой на необитаемый остров?» сразу ответили бы: «Мобильный телефон, планшет, ноутбук…», однако, подумав, спохватились бы: «Ой, там же нет электричества!..» Трудно себе представить, что всего сто с небольшим лет назад большая часть нашей страны представляла собой такой вот остров, ведь электричеством могли пользоваться лишь немногие. Сегодня каждый из вас назовёт не менее десятка электрических приборов, без которых трудно представить свою жизнь: телевизор, компьютер, стиральная машина, микроволновка, электрический чайник, холодильник… Эти устройства называются электрическими, так как для их работы необходим электрический ток.

С этим понятием мы сталкиваемся практически каждый день. Наверное, каждый из вас слышал фразы «удар током», «линия под током» и т.п. Это слово настолько прочно вошло в нашу жизнь, что мы используем его, практически не задумываясь. Действительно, мы точно знаем, что если вставить вилку в розетку, то прибор начнёт работать. Но что происходит внутри розетки? Почему штепсель имеет именно такой вид? Чем опасно засовывание пальцев в розетку? Сейчас мы уже обладаем достаточными знаниями для того, чтобы разобраться в этих вещах.

Проведём простой опыт. Поставим на столе два электрометра (А и Б) и зарядим один из них, например, электрометр А (см. рис. 1). Стрелка электрометра А отклонится. Соединим кондукторы электрометров металлическим стержнем, закрепленным на пластмассовой ручке. По отклонению стрелок видно, что заряд электрометра Ауменьшился, а незаряженный электрометр Бполучил заряд (см. рис. 2)

. Это значит, что в результате перемещения частиц, имеющих электрический заряд, часть электрического заряда перешла по стержню от одного прибора к другому. В этом случае говорят, что по стержню прошел электрический ток.

Зарядим электрометр А

Рис.1. Зарядим электрометр А

Соединение кондукторов металлическим стержнем

Рис. 2. Соединение кондукторов металлическим стержнем

Электрический ток – это направленное упорядоченное движение заряженных частиц. Исходя из определения электрического тока, можно сформулировать одно из двух необходимых условий его возникновения и существования в любой среде. Очевидно, что всреде должны иметься свободные заряженные частицы, то есть такие частицы, которые могут перемещаться по всей среде (их еще называют носителями тока). Однако этого условия недостаточно, чтобы в среде возник и в течение длительного промежутка времени существовал электрический ток. Для создания и поддержания направленного движения свободных заряженных частиц также необходимо наличие электрического поля.Под действием этого поля движение свободных заряженных частиц приобретает упорядоченный (направленный) характер, что и означает появление в данной среде электрического тока.

Зная условия возникновения и существования электрического тока, нетрудно догадаться, что способность проводить электрический ток (или, как говорят физики, электрическая проводимость) у различных веществ неодинакова. В зависимости от этой способности все вещества и материалы принято делить на проводники, диэлектрики и полупроводники. Проводники – это вещества и материалы, которые хорошо проводят электрический ток. Проводниками являются металлы, водные растворы солей (например, поваренной соли), кислот и щелочей. Хорошая электрическая проводимость проводников объясняется наличием в них большого количества свободных заряженных частиц. Так, в металлическом проводнике часть электронов, покинув атомы, свободно перемещается по всему его объему (см. рис .3), и количество таких электронов достигает Соединение кондукторов металлическим стержнем

 в см3. Влажная земля, тела людей и животных хорошо проводят электрический ток, так как содержат вещества, являющиеся проводниками.

Покинувшие атом электроны

Рис. 3. Покинувшие атом электроны

Диэлектрики – это вещества, которые плохо проводят электрический ток. Диэлектриками являются некоторые твердые вещества (эбонит, фарфор, резина, стекло и др.), некоторые жидкости (дистиллированная вода, керосин и др.) и некоторые газы (водород, азот и др.). В диэлектриках почти отсутствуют свободные заряженные частицы, поэтому диэлектрики практически не проводят электрический ток. Проводники и диэлектрики широко используют в промышленности, быту, технике. Так, провода, по которым подводят электрический ток от электростанций к потребителям, изготавливают из металлов – хороших проводников. При этом на опорах провода располагают на изоляторах – это предупреждает стекание электрического заряда в землю. Для этого же слоями диэлектрика покрывают провода, прокладываемые в земле.

Существует также множество веществ, которые называют полупроводниками. В обычных условиях они плохо проводят электрический ток, и их можно отнести к диэлектрикам. Однако, если, например, повысить температуру или увеличить освещенность полупроводников, в них появляется достаточное количество свободных заряженных частиц – и полупроводники становятся проводниками. К полупроводникам относятся такие вещества, как германий, кремний, мышьяк и др.; их широко используют для изготовления радиоэлектронной аппаратуры, солнечных батарей и т.д.

Многим знакома ситуация: необходимо срочно позвонить, вы берете мобильный телефон и с огорчением обнаруживаете, что батарея аккумуляторов разрядилась, а телефон из чуда технической мысли превратился в кусок пластика. То же самое может произойти и с аккумуляторами фотоаппарата, плейера, фонарика, часов. Как же работает этот загадочный аккумулятор? Чем-то он напоминает наш организм, не правда ли? Ведь мы способны выполнять большой объём работы после еды, однако со временем начинаем ощущать усталость, слабость, наша энергия начинает иссякать. И нам необходимо отдохнуть, подкрепиться, чтобы с новыми силами приступить к работе. Естественно, что любое исправное электротехническое устройство будет работать только в том случае, если выполнены условия возникновения и существования электрического тока: наличие свободных заряженных частиц и наличие электрического поля. За создание электрического поля отвечают источники тока

. В источниках тока электрическое поле создается и поддерживается благодаря разделению разноименных электрических зарядов. В результате на одном полюсе источника накапливаются частицы, имеющие положительный заряд, а на втором – частицы, имеющие отрицательный заряд. Между полюсами возникает электрическое поле. Под действием этого поля в проводнике, соединяющем полюса источника, свободные заряженные частицы начинают направленное движение, то есть возникает электрический ток. Однако разделить разноименные заряды не так просто, ведь между ними существуют силы притяжения. Для разделения разноименных зарядов, а следовательно, для создания электрического поля, необходимо выполнить работу. И выполнить ее можно за счет механической, химической, тепловой и других видов энергии.

Источники электрического тока устройства, которые превращают различные виды энергии в электрическую энергию. Все источники электрического тока можно условно разделить на физические и химические. К физическим источникам электрического токапринято относить устройства, в которых разделение зарядов происходит за счет механической, световой или тепловой энергии. Примерами таких источников тока могут быть электрофорная машина, турбогенераторы электростанций, фото- и термоэлементы и др. Несмотря на все разнообразие физических источников электрического тока, в повседневной жизни мы чаще имеем дело с химическими источниками электрического тока – гальваническими элементами и аккумуляторами. Химическими источниками электрического тока называют устройства, в которых разделение зарядов происходит за счет энергии, выделяющейся в процессе химических реакций. Возьмём медную и цинковую пластины и очистим их поверхности. Между пластинами поместим ткань, смоченную в слабом растворе сульфатной кислоты (см. рис. 4).

Простейший химический источник

Рис. 4. Простейший химический источник

Полученное устройство и есть простейший химический источник электрического тока – гальванический элемент. Если соединить пластины через гальванометр(чувствительный электроизмерительный прибор, часто используемый в качестве индикатора слабого электрического тока), то прибор зафиксирует наличие тока (см. рис. 5).

Наличие тока в цепи

Рис. 5. Наличие тока в цепи

Гальванический элемент впервые создал итальянский ученый А.Вольта; он назвал его в честь своего соотечественника Л. Гальвани. Любой гальванический элемент состоит из двух электродов и электролита.Часто используют один металлический электрод, а второй – угольный или содержащий оксиды металлов. Электролитом служит твердое или жидкое вещество, которое проводит электрический ток благодаря наличию в нем большого количества свободных заряженных частиц – ионов. В описанном нами гальваническом элементе, электродами выступают цинковая и медная пластины, а электролитом – раствор сульфатной кислоты. Между электродами и электролитом происходят химические реакции, в результате которых один из электродов (анод)приобретает положительный заряд, а второй (катод)– отрицательный (см. рис. 6).

Гальванический элемент

Рис. 6. Гальванический элемент

Когда запас веществ, принимающих участие в реакциях, истощается, гальванический элемент прекращает работать. Для обеспечения электропитания фотоаппаратов, плейеров, настенных часов, карманных фонариков и т.п. широко используется марганцево-цинковый элемент – один из видов гальванических элементов. Со временем гальванические элементы становятся непригодными к работе, и их нельзя использовать повторно. А вот другой вид химических источников электрического тока – электрические аккумуляторы– можно использовать многократно.

Аккумуляторы, как и гальванические элементы, состоят из двух электродов, помещенных в электролит. Однако их можно снова зарядить. При зарядке аккумулятора химические реакции идут в обратном направлении и концентрация сульфатной кислоты восстанавливается. Следует отметить, что и аккумуляторы, и гальванические элементы обычно объединяют и получают, соответственно, аккумуляторнуюбатарею и батарею гальванических элементов.По принципу действия современные химические источники тока почти не отличаются от созданных более двух столетий назад. При этом сейчас существует множество разнообразных видов гальванических элементов и аккумуляторов и продолжается активная разработка новых. Друг от друга они отличаются размерами, массой, энергоемкостью, сроком службы, надежностью, безопасностью, стоимостью и т.д. Выбор того или иного химического источника тока продиктован сферой его применения. Так, в автомобилях целесообразно использовать относительно дешевые кислотные аккумуляторные батареи, и то, что они довольно тяжелые, не является существенным. А вот источники тока для мобильных телефонов должны быть легкими и безопасными, поэтому в данном случае целесообразно использовать так называемые литий-ионные батареи, хотя они сравнительно недешевы.

Электрический ток в природе

Если вас попросят привести пример электричества в природе, то почти наверняка речь пойдёт о молнии. Действительно, молния является, наверное, одной из самых грандиозных демонстраций мощи электричества. Однако использует ли природа электричество так же повсеместно, как и человек? Оказывается, да. Практически все живые существа функционируют благодаря электричеству. Например, нервный импульс человека – это электрический сигнал. Любая клетка обладает электрическим полем. И таких примеров можно привести массу. Мы же поговорим о существах, которые используют электричество в наиболее неожиданных и полезных для себя вариантах – о рыбах. Рыбы используют разряды:

– для освещения себе пути,

– для защиты, нападения и оглушения жертвы,

– для передачи сигнала друг другу и заблаговременного обнаружения препятствий.

Самыми известными электрическими рыбами являются электрический угорь, электрический скат и электрический сом. У этих рыб имеются специальные органы для накопления электрической энергии. Небольшие напряжения, возникающие в обычных мышечных волокнах, суммируются здесь благодаря последовательному включению множества отдельных элементов, которые нервами, как проводниками, соединены в длинные батареи (см. рис. 7).

Органы электрических рыб

Рис. 7. Органы электрических рыб

Среди других электрических рыб особенно выделяется скат торпедо (см. рис. 8), который встречается в Атлантическом, Индийском и Тихом океанах.

Скат торпедо

Рис. 8. Скат торпедо

Размеры торпедо достигают двух метров. Каждый орган состоит из множества колодцев, вертикальных по отношению к поверхности тела и сгруппированных подобно пчелиным сотам. В каждом колодце, заполненном студенистым веществом, помещается столбик из 350–400 лежащих друг на друге дисков. Диски играют роль электродов в электрической батарее. Вся система приводится в действие особой электрической долей мозга (см. рис. 9).

Орган торпедо

Рис. 9. Орган торпедо

Напряжения тока, вырабатываемого угрем, достаточно, чтобы убить в воде рыбу или лягушку. Он может произвести удар более чем в 500 вольт (для сравнения в обычной сети квартиры 220 вольт)! Угорь создает особенно сильное напряжение тока, когда изогнется дугой так, что жертва находится между его хвостом и головой: получается замкнутое электрическое кольцо.

Характерная особенность рыб, имеющих электрические органы, их малая восприимчивость к действию электрического тока. Так, например, электрический угорь без вреда для себя переносит напряжение 220 В. Племена, живущие по отдаленным притокам южноамериканских рек Амазонки, Ориноко и др., в местах брода у каждого берега держат на привязи лошадей. Когда кто-то хочет переправиться на противоположный берег, то он вначале гонит перед собой лошадь (но не едет на ней!), а сам идет следом за лошадью. Обратный путь он проделывает таким же образом. Чем объясняется этот весьма своеобразный способ переправы? В реках северо-восточной части Южной Америки обитает самая мощная из всех известных электрических рыб – электрический угорь. По этой причине племена, живущие по притокам этих рек, в местах брода, там, где водится много электрических угрей, устраивают переправу с помощью лошадей. Электрические угри разряжают свои батареи о ноги лошадей и не успевают, так сказать, перезарядить это оружие, так что люди переходят реку невредимыми

Решение задач

Рассмотрим примеры решения нескольких важных задач, связанных с понятием электрического тока.

Задача1. Можно ли утверждать, что в источниках тока возникают положительные и отрицательные заряды?

Решение

Для ответа на поставленный вопрос необходимо вспомнить, что происходит в источнике тока? В источнике тока происходит разделение разноимённых электрических зарядов под действием неэлектрических сил, что приводит к тому, что на разных полюсах источника тока накапливаются частицы с зарядами разных знаков (см. рис. 10). Вследствие этого и возникает электрическое поле между полюсами источника. Таким образом, в источнике происходит только разделение зарядов, а не их возникновение.

Разделение разноименных зарядов

Рис. 10. Разделение разноименных зарядов

Задача 2. Каким требованиям должен соответствовать материал для изготовления корпусов розеток и выключателей?

Решение

Как мы знаем из повседневного опыта, корпуса розетки и выключателя служат посредниками между человеком и электрической сетью. При этом человек сам является неплохим проводником электрического тока, поэтому, если бы не было защитных корпусов, случайное прикосновение человека к контактам могло бы привести к замыканию им электрической цепи и прохождению тока через тело человека. Именно поэтому корпуса розеток и выключателей делают обычно из пластмассы (и аналогичных материалов), то есть из веществ, которые не проводят электрический ток (диэлектриков).

Задача 3. Железный гвоздь и отрезок медного провода воткнули в лимон. Потечёт ли ток через провод, которым соединяют гвоздь и провод (см. рис. 11)?

Иллюстрация к задаче

Рис. 11. Иллюстрация к задаче

Решение

Фактически перед нами находится гальванический элемент. Кислота, содержащаяся в лимоне, будет играть роль электролита. Так как материалы, из которых изготовлены гвоздь и провод, разные, то и взаимодействовать с кислотой они будут по-разному, а значит, будет происходить разделение зарядов и данное устройство будет выполнять функции источника тока. В этом можно наглядно убедиться (см. рис. 12).

Источник тока

Рис. 12. Источник тока

Давайте посмотрим, как отреагирует гальванометр, если мы соединим его с медным проводом (см. рис. 13).

Гальванометр соединили с медным проводом

Рис. 13. Гальванометр соединили с медным проводом

Видим, что стрелка гальванометра отклоняется. Если мы соединим несколько лимонов, т.е. сделаем батарею из лимонов, то сможем получить достаточно существенный ток – такая батарея называется багдадской

Что такое батарейка?

Мы часто употребляем в обиходе слово «батарейка». Однако теперь, когда мы познакомились с источниками тока, можно определиться с тем, к какому же виду источников относится батарейка. Оказывается, что батарейки относятся к химическим источникам тока и могут быть как гальваническими элементами, так и аккумуляторами.

Батарейка – обиходное название источника электричества для автономного питания разнообразных устройств. Может представлять собой одиночный гальванический элемент, аккумулятор или их соединение в батарею. Часто мы слышим и такие понятия, как пальчиковая батарейка, «крона»… Что же они означают? Оказывается, батарейки принято классифицировать по различным критериям (размеры, характеристики, форма).

Основные виды батареек – минипальчиковая (или мизинчиковая – ААА), пальчиковая (АА), средняя (С), большая (D) и крона (см. рис. 14).

Классификация батареек

Рис. 14. Классификация батареек

Также батарейки классифицируют по типу электролита, который в них используется, поэтому батарейки бывают: сухие (твёрдый электролит), щелоч

Постоянный ток — Википедия

Постоя́нный ток — электрический ток, который с течением времени не изменяется по величине и направлению.

Постоянный ток является разновидностью однонаправленного тока. Однонаправленный ток (англ. direct current) — это электрический ток, не изменяющий своего направления[1]. Часто можно встретить сокращения DC от первых букв английских слов, или символом (ГОСТ 2.721-74), или —

На рисунке к этой статье красным цветом изображён график постоянного тока. По горизонтальной оси отложен масштаб времени t{\displaystyle t}, а по вертикальной — масштаб тока I{\displaystyle I} или электрического напряжения U{\displaystyle U}. Как видно, график постоянного тока представляет собой прямую линию, параллельную горизонтальной оси (оси времени).

Величина постоянного тока I{\displaystyle I} и электрического напряжения U{\displaystyle U} для любого момента времени сохраняется неизменной.

При постоянном токе через каждое поперечное сечение проводника в единицу времени протекает одинаковое количество электричества (электрических зарядов).

Постоянный ток — это постоянное направленное движение заряженных частиц в электрическом поле.

В каждой точке проводника, по которому протекает постоянный ток, одни элементарные электрические заряды непрерывно сменяются другими, совершенно одинаковыми по сумме электрическими зарядами. Несмотря на непрерывное перемещение электрических зарядов вдоль проводника, общее пространственное их расположение внутри проводника как бы остаётся неизменным во времени, или стационарным.

Переносчиками электрических зарядов являются:

Постоянное движение электрических зарядов создаётся и поддерживается сторонними силами, которые могут иметь химическую (в гальванических элементах), электромагнитную (динамо-машина постоянного тока), механическую (электрофорная машина) или иную (например, радиоактивную в стронциевых источниках тока) природу. Во всех случаях источник тока является преобразователем энергии сторонних сил в электрическую.

Электрическое поле, сопутствующее постоянному току в проводнике и в соответствии с этим стационарное распределение в нём электрических зарядов, называется стационарным (неизменным во времени) электрическим полем.

Электрические заряды в стационарном электрическом поле нигде не накапливаются и нигде не исчезают, так как при всяком пространственном перераспределении зарядов неизбежно должно было бы измениться стационарное электрическое поле и соответственно ток перестал бы быть постоянным по времени.

Для стационарности поля и тока требуется, чтобы электрические заряды нигде не накапливались и нигде не терялись, а перемещались непрерывным и равномерным потоком вдоль проводников. Для этого необходимо, чтобы проводники совместно образовывали замкнутый на себя контур. В этом случае будет достигнуто непрерывное круговое равномерное движение электрических зарядов вдоль всего контура.

Постоянный электрический ток может существовать только в замкнутом на себя контуре, состоящем из совокупности проводников электричества, в котором действует стационарное электрическое поле.

Circuit1new.jpg

Самыми первыми источниками постоянного тока являлись химические источники тока: гальванические элементы, затем были изобретены аккумуляторы. Полярность химических источников тока самопроизвольно измениться не может.

Для получения постоянного тока в промышленных масштабах используют электрические машины — генераторы постоянного тока, а также солнечные батареи.

В электронной аппаратуре, питающейся от сети переменного тока, для получения постоянного тока используют блоки питания. Как правило, переменный ток понижается трансформатором до нужного значения, затем выпрямляется. Далее для уменьшения пульсаций используется сглаживающий фильтр и, при необходимости, стабилизатор тока или стабилизатор напряжения или регулятор напряжения.

В современной радиоэлектронной аппаратуре получили распространение импульсные блоки питания. Сглаживание пульсаций выходного напряжения происходит благодаря наличию интегрирующего элемента, способного накапливать электрическую энергию и отдавать её в нагрузку. В результате на выходе можно получить практически постоянный ток.

Электрическую энергию могут накапливать электрические конденсаторы. В общем случае, при разряде конденсатора во внешней цепи протекает переменный ток. Если конденсатор разряжается через резистор, то появляется однонаправленный переменный ток (постепенно уменьшающийся). Однако, если конденсатор разряжается через катушку индуктивности, то в цепи появляется двунаправленный переменный ток, это устройство называется колебательный контур. Электролитические конденсаторы могут иметь очень большую электрическую ёмкость (сотни и тысячи микрофарад и более). При разряде таких конденсаторов через большое сопротивление ток уменьшается медленнее, и для короткого времени можно считать, что во внешней цепи протекает постоянный ток.

Ионисторы — гибрид конденсатора и химического источника тока, способны накапливать и отдавать довольно большое количество электрической энергии, например, чтобы электромобиль с ионисторами проехал некоторое расстояние.

Направление постоянного тока и обозначения на электроприборах и схемах[править | править код]

Circuit1new.jpg Условное обозначение однонаправленного тока на электроприборах

Условно принято считать (общепринято), что электрический ток в электрическом поле имеет направление от точек с бо́льшими потенциалами к точкам с меньшими потенциалами. Это значит, что направление постоянного электрического тока всегда совпадает с направлением движения положительных электрических зарядов, например положительных ионов в электролитах и газах. Там же, где электрический ток создаётся только движением потока отрицательно заряженных частиц, например, потока свободных электронов в металлах, за направление электрического тока принимают направление, противоположное движению электронов.

Точки с бо́льшими потенциалами (например, на зажимах батареек и аккумуляторов) носят название «положи́тельный по́люс» и обозначаются знаком +{\displaystyle +} («плюс»), а точки с меньшими потенциалами называются «отрица́тельный по́люс» и обозначаются знаком −{\displaystyle -}(«минус»).

Исторически сложилось, что электрическая изоляция положительного провода окрашена в красный цвет, а отрицательного провода — в синий или чёрный.

Условное обозначение на электроприборах: −{\displaystyle \mathbf {-} } или ={\displaystyle \mathbf {=} }. Однонаправленный ток (в том числе постоянный) обозначается латинскими буквами DC{\displaystyle DC}. Для однонаправленного тока может быть также использован символ Юникода ⎓ (U+2393).

В ряде случаев можно встретить другие символы, например на малогабаритных штекерах, предназначенных для подключения к электронному устройству сетевого блока питания (или на корпусе самого электронного устройства, возле разъёма для подключения штекера) ⊙{\displaystyle \odot } с указанием полярности.

Электроды каких-либо устройств или радиодеталей (диодов, тиристоров, вакуумных электронных приборов), подключаемые к положительному проводу, носят название «анод», а электроды, подключаемые к отрицательному проводу, называются «катод»[2].

Величина постоянного тока (сила тока)[править | править код]

Мерой интенсивности движения электрических зарядов в проводниках является величина тока или просто ток (I, i){\displaystyle (I,~i)}.

Величина тока — это количество электрических зарядов (электричества), протекающих через поперечное сечение проводника в единицу времени.

Общепринято, что вместо терминов «ток» и «величина тока» часто применяется термин «сила тока».

Термин «сила тока» является некорректным, так как сила тока не есть какая-то сила в буквальном смысле этого слова, а только интенсивность движения электрических зарядов в проводнике, количество электричества, проходящего за единицу времени через площадь поперечного сечения проводника. В проводах нет никаких сил. Мы с вами не будем нарушать эту традицию.

Если при равномерном движении электрических зарядов по проводнику за время t{\displaystyle t} протекло количество электричества Q{\displaystyle Q}, то ток в проводнике можно выразить формулой I=Qt{\displaystyle I={\frac {Q}{t}}}.

В проводнике ток равен одному амперу A{\displaystyle A}, если через площадь поперечного сечения его за одну секунду протекает один кулон электричества.

Ампер — единица измерения силы тока, названа в честь Андре-Мари Ампера.

Кулон — единица измерения электрического заряда (количества электричества), названа в честь Шарля Кулона. В тех случаях, когда приходится иметь дело с большими токами, количество электричества измеряется более крупной единицей, называемой ампер-часом, 1 ампер-час равен 3 600 кулонам.

Сила тока измеряется амперметром, он включается в цепь так, чтобы через него проходил весь измеряемый ток, то есть последовательно.

Плотность тока[править | править код]

В электротехнике часто бывает важно знать не только силу тока в проводнике, но и плотность тока, так как плотность тока является мерой допустимой нагрузки проводов.

Плотностью тока называют ток (j{\displaystyle (j} или δ){\displaystyle \delta )}, приходящийся на единицу площади проводника: j=IS{\displaystyle j={\frac {I}{S}}}, где

I{\displaystyle I} — сила тока, в Амперах;
S{\displaystyle S} — площадь поперечного сечения проводника, в квадратных метрах,
j{\displaystyle j} — плотность тока, выражается в амперах на квадратный метр: [Am2]{\displaystyle \left[{\frac {A}{m^{2}}}\right]}.

Так как провода с поперечным сечением, исчисляемым квадратными метрами, встречаются крайне редко, то плотность тока обычно выражается в амперах на квадратный миллиметр [Amm2]{\displaystyle \left[{\frac {A}{mm^{2}}}\right]}.

Электродвижущая сила и электрическое напряжение[править | править код]

Разность потенциалов между точками, между которыми протекает постоянный ток, могут охарактеризовать электродвижущая сила и электрическое напряжение.

Электродвижущая сила[править | править код]

Каждый первичный источник электрической энергии создаёт стороннее электрическое поле. В электрических машинах (генераторах постоянного тока) стороннее электрическое поле создаётся в металлических проводниках якоря, вращающегося в магнитном поле, а в гальванических элементах и аккумуляторах — в месте соприкосновения электродов с электролитом (растворами солей или кислот) при их химическом взаимодействии.

Стороннее электрическое поле, имеющееся в источнике электрической энергии постоянного тока, непрерывно взаимодействует на электрические заряды проводников, образующих вместе с ним замкнутую цепь, и создаёт в ней постоянный электрический ток.

Перемещая электрические заряды по замкнутой цепи, силы стороннего электрического поля преодолевают сопротивление противодействующих сил, например вещественных частиц проводников. Это приводит к тому, что силы стороннего электрического поля совершают работу за счёт энергии этого поля. По мере расхода энергии стороннее электрическое поле пополняет её за счёт механической или химической энергии.

В результате работы сил стороннего электрического поля энергия этого поля переходит в электрической цепи в какие-либо иные виды энергии, например в тепловую энергию в металлических проводниках, тепловую и химическую в электролитах, тепловую и световую энергию в электрических лампах и так далее.

Выражение «работа сил стороннего электрического поля» источника электрической энергии ради краткости обычно заменяют выражением «работа источника электрической энергии».

Если известна работа, совершаемая источником электрической энергии при перемещении единичного электрического заряда по всей замкнутой электрической цепи, то легко определить работу, совершаемую им при переносе некого электрического заряда Q{\displaystyle Q} по этой цепи, так как величина работы пропорциональна величине заряда.

Величина, численно равная работе, совершаемой источником электрической энергии при переносе единицы положительного заряда по всей замкнутой цепи, называется электродвижущей силой E{\displaystyle E}.

Следовательно, если источник электрической энергии при переносе заряда Q{\displaystyle Q} по всей замкнутой цепи совершил работу A{\displaystyle A}, то его электродвижущая сила E{\displaystyle E} равна E=AQ{\displaystyle E={\frac {A}{Q}}}.

В Международной системе единиц (СИ) за единицу измерения электродвижущей силы принимается один вольт ( v, V ){\displaystyle (~v,~V~)}. Единица названа в честь итальянского физика и физиолога Алессандро Вольта.

Электродвижущая сила источника электрической энергии равна одному вольту, если при перемещении одного кулона электричества по всей замкнутой цепи им была совершена работа, равная одному джоулю : 1 volt=1 joule1 coulomb{\displaystyle 1~volt={\frac {1~joule}{1~coulomb}}}.

Например, если электродвижущая сила какого-либо источника электрической энергии E=220 volt{\displaystyle E=220~volt}, то это надо понимать так, что источник электрической энергии, перемещая один кулон электричества по всей замкнутой цепи, совершит работу A=220 joule{\displaystyle A=220~joule}, так как E=AQ=220 joule1 coulomb{\displaystyle E={\frac {A}{Q}}={\frac {220~joule}{1~coulomb}}}.

Из формулы E=AQ{\displaystyle E={\frac {A}{Q}}} следует, что A=EQ{\displaystyle A=EQ}, то есть работа источника электрической энергии при переносе его электрического заряда по всей замкнутой цепи равна произведению величины электродвижущей силы E{\displaystyle E} его на величину переносимого электрического заряда Q{\displaystyle Q}.

Электрическое напряжение[править | править код]

Если источник электрической энергии переносит электрический заряд Q{\displaystyle Q} по всей замкнутой цепи, то он совершает некоторую работу A{\displaystyle A}. Часть этой работы A0{\displaystyle A_{0}} он совершает при переносе заряда Q{\displaystyle Q} по внутреннему участку цепи (участок внутри самого источника электрической энергии), а другую часть A1{\displaystyle A_{1}} — при переносе заряда Q{\displaystyle Q} по внешнему участку цепи (вне источника).

Следовательно, A=A0+A1{\displaystyle A=A_{0}+A_{1}}, то есть работа A{\displaystyle A}, совершаемая источником электрической энергии при переносе электрического заряда Q{\displaystyle Q} по всей замкнутой цепи, равна сумме работ, совершаемых им при переносе этого заряда по внутреннему и внешнему участкам этой цепи.

Если разделить левую и правую часть равенства A=A0+A1{\displaystyle A=A_{0}+A_{1}} на величину единичного заряда Q{\displaystyle Q}, получим работу, отнесённую к единичному заряду: AQ=A0Q+A1Q{\displaystyle {\frac {A}{Q}}={\frac {A_{0}}{Q}}+{\frac {A_{1}}{Q}}}.

Работа источника электрической энергии, совершаемая им при переносе единичного заряда по всей замкнутой цепи, численно равна его электродвижущей силе, то есть E=AQ{\displaystyle E={\frac {A}{Q}}}, где E{\displaystyle E} — электродвижущая сила источника электрической энергии.

Величина A0Q{\displaystyle {\frac {A_{0}}{Q}}}, численно равная работе, совершаемой источником электрической энергии при переносе единичного заряда по внутреннему участку цепи, называется падением напряжения (напряжением) на внутреннем участке цепи, то есть U0=A0Q{\displaystyle U_{0}={\frac {A_{0}}{Q}}}, где U0{\displaystyle U_{0}} — падение напряжения на внутреннем участке цепи.

Величина A1Q{\displaystyle {\frac {A_{1}}{Q}}}, численно равная работе, совершаемой источником электрической энергии при переносе единичного заряда Q{\displaystyle Q} по внешнему участку цепи, называется падением напряжения (напряжением) на внешнем участке цепи, то есть U1=A1Q{\displaystyle U_{1}={\frac {A_{1}}{Q}}}, где U1{\displaystyle U_{1}} — падение напряжения на внешнем участке цепи.

Следовательно, равенству AQ=A0Q+A1Q{\displaystyle {\frac {A}{Q}}={\frac {A_{0}}{Q}}+{\frac {A_{1}}{Q}}} можно придать такой вид: E=U0+U1{\displaystyle E=U_{0}+U_{1}}, то есть

Электродвижущая сила источника электрической энергии, создающего ток в электрической цепи, равняется сумме падений напряжения на внутреннем и внешнем участке цепи.

Из равенства E=U0+U1{\displaystyle E=U_{0}+U_{1}} следует, что U1=E−U0{\displaystyle U_{1}=E-U_{0}}, то есть падение напряжения на внешнем участке цепи меньше электродвижущей силы источника электрической энергии на величину падения напряжения на внутреннем участке цепи.

Следовательно, чем больше падение напряжения внутри источника электрической энергии, тем меньше при всех прочих равных условиях падение напряжения на зажимах источника электрической энергии.

Так как падение напряжения имеет одинаковую размерность с электродвижущей силой, то есть выражается в джоулях на кулон, или, иначе, в вольтах, то за единицу измерения падения напряжения (электрического напряжения) принят один вольт.

Электрическое напряжение на зажимах источника электрической энергии (падение напряжения на внешнем участке цепи) равно одному вольту, если источник электрической энергии совершает работу, равную одному джоулю, при переносе электрического заряда в один кулон по внешнему участку цепи.

Напряжение на участках цепи измеряется вольтметром, он всегда присоединяется к тем точкам цепи, между которыми он должен измерить падение напряжения, то есть параллельно.

  • Постоянный ток широко используется в технике: подавляющее большинство электронных схем в качестве питания используют постоянный ток.
  • Постоянный ток, вырабатываемый химическими источниками тока (гальваническими элементами, аккумуляторами), применяется для автономного электропитания многочисленных электрических и электронных устройств: электрофонарей, игрушек, аккумуляторного электроинструмента, средств связи, и т. п.
  • Постоянный ток применяется в электролизе: на установках промышленного электролиза из растворов или расплавов солей получают алюминий, магний, натрий, калий, никель, медь, хлор и другие вещества.
  • Постоянный ток применяется в гальванизации и гальванопластике — на электропроводящей поверхности какого-нибудь предмета электрохимическим путём осаждается защитное или декоративное металлическое покрытие, например, бронзовый корпус наручных часов покрывается тонким слоем золота.
  • Постоянный ток в ряде случаев используется при сварочных работах (электрическая дуговая или электрогазовая сварка), например, сварить деталь из нержавеющей стали специальным сварочным электродом можно только постоянным током.
  • В некоторых устройствах постоянный ток преобразуется в переменный ток преобразователями (инверторами), например, в компьютерных бесперебойных блоках питания при работе в автономном режиме.
  • В бортовых сетях автомобилей традиционно применяется постоянный ток, потому что при неработающем двигателе все основные потребители получают питание от автомобильного аккумулятора. На старых автомобилях (ГАЗ-51, ГАЗ-69, ГАЗ-М-20 «Победа» и многих других), другой мото- и сельскохозяйственной технике устанавливались автомобильные генераторы постоянного тока. Развитие полупроводниковой техники привело к тому, что с 1970-х годов их вытеснили трёхфазные генераторы переменного тока как более лёгкие, компактные и надёжные.
  • На некоторых типах судов используется электрическая передача (дизель-электроходы, ледоколы, подводные лодки).
  • Электрофорез — введение лекарственных веществ в организм с помощью постоянного тока или разделение смеси веществ в научных или промышленных целях, например электрофорез белков.

Постоянный ток на транспорте[править | править код]

Электричество — Википедия

Электри́чество (от лат. electricus, далее из др.-греч. ἤλεκτρον) — совокупность явлений, обусловленных существованием, взаимодействием и движением электрических зарядов. Термин введён английским естествоиспытателем Уильямом Гильбертом в его сочинении «О магните, магнитных телах и о большом магните — Земле» (1600 год), в котором объясняется действие магнитного компаса и описываются некоторые опыты с наэлектризованными телами. Он установил, что свойством наэлектризовываться обладают и другие вещества[1].

Одним из первых, чьё внимание привлекло электричество, был греческий философ финикийского происхождения Фалес Милетский, который в VII веке до н. э. обнаружил, что потёртый о шерсть янтарь (др.-греч. ἤλεκτρον: электрон) приобретает свойства притягивать лёгкие предметы[2]. Однако, долгое время знание об электричестве не шло дальше этого представления. В 1600 году Уильям Гилберт ввёл в обращение сам термин электричество («янтарность»), а в 1663 году магдебургский бургомистр Отто фон Герике создал электростатическую машину в виде насаженного на металлический стержень серного шара, которая позволила наблюдать не только эффект притягивания, но и эффект отталкивания[3]. В 1729 году англичанин Стивен Грей провёл опыты по передаче электричества на расстояние, обнаружив, что не все материалы одинаково передают электричество[4]. В 1733 году француз Шарль Дюфе установил существование двух типов электричества стеклянного и смоляного, которые выявлялись при трении стекла о шёлк и смолы о шерсть[5]. В 1745 г. голландец Питер ван Мушенбрук создаёт первый электрический конденсатор — Лейденскую банку. Примерно в эти же годы работы по изучению атмосферного электричества вели и русские учёные — Г. В. Рихман и М. В. Ломоносов.

Первую теорию электричества создаёт американец Бенджамин Франклин, который рассматривает электричество как «нематериальную жидкость», флюид («Опыты и наблюдения с электричеством», 1747 год). Он также вводит понятие положительного и отрицательного заряда, изобретает молниеотвод и с его помощью доказывает электрическую природу молний[6]. Изучение электричества переходит в категорию точной науки после открытия в 1785 году закона Кулона.

Далее, в 1791 году, итальянец Гальвани публикует «Трактат о силах электричества при мышечном движении», в котором описывает наличие электрического тока в мышцах животных. Другой итальянец Вольта в 1800 году изобретает первый источник постоянного тока — гальванический элемент, представляющий собой столб из цинковых и серебряных кружочков, разделённых смоченной в подсоленной воде бумагой[1]. В 1802 году Василий Петров обнаружил вольтову дугу.

С этого открытия русского ученого началась история электрической лампочки или лампы накаливания. В дальнейшем основной вклад в создание электрической лампочки внесли русские инженеры Павел Николаевич Яблочков и Александр Николаевич Лодыгин.

Лодыгин после долгих экспериментов создал «Товарищество электрического освещения Лодыгин и компания» и в 1873 году продемонстрировал лампы накаливания своей системы. Академия наук присвоила Лодыгину Ломоносовскую премию за то, что его изобретение приводит к «полезным, важным и новым практическим применениям». Тогда же собственную конструкцию лампы параллельно разрабатывал Павел Яблочков. В 1876 году он получил патент за лампочку своей системы, которая получила название «свеча Яблочкова». После грандиозного успеха свечи Яблочкова на Парижской выставке 1878 года, которую посетило много русских, ею заинтересовались в России. Лодыгину, наоборот, не удалось наладить в России широкое производство своих ламп. Он уехал в Америку, и там узнал, что изобретенная им лампочка носит имя Эдисона. Но русский инженер не стал доказывать свой приоритет, а продолжал работу над усовершенствованием своего изобретения[7].

В 1820 году датский физик Эрстед на опыте обнаружил электромагнитное взаимодействие. Замыкая и размыкая цепь с током, он увидел колебания стрелки компаса, расположенной вблизи проводника. Французский физик Ампер в 1821 году установил, что связь электричества и магнетизма наблюдается только в случае электрического тока и отсутствует в случае статического электричества. Работы Джоуля, Ленца, Ома расширяют понимание электричества. Гаусс формулирует основную теорему теории электростатического поля (1830).

Опираясь на исследования Эрстеда и Ампера, Фарадей открывает явление электромагнитной индукции в 1831 году и создаёт на его основе первый в мире генератор электроэнергии, вдвигая в катушку намагниченный сердечник и фиксируя возникновение тока в витках катушки. Фарадей открывает электромагнитную индукцию (1831) и законы электролиза (1834), вводит понятие электрического и магнитного полей. Анализ явления электролиза привёл Фарадея к мысли, что носителем электрических сил являются не какие-либо электрические жидкости, а атомы — частицы материи. «Атомы материи каким-то образом одарены электрическими силами», — утверждает он. Фарадеевские исследования электролиза сыграли принципиальную роль в становлении электронной теории. Фарадей создал и первый в мире электродвигатель — проволочка с током, вращающаяся вокруг магнита. Венцом исследований электромагнетизма явилась разработка британским (шотландским) физиком Д. К. Максвеллом теории электромагнитных явлений. Он вывел уравнения, связывающие воедино электрические и магнитные характеристики поля в 1873 году.

В 1880 году Пьер Кюри открывает пьезоэлектричество. В том же году Д. А. Лачинов показал условия передачи электроэнергии на большие расстояния. Герц экспериментально регистрирует электромагнитные волны (1888 год).

В 1897 году Джозеф Томсон открывает материальный носитель электричества — электрон, место которого в структуре атома указал впоследствии Эрнест Резерфорд.

В XX веке была создана теория Квантовой электродинамики. В 1967 году был сделан очередной шаг на пути изучения электричества. С. Вайнберг, А. Салам и Ш. Глэшоу создали объединённую теорию электрослабых взаимодействий.

Электрический заряд — это свойство тел (количественно характеризуемое физической величиной того же названия), проявляющееся, прежде всего, в способности создавать вокруг себя электрическое поле и посредством него оказывать воздействие на другие заряженные (то есть обладающие электрическим зарядом) тела[8]. Электрические заряды разделяют на положительные и отрицательные (выбор, какой именно заряд назвать положительным, а какой отрицательным, считается в науке чисто условным, однако этот выбор уже исторически сделан и теперь — хоть и условно — за каждым из зарядов закреплён вполне определённый знак). Тела, заряженные зарядом одного знака, отталкиваются, а противоположно заряженные — притягиваются. При движении заряженных тел (как макроскопических тел, так и микроскопических заряженных частиц, переносящих электрический ток в проводниках) возникает магнитное поле и, таким образом, имеют место явления, позволяющие установить родство электричества и магнетизма (электромагнетизм) (Эрстед, Фарадей, Максвелл). В структуре материи электрический заряд как свойство тел восходит к заряженным элементарным частицам, например, электрон и антипротон имеют отрицательный заряд, а протон и позитрон — положительный.

Наиболее общая фундаментальная наука, изучающая электрические заряды, их взаимодействие и поля, ими порождаемые и действующие на них (то есть практически полностью покрывающая тему электричества, за исключением таких деталей, как электрические свойства конкретных веществ, как то электропроводность (и т. п.) — это электродинамика. Квантовые свойства электромагнитных полей, заряженных частиц (и т. п.) изучаются наиболее глубоко квантовой электродинамикой, хотя часть из них может быть объяснена более простыми квантовыми теориями.

Ярким проявлением электричества в природе служат молнии, электрическая природа которых была установлена в XVIII веке. Молнии издавна вызывали лесные пожары. По одной из версий, именно молнии привели к первоначальному синтезу аминокислот и появлению жизни на земле (Эксперимент Миллера — Юри и Теория Опарина — Холдейна). Атмосфера Земли представляет собой гигантский конденсатор, нижняя обкладка которого (земная поверхность) заряжена отрицательно, а верхняя обкладка (верхние слои атмосферы до высоты 50 км) положительно. Разность потенциалов между поверхностью Земли и верхними слоями атмосферы составляет 400 кВ, вблизи поверхности Земли существует постоянное электрическое поле напряжённостью 100 В/м.

Для процессов в нервной системе человека и животных решающее значение имеет зависимость пропускной способности клеточной мембраны для ионов натрия от потенциала внутриклеточной среды. После повышения напряжения на клеточной мембране натриевый канал открывается на время порядка 0,1 — 1,0 мс., что приводит к скачкообразному росту напряжения, затем разность потенциалов на мембране снова возвращается к своему первоначальному значению. Описанный процесс кратко называется нервным импульсом. В нервной системе животных и человека информацию от одной клетки к другой передают нервные импульсы возбуждения длительностью около 1 мс. Нервное волокно представляет собой цилиндр, наполненный электролитом. Сигнал возбуждения передаётся без уменьшения амплитуды вследствие эффекта кратковременного увеличения проницаемости мембраны для ионов натрия[9].

Многие рыбы используют электричество для защиты и поиска добычи под водой. Южноамериканский электрический угорь способен генерировать электрические разряды напряжением до 500 вольт. Мощность разрядов электрического ската может достигать 500 Вт. Акулы, миноги, некоторые сомообразные используют электричество для поиска добычи. Электрический орган рыб работает с частотой несколько сотен герц и создаёт напряжение в несколько вольт. Электрическое поле улавливается электрорецепторами. Находящиеся в воде предметы искажают электрическое поле. По этим искажениям рыбы легко ориентируются в мутной воде[10].

Производство и практическое использование[править | править код]

Генерирование и передача[править | править код]

Ранние эксперименты эпохи античности, такие, как опыты Фалеса с янтарными палочками, были фактически первыми попытками изучения вопросов, связанных с производством электрической энергии. Этот метод в настоящее время известен как трибоэлектрический эффект, и хотя с его помощью можно притягивать лёгкие предметы и порождать искры, в сущности он чрезвычайно малоэффективен[11]. Функциональный источник электричества появился только в 1800 году, когда было изобретено первое устройство для его получения — вольтов столб. Он и его современный вариант, электрическая батарея, являются химическими источниками электрического тока: в основе их работы лежит взаимодействие веществ в электролите. Батарея даёт возможность получить электричество в случае необходимости, является многофункциональным и широко распространённым источником питания, который хорошо подходит для применения в различных условиях и ситуациях, однако её запас энергии конечен, и после истощения последнего батарея нуждается в замене или перезарядке. Для удовлетворения более существенных потребностей в большем её объёме электрическая энергия должна непрерывно генерироваться и передаваться по линиям электропередач.

Обычно для её порождения применяются электромеханические генераторы, приводимые в действие либо за счёт сжигания ископаемого топлива, либо с использованием энергии от ядерных реакций, либо посредством силы воздушных или водных течений. Современная паровая турбина, изобретённая Ч. Парсонсом в 1884 году, в настоящее время генерирует примерно 80 % всего электричества в мире, используя те или иные источники нагрева. Эти устройства более не напоминают униполярный дисковый генератор Фарадея, созданный им в 1831 году, однако в их основе по-прежнему лежит открытый им принцип электромагнитной индукции — возникновения электрического тока в замкнутом контуре при изменении магнитного потока, проходящего через него[12]. Ближе к концу XIX века был изобретён трансформатор, что позволило более эффективно передавать электроэнергию при более высоком напряжении и меньшей силе тока. В свою очередь, эффективность передачи энергии обусловливала возможность генерировать электричество на централизованных электростанциях с выгодой для последних и затем перенаправлять его на довольно протяжённые дистанции к конечным потребителям[13][14].

Поскольку электроэнергию затруднительно хранить в таких количествах, которые были бы достаточны в масштабах государства, необходимо соблюдать баланс: генерировать ровно столько электричества, сколько потребляется пользователями. Для этого энергетическим компаниям необходимо тщательно прогнозировать нагрузку и постоянно координировать производственный процесс со своими электростанциями. Некоторое количество мощностей при этом держится в резерве, чтобы в случае возникновения тех или иных проблем или потерь энергии подстраховывать электросети.

По мере того, как идёт модернизация и развивается экономика того или иного государства, спрос на электричество быстро возрастает. В частности, для Соединенных Штатов этот показатель составил 12 % роста в год на протяжении первой трети XX века[15], а в настоящее время аналогичный прогресс наблюдается у таких интенсивно развивающихся экономик, как Китай и Индия[16][17]. Исторически рост потребности в электричестве опережает аналогичные показатели для других видов энергоносителей[18]. Следует также заметить, что беспокойство по поводу влияния производств электроэнергии на окружающую среду привело к сосредоточению внимания на генерировании электричества посредством возобновляемых источников — в особенности за счёт энергии ветра и воды[19].

Применение[править | править код]

Получение электричества путём преобразования кинетической энергии ветра набирает популярность во многих странах мира Лампа накаливания

Использование электричества обеспечивает довольно удобный[источник не указан 1557 дней] способ передачи энергии, и в силу этого оно было адаптировано для существенного и по сей день растущего спектра практических приложений[20]. Одним из первых общедоступных способов применения электричества было освещение; условия для этого оказались созданы после изобретения лампы накаливания в 1870-х годах. Создателем лампы накаливания является русский электротехник А.Н. Лодыгин[21]. Первая лампа накаливания представляла собой замкнутый сосуд без воздуха с угольным стержнем.[22]. Хотя с электрификацией были сопряжены свои риски, замена открытого огня на электрическое освещение в значительной степени сократила количество возгораний в быту и на производстве[23].

В целом, начиная с XIX века, электричество плотно входит в жизнь современной цивилизации. Электричество используют не только для освещения[24], но и для передачи информации (телеграф, телефон, радио, телевидение), а также для приведения механизмов в движение (электродвигатель), что активно используется на транспорте[25] (трамвай, метро, троллейбус, электричка) и в бытовой технике (утюг, кухонный комбайн, стиральная машина, посудомоечная машина).

В целях получения электричества созданы оснащённые электрогенераторами электростанции, а для его хранения — аккумуляторы и электрические батареи.

Сегодня также электричество используют для получения материалов (электролиз), для их обработки (сварка, сверление, резка) и создания музыки (электрогитара).

Закон Джоуля-Ленца о тепловом действии электрического тока обусловливает возможности для электрического отопления помещений. Хотя такой способ довольно универсален и обеспечивает определённую степень управляемости, его можно рассматривать как излишне ресурсозатратный — в силу того, что генерирование используемого в нём электричества уже потребовало производства тепла на электростанции[26]. В некоторых странах, например — в Дании, были даже приняты законодательные нормы, ограничивающие или полностью запрещающие использование электрических средств отопления в новых домах[27]. В то же время электричество — это практичный источник энергии для охлаждения, и одной из активно растущих областей спроса на электричество является кондиционирование воздуха[28][29].

По данным Всемирного банка, на сегодняшний день (2015) более миллиарда человек в мире живут без использования электричества в быту. Около 3 млрд человек используют для приготовления пищи и отопления керосин, дрова, древесный уголь и навоз.[30].

Хронология основных открытий и изобретений[править | править код]

  1. 1 2 Спиридонов О. П. «Универсальные физические постоянные», М., «Просвещение», 1984, с. 52, ББК 22.3 С72
  2. ↑ Электричество до Франклина
  3. ↑ Электростатическая машина Герике
  4. ↑ Первые опыты по передаче электричества на расстояние
  5. ↑ История электричества
  6. ↑ Открытие электричества
  7. ↑ Первая в мире электрическая лампочка : П.Н. Яблочков и А.Н. Лодыгин // www.drive2.ru.
  8. ↑ Это не единственное свойство заряженных тел; например, заряженные тела при движении способны создавать ещё и магнитное поле, а также подвергаются воздействию последнего (также в случае своего движения).
  9. ↑ Электричество в живых организмах, 1988, с. 66.
  10. ↑ Богданов К. Ю. Физик в гостях у биолога. — М.: «Наука», Гл. ред. физ.-мат. лит., 1986, 144 с. (Б-чка «Квант», Вып. 49) тир. 135000 экз., ББК 22.3 + 28 Гл. 1. Живое электричество.
  11. ↑ Dell, Ronald & Rand, David (2001), "Understanding Batteries", Unknown (Royal Society of Chemistry) . — Т. 86: 2–4, ISBN 0-85404-605-4 
  12. ↑ McLaren, Peter G. (1984), Elementary Electric Power and Machines, Ellis Horwood, с. 182–183, ISBN 0-85312-269-5 
  13. ↑ Patterson, Walter C. (1999), Transforming Electricity: The Coming Generation of Change, Earthscan, с. 44–48, ISBN 1-85383-341-X 
  14. ↑ Edison Electric Institute, History of the Electric Power Industry, <http://www.eei.org/industry_issues/industry_overview_and_statistics/history>. Проверено 8 декабря 2007.  Архивная копия от 13 ноября 2007 на Wayback Machine
  15. ↑ Edison Electric Institute, History of the U.S. Electric Power Industry, 1882-1991, <http://www.eia.doe.gov/cneaf/electricity/chg_stru_update/appa.html>. Проверено 8 декабря 2007. 
  16. ↑ Carbon Sequestration Leadership Forum, An Energy Summary of India, <http://www.cslforum.org/india.htm>. Проверено 8 декабря 2007.  Архивная копия от 5 декабря 2007 на Wayback Machine
  17. ↑ IndexMundi, China Electricity - consumption, <http://www.indexmundi.com/china/electricity_consumption.html>. Проверено 8 декабря 2007. 
  18. ↑ National Research Council (1986), Electricity in Economic Growth, National Academies Press, с. 16, ISBN 0-309-03677-1 
  19. ↑ National Research Council (1986), Electricity in Economic Growth, National Academies Press, с. 89, ISBN 0-309-03677-1 
  20. ↑ Wald, Matthew (21 March 1990), "Growing Use of Electricity Raises Questions on Supply", New York Times, <http://query.nytimes.com/gst/fullpage.html?res=9C0CE6DD1F3AF932A15750C0A966958260>. Проверено 9 декабря 2007. 
  21. ↑ Один из первых коммерчески успешных вариантов электрической лампы накаливания был разработан Т. Эдисоном.
  22. ↑ Большая советская энциклопедия
  23. ↑ d'Alroy Jones, Peter, The Consumer Society: A History of American Capitalism, Penguin Books, с. 211 
  24. ↑ Жителям Подмосковья электричество не светит
  25. ↑ Из-за отключения электричества в Санкт-Петербурге встал электротранспорт
  26. ↑ ReVelle, Charles and Penelope (1992), The Global Environment: Securing a Sustainable Future, Jones & Bartlett, с. 298, ISBN 0-86720-321-8 
  27. ↑ Danish Ministry of Environment and Energy, F.2 The Heat Supply Act, <http://glwww.mst.dk/udgiv/Publications/1997/87-7810-983-3/html/annexf.htm>. Проверено 9 декабря 2007.  Архивная копия от 8 января 2008 на Wayback Machine
  28. ↑ Brown, Charles E. (2002), Power resources, Springer, ISBN 3-540-42634-5 
  29. ↑ Hojjati, B. & Battles, S., The Growth in Electricity Demand in U.S. Households, 1981-2001: Implications for Carbon Emissions, <http://www.eia.doe.gov/emeu/efficiency/2005_USAEE.pdf>. Проверено 9 декабря 2007. 
  30. ↑ Более миллиарда людей в мире живут без электричества - ИА "Финмаркет"
  • Калашников С. Г. Электричество. — М., Наука, 1985. — 576 с.
  • Эйхенвальд А. А. Электричество. — М., Государственное технико-теоретическое издательство, 1933
  • Беркинблит М.Б., Глаголева Е.Г. Электричество в живых организмах. — М.: Наука, 1988. — 288 с.
  • Фейнман Р. Фейнмановские лекции по физике. Т. 5. Электричество и магнетизм. — М.: Едиториал УРСС, 2004. — 304 с.

Конспект "Постоянный электрический ток" - УчительPRO

«Постоянный электрический ток.
Действие электрического тока»



Электрический ток — это упорядоченное движение заряженных частиц.  Для того чтобы в проводнике существовал электрический ток, необходимы два условия: 1) наличие свободных заряженных частиц, 2) электрическое поле, которое создаёт их направленное движение. Проходя по цепи, происходит действие электрического тока (тепловое, магнитное, химическое).

При существовании тока в разных средах: в металлах, жидкостях, газах — электрический заряд переносится разными частицами. В металлах этими частицами являются электроны, в жидкостях заряд переносится ионами, в газах — электронами, положительными и отрицательными ионами.

Дистиллированная вода не проводит электрический ток, поскольку она не содержит свободных зарядов. Если в воду добавить поваренную соль или медный купорос, то в ней появятся свободные заряды, и она станет проводником электрического тока.

Газы в обычных условиях тоже не проводят электрический ток, так как в них нет свободных зарядов. Однако если в воздушный промежуток между двумя металлическими пластинами, соединёнными с источником тока, внести зажжённую спичку или спиртовку, то газ станет проводником и гальванометр зафиксирует протекание тока по цепи.

Постоянный электрический ток

Постоянный электрический ток — это электрический ток, который с течением времени не изменяется по величине и направлению. Постоянный ток является разновидностью однонаправленного тока (англ. direct current), т.е. тока, не изменяющий своего направления. Часто можно встретить сокращения DC от первых букв англ. слов, или символом по ГОСТ 2.721-74.

Постоянный электрический ток

На рисунке красным цветом изображён график постоянного тока. По горизонтальной оси отложен масштаб времени t, а по вертикальной — масштаб тока I или электрического напряжения U. Как видно, график постоянного тока представляет собой прямую линию, параллельную горизонтальной оси (оси времени).

При постоянном токе через каждое поперечное сечение проводника в единицу времени протекает одинаковое количество электричества (электрических зарядов). Постоянный электрический ток — это постоянное направленное движение заряженных частиц в электрическом поле.

Источник тока

Направленное движение зарядов обеспечивается электрическим полем. Электрическое поле в проводниках создаётся и поддерживается источником тока. В источнике тока совершается работа по разделению положительно и отрицательно заряженных частиц. Эти частицы накапливаются на полюсах источника тока. Один полюс источника заряжается положительно, другой — отрицательно. Между полюсами источника образуется электрическое поле, под действием которого заряженные частицы начинают двигаться упорядоченно.

В источнике тока совершается работа при разделении заряженных частиц. При этом различные виды энергии превращаются в электрическую энергию. В электрофорной машине в электрическую энергию превращается механическая энергия, в гальваническом элементе — химическая.

электрический ток


Действие электрического тока

Электрический ток, проходя по цепи, производит различные действия. Тепловое действие электрического тока заключается в том, что при его прохождении по проводнику в нём выделяется некоторое количество теплоты. Пример применения теплового действия тока — электронагревательные элементы чайников, электроплит, утюгов и пр. В ряде случаев температура проводника нагревается настолько сильно, что можно наблюдать его свечение. Это происходит в электрических лампочках накаливания.

Действие электрического тока

Магнитное действие электрического тока проявляется в том, что вокруг проводника с током возникает магнитное поле, которое, действуя на магнитную стрелку, расположенную рядом с проводником, заставляет её поворачиваться. Благодаря магнитному действию тока можно превратить железный гвоздь в электромагнит, намотав на него провод, соединённый с источником тока. При пропускании по проводу электрического тока гвоздь будет притягивать железные предметы.

Химическое действие электрического тока проявляется в том, что при его прохождении в жидкости на электроде выделяется вещество. Если в стакан с раствором медного купороса поместить угольные электроды и присоединить их к источнику тока, то, вынув через некоторое время эти электроды из раствора, можно обнаружить на электроде, присоединённом к отрицательному полюсу источника (на катоде), слой чистой меди.

Некоторые источники утверждают, что существует также механическое действие (например, рамка, по которой течет ток, поворачивается, если её поместить между полюсами магнитов) и световое (светодиоды).

 


Конспект по по физике в 8 классе: «Постоянный электрический ток. Действие электрического тока».

Следующая тема: «Сила тока. Напряжение»

Электрический ток - Физика - Теория, тесты, формулы и задачи

Оглавление:

 

Основные теоретические сведения

Электрический ток. Сила тока. Сопротивление

К оглавлению...

В проводниках при определенных условиях может возникнуть непрерывное упорядоченное движение свободных носителей электрического заряда. Такое движение называется электрическим током. За направление электрического тока принято направление движения положительных свободных зарядов, хотя в большинстве случае движутся электроны – отрицательно заряженные частицы.

Количественной мерой электрического тока служит сила тока I – скалярная физическая величина, равная отношению заряда q, переносимого через поперечное сечение проводника за интервал времени t, к этому интервалу времени:

Формула Сила тока

Если ток не постоянный, то для нахождения количества прошедшего через проводник заряда рассчитывают площадь фигуры под графиком зависимости силы тока от времени.

Если сила тока и его направление не изменяются со временем, то такой ток называется постоянным. Сила тока измеряется амперметром, который включается в цепь последовательно. В Международной системе единиц СИ сила тока измеряется в амперах [А]. 1 А = 1 Кл/с.

Средняя сила тока находится как отношение всего заряда ко всему времени (т.е. по тому же принципу, что и средняя скорость или любая другая средняя величина в физике):

Средняя сила тока

Если же ток равномерно меняется с течением времени от значения I1 до значения I2, то можно значение среднего тока можно найти как среднеарифметическое крайних значений:

Средняя сила тока

Плотность тока – сила тока, приходящаяся на единицу поперечного сечения проводника, рассчитывается по формуле:

Формула Плотность тока

При прохождении тока по проводнику ток испытывает сопротивление со стороны проводника. Причина сопротивления – взаимодействие зарядов с атомами вещества проводника и между собой. Единица измерения сопротивления 1 Ом. Сопротивление проводника R определяется по формуле:

Формула Сопротивление проводника

где: l – длина проводника, S – площадь его поперечного сечения, ρ – удельное сопротивление материала проводника (будьте внимательны и не перепутайте последнюю величину с плотностью вещества), которое характеризует способность материала проводника противодействовать прохождению тока. То есть это такая же характеристика вещества, как и многие другие: удельная теплоемкость, плотность, температура плавления и т.д. Единица измерения удельного сопротивления 1 Ом·м. Удельное сопротивление вещества – табличная величина.

Сопротивление проводника зависит и от его температуры:

Формула Зависимость сопротивления проводника от температуры

где: R0 – сопротивление проводника при 0°С, t – температура, выраженная в градусах Цельсия, α – температурный коэффициент сопротивления. Он равен относительному изменению сопротивления, при увеличении температуры на 1°С. Для металлов он всегда больше нуля, для электролитов наоборот, всегда меньше нуля.

Диод в цепи постоянного тока

Диод – это нелинейный элемент цепи, сопротивление которого зависит от направления протекания тока. Обозначается диод следующим образом:

Обозначение диода

Стрелка в схематическом обозначении диода показывает, в каком направлении он пропускает ток. В этом случае его сопротивление равно нулю, и диод можно заменить просто на проводник с нулевым сопротивлением. Если ток течет через диод в противоположном направлении, то диод обладает бесконечно большим сопротивлением, то есть не пропускает ток совсем, и является разрывом в цепи. Тогда участок цепи с диодом можно просто вычеркнуть, так как ток по нему не идет.

 

Закон Ома. Последовательное и параллельное соединение проводников

К оглавлению...

Немецкий физик Г.Ом в 1826 году экспериментально установил, что сила тока I, текущего по однородному металлическому проводнику (то есть проводнику, в котором не действуют сторонние силы) сопротивлением R, пропорциональна напряжению U на концах проводника:

Формула Закон Ома

Величину R принято называть электрическим сопротивлением. Проводник, обладающий электрическим сопротивлением, называется резистором. Это соотношение выражает закон Ома для однородного участка цепи: сила тока в проводнике прямо пропорциональна приложенному напряжению и обратно пропорциональна сопротивлению проводника.

Проводники, подчиняющиеся закону Ома, называются линейными. Графическая зависимость силы тока I от напряжения U (такие графики называются вольт-амперными характеристиками, сокращенно ВАХ) изображается прямой линией, проходящей через начало координат. Следует отметить, что существует много материалов и устройств, не подчиняющихся закону Ома, например, полупроводниковый диод или газоразрядная лампа. Даже у металлических проводников при достаточно больших токах наблюдается отклонение от линейного закона Ома, так как электрическое сопротивление металлических проводников растет с ростом температуры.

Проводники в электрических цепях можно соединять двумя способами: последовательно и параллельно. У каждого способа есть свои закономерности.

1. Закономерности последовательного соединения:

Формула Закономерности последовательного соединения

Формула для общего сопротивления последовательно соединенных резисторов справедлива для любого числа проводников. Если же в цепь последовательно включено n одинаковых сопротивлений R, то общее сопротивление R0 находится по формуле:

Общее сопротивление n последовательно соединенных резисторов

2. Закономерности параллельного соединения:

Формула Закономерности параллельного соединения

Формула для общего сопротивления параллельно соединенных резисторов справедлива для любого числа проводников. Если же в цепь параллельно включено n одинаковых сопротивлений R, то общее сопротивление R0 находится по формуле:

Общее сопротивление n параллельно соединенных резисторов

Электроизмерительные приборы

Для измерения напряжений и токов в электрических цепях постоянного тока используются специальные приборы – вольтметры и амперметры.

Вольтметр предназначен для измерения разности потенциалов, приложенной к его клеммам. Он подключается параллельно участку цепи, на котором производится измерение разности потенциалов. Любой вольтметр обладает некоторым внутренним сопротивлением RB. Для того чтобы вольтметр не вносил заметного перераспределения токов при подключении к измеряемой цепи, его внутреннее сопротивление должно быть велико по сравнению с сопротивлением того участка цепи, к которому он подключен.

Амперметр предназначен для измерения силы тока в цепи. Амперметр включается последовательно в разрыв электрической цепи, чтобы через него проходил весь измеряемый ток. Амперметр также обладает некоторым внутренним сопротивлением RA. В отличие от вольтметра, внутреннее сопротивление амперметра должно быть достаточно малым по сравнению с полным сопротивлением всей цепи.

 

ЭДС. Закон Ома для полной цепи

К оглавлению...

Для существования постоянного тока необходимо наличие в электрической замкнутой цепи устройства, способного создавать и поддерживать разности потенциалов на участках цепи за счет работы сил неэлектростатического происхождения. Такие устройства называются источниками постоянного тока. Силы неэлектростатического происхождения, действующие на свободные носители заряда со стороны источников тока, называются сторонними силами.

Природа сторонних сил может быть различной. В гальванических элементах или аккумуляторах они возникают в результате электрохимических процессов, в генераторах постоянного тока сторонние силы возникают при движении проводников в магнитном поле. Под действием сторонних сил электрические заряды движутся внутри источника тока против сил электростатического поля, благодаря чему в замкнутой цепи может поддерживаться постоянный электрический ток.

При перемещении электрических зарядов по цепи постоянного тока сторонние силы, действующие внутри источников тока, совершают работу. Физическая величина, равная отношению работы Aст сторонних сил при перемещении заряда q от отрицательного полюса источника тока к положительному к величине этого заряда, называется электродвижущей силой источника (ЭДС):

Формула Электродвижущая сила источника тока (ЭДС)

Таким образом, ЭДС определяется работой, совершаемой сторонними силами при перемещении единичного положительного заряда. Электродвижущая сила, как и разность потенциалов, измеряется в вольтах (В).

Закон Ома для полной (замкнутой) цепи: сила тока в замкнутой цепи равна электродвижущей силе источника, деленной на общее (внутреннее + внешнее) сопротивление цепи:

Формула Закон Ома для полной цепи

Сопротивление r – внутреннее (собственное) сопротивление источника тока (зависит от внутреннего строения источника). Сопротивление R – сопротивление нагрузки (внешнее сопротивление цепи).

Падение напряжения во внешней цепи при этом равно (его еще называют напряжением на клеммах источника):

Формула Падение напряжения во внешней цепи Напряжение на клеммах источника

Важно понять и запомнить: ЭДС и внутреннее сопротивление источника тока не меняются, при подключении разных нагрузок.

Если сопротивление нагрузки равно нулю (источник замыкается сам на себя) или много меньше сопротивления источника, то тогда в цепи потечет ток короткого замыкания:

Формула Сила тока короткого замыкания

Сила тока короткого замыкания – максимальная сила тока, которую можно получить от данного источника с электродвижущей силой ε и внутренним сопротивлением r. У источников с малым внутренним сопротивлением ток короткого замыкания может быть очень велик, и вызывать разрушение электрической цепи или источника. Например, у свинцовых аккумуляторов, используемых в автомобилях, сила тока короткого замыкания может составлять несколько сотен ампер. Особенно опасны короткие замыкания в осветительных сетях, питаемых от подстанций (тысячи ампер). Чтобы избежать разрушительного действия таких больших токов, в цепь включаются предохранители или специальные автоматы защиты сетей.

Несколько источников ЭДС в цепи

Если в цепи присутствует несколько ЭДС подключенных последовательно, то:

1. При правильном (положительный полюс одного источника присоединяется к отрицательному другого) подключении источников общее ЭДС всех источников и их внутреннее сопротивление может быть найдено по формулам:

Последовательное подключение ЭДС

Например, такое подключение источников осуществляется в пультах дистанционного управления, фотоаппаратах и других бытовых приборах, работающих от нескольких батареек.

2. При неправильном (источники соединяются одинаковыми полюсами) подключении источников их общее ЭДС и сопротивление рассчитывается по формулам:

Последовательное подключение ЭДС

В обоих случаях общее сопротивление источников увеличивается.

При параллельном подключении имеет смысл соединять источники только c одинаковой ЭДС, иначе источники будут разряжаться друг на друга. Таким образом суммарное ЭДС будет таким же, как и ЭДС каждого источника, то есть при параллельном соединении мы не получим батарею с большим ЭДС. При этом уменьшается внутреннее сопротивление батареи источников, что позволяет получать большую силу тока и мощность в цепи:

Параллельное подключение ЭДС

В этом и состоит смысл параллельного соединения источников. В любом случае при решении задач сначала надо найти суммарную ЭДС и полное внутреннее сопротивление получившегося источника, а затем записать закон Ома для полной цепи.

 

Работа и мощность тока. Закон Джоуля-Ленца

К оглавлению...

Работа A электрического тока I, протекающего по неподвижному проводнику с сопротивлением R, преобразуется в теплоту Q, выделяющееся на проводнике. Эту работу можно рассчитать по одной из формул (с учетом закона Ома все они следуют друг из друга):

Формула Работа электрического тока Закон Джоуля-Ленца

Закон преобразования работы тока в тепло был экспериментально установлен независимо друг от друга Дж.Джоулем и Э.Ленцем и носит название закона Джоуля–Ленца. Мощность электрического тока равна отношению работы тока A к интервалу времени Δt, за которое эта работа была совершена, поэтому она может быть рассчитана по следующим формулам:

Формула Мощность электрического тока

Работа электрического тока в СИ, как обычно, выражается в джоулях (Дж), мощность – в ваттах (Вт).

 

Энергобаланс замкнутой цепи

К оглавлению...

Рассмотрим теперь полную цепь постоянного тока, состоящую из источника с электродвижущей силой ε и внутренним сопротивлением r и внешнего однородного участка с сопротивлением R. В этом случае полезная мощность или мощность, выделяемая во внешней цепи:

Формула Мощность, выделяемая во внешней цепи

Максимально возможная полезная мощность источника достигается, если R = r и равна:

Формула Максимально возможная полезная мощность источника

Если при подключении к одному и тому же источнику тока разных сопротивлений R1 и R2 на них выделяются равные мощности то внутреннее сопротивление этого источника тока может быть найдено по формуле:

Формула Внутреннее сопротивление источника тока при равных мощностях

Мощность потерь или мощность внутри источника тока:

Формула Мощность внутри источника тока

Полная мощность, развиваемая источником тока:

Формула Полная мощность, развиваемая источником тока

КПД источника тока:

Формула КПД источника тока

 

Электролиз

К оглавлению...

Электролитами принято называть проводящие среды, в которых протекание электрического тока сопровождается переносом вещества. Носителями свободных зарядов в электролитах являются положительно и отрицательно заряженные ионы. К электролитам относятся многие соединения металлов с металлоидами в расплавленном состоянии, а также некоторые твердые вещества. Однако основными представителями электролитов, широко используемыми в технике, являются водные растворы неорганических кислот, солей и оснований.

Прохождение электрического тока через электролит сопровождается выделением вещества на электродах. Это явление получило название электролиза.

Электрический ток в электролитах представляет собой перемещение ионов обоих знаков в противоположных направлениях. Положительные ионы движутся к отрицательному электроду (катоду), отрицательные ионы – к положительному электроду (аноду). Ионы обоих знаков появляются в водных растворах солей, кислот и щелочей в результате расщепления части нейтральных молекул. Это явление называется электролитической диссоциацией.

Закон электролиза был экспериментально установлен английским физиком М.Фарадеем в 1833 году. Закон Фарадея определяет количества первичных продуктов, выделяющихся на электродах при электролизе. Итак, масса m вещества, выделившегося на электроде, прямо пропорциональна заряду Q, прошедшему через электролит:

Формула Электролиз

Величину k называют электрохимическим эквивалентом. Он может быть рассчитан по формуле:

Формула Электрохимический эквивалент

где: n – валентность вещества, NA – постоянная Авогадро, M – молярная масса вещества, е – элементарный заряд. Иногда также вводят следующее обозначение для постоянной Фарадея:

Формула Постоянная Фарадея

 

Электрический ток в газах и в вакууме

К оглавлению...

Электрический ток в газах

В обычных условиях газы не проводят электрический ток. Это объясняется электрической нейтральностью молекул газов и, следовательно, отсутствием носителей электрических зарядов. Для того чтобы газ стал проводником, от молекул необходимо оторвать один или несколько электронов. Тогда появятся свободные носителя зарядов - электроны и положительные ионы. Этот процесс называется ионизацией газов.

Ионизировать молекулы газа можно внешним воздействием - ионизатором. Ионизаторами может быть: поток света, рентгеновские лучи, поток электронов или α-частиц. Молекулы газа также ионизируются при высокой температуре. Ионизация приводит к возникновению в газах свободных носителей зарядов - электронов, положительных ионов, отрицательных ионов (электрон, объединившийся с нейтральной молекулой).

Если создать в пространстве, занятом ионизированным газом, электрическое поле, то носители электрических зарядов придут в упорядоченное движение – так возникает электрический ток в газах. Если ионизатор перестает действовать, то газ снова становится нейтральным, так как в нем происходит рекомбинация – образование нейтральных атомов ионами и электронами.

Электрический ток в вакууме

Вакуумом называется такая степень разрежения газа, при котором можно пренебречь соударением между его молекулами и считать, что средняя длина свободного пробега превышает линейные размеры сосуда, в котором газ находится.

Электрическим током в вакууме называют проводимость межэлектродного промежутка в состоянии вакуума. Молекул газа при этом столь мало, что процессы их ионизации не могут обеспечить такого числа электронов и ионов, которые необходимы для ионизации. Проводимость межэлектродного промежутка в вакууме может быть обеспечена лишь с помощью заряженных частиц, возникших за счет эмиссионных явлений на электродах.

Электроника как искусство: электрический ток / Habr

Не влезай. Убьет! (с)

Среднестатистическая грамотность населения в области электроники и электротехники оставляет желать лучшего. Максимум, спаять схемку, а как она работает — темный лес. К сожалению, все русскоязычные учебники пестрят формулами и интегралами, от них любого человека потянет в сон. В англоязычной литературе дела обстоят несколько лучше. Попадаются довольно интересные издания, но камнем преткновения здесь уже выступает английский язык. Постараюсь изложить основные понятия по электротехнике максимально доступно, в вольном стиле, не от инженера инженеру, а от человека человеку. Сведущий читатель, возможно, тоже найдет для себя несколько интересных моментов.
Электрический ток

Пути электрического тока неисповедимы. (с) мысли из интернета

На самом деле, нет. Все так или иначе можно описать с помощью математической модели, моделирования, да даже прикинув по-быстренькому на бумажке, а некоторые уникумы делают это в голове. Кому как удобнее. На самом деле, эпиграф этой главы родился от незнания, что же такое электрический ток.

Электрический ток характеризуется несколькими параметрами. Напряжением U и током I. Конечно, все мы помним определения по физике, но мало кто понимает их значения. Начну с напряжения. Разность потенциалов или работа по перемещению заряда, как сухо и неинтересно пишут в учебниках. На самом деле, напряжение всегда измеряется между двумя точками. Оно характеризует способность создавать электрический ток между этими двумя точками. Назовем эти точки источником напряжения. Чем больше напряжение, тем больше ток. Меньше напряжения – меньше ток. Но об этом чуть позже.

Что же такое ток? Представьте аналогию русло реки – это провода, электрический ток – это скорость потока воды в реке. Тогда напряжение здесь – перепад высоты между начальной точкой реки и конечной точкой. Или напряжение – это насос гоняющий воду, если река течет в одной плоскости. Такие аналогии на начальных этапах очень помогают понять, что же происходит в электрической схеме. Но, в конечном итоге, лучше от них отказаться. Лучше представить ток как некий поток электронов. Количество заряда, перемещаемое в единицу времени. Конечно, в учебниках говорится, что де электроны движутся со скоростью несколько сантиметров в минуту и значение имеет лишь электромагнитное поле, но пока забудем про это. Итак, под током можно понимать движение электрического тока, т.е. заряда. Носители заряда, электроны, отрицательно заряжены и двигаются от отрицательного потенциала к положительному, электрический ток же имеет направление от положительного потенциала к отрицательному, от плюса к минусу, так принято для удобства и так мы будем пользоваться в дальнейшем, забыв про заряд электрона.

Конечно, сам по себе ток не появится, нужно создать напряжение между двумя точками и нужна какая-либо нагрузка для протекания тока через нее, подключенная к этим двум точками. Очень полезно знать свойство, что для протекания тока нужно два проводника: прямой, до нагрузки, и обратный, от нагрузки до источника. Например, если не замкнуты проводники источника напряжения, то тока не будет.

Что же такое источник напряжения? Представим его в виде черного ящика, имеющего как минимум два вывода для подключения. Самые простые примеры из реальной жизни: электрическая розетка, батарейка, аккумулятор и т.п.


Идеальный источник напряжения обладает неизменным напряжением при протекании через него любого значения тока. Что же будет, если замкнуть зажимы идеального источника напряжения? Потечет бесконечно большой ток. В реальности источники напряжения не могут отдать бесконечно большой ток, потому что обладают некоторым сопротивлением. Например, провода в сетевой розетке 220в от самой розетки до подстанции имеют сопротивление, пусть и малое, но довольно ощутимое. Провода от подстанций до электростанций тоже имеют сопротивление. Нельзя забывать про полное сопротивление трансформаторов и генераторов. Батарейки имеют внутреннее сопротивление, обусловленное внутренней химической реакцией, которая имеет конечную скорость протекания.

Что же такое сопротивление? Вообще, это тема довольно обширная. Возможно, опишу в одной из следующих глав. Если кратко – это параметр, связывающий ток и напряжение. Оно характеризует, какой ток потечет при приложенном напряжении к этому сопротивлению. Если говорить «водной» аналогией, то сопротивление – это дамба на пути реки. Чем меньше отверстие в дамбе – тем больше сопротивление. Эту связь описывает закон Ома: . Как говорится: «Не знаешь закон Ома, сиди дома!».

Зная закон Ома, не сидя дома, имея какой-либо источник тока с заданным напряжением и сопротивление в виде нагрузки, мы очень точно можем предсказать какой потечет ток.
Реальные источники напряжения имеют какое-то свое внутреннее напряжение и отдают некий конечный ток, называемый током короткого замыкания. При этом батареи и аккумуляторы еще и разряжаются со временем и имеют нелинейное внутреннее сопротивление. Но пока тоже забудем об этом, и вот почему. В реальных схемах удобнее проводить анализ с использованием сиюминутных мгновенных значений напряжения и тока, поэтому будем считать источники напряжения идеальными. За исключением того факта, когда потребуется посчитать максимальны ток, который способен отдать источник.

Насчет «водной» аналогии электрического тока. Как я уже писал, она не очень правдива, поскольку скорость движения реки до дамбы и после дамбы будет разным, также разным будет кол-во воды до и после дамбы. В реальных схемах электрический ток втекающий в резистор и вытекающий из него будет равен между собой. Ток по прямому проводу, к нагрузке, и по обратному проводу, от нагрузки до источника, тоже равен между собой. Ток ни откуда не берется и никуда не девается, сколько «втекло» в узел схемы, столько и «вытечет», даже если путей несколько. Например, если есть два пути протекания тока от источника, то он потечет по этим путям, при этом полный ток источника будет равен сумме двух токов. И так далее. Это и есть иллюстрация закона Кирхгофа. Это очень просто.


Также есть еще два важных правила. При параллельном соединении элементов, напряжение в каждом из элементов одинаково. Например, напряжение на резисторе R2 и R3, на рисунке выше, одинаковы, но токи могут быть разными, если резисторы имеют разные сопротивления, по закону Ома. Ток через батарейку равен току на резисторе R1 и равен сумме токов на резисторах R2 и R3. При последовательном соединении напряжения элементов складываются. Например, напряжение которое выдает батарея, т.е. ее ЭДС, равно напряжению на резисторе R1 + напряжение на резисторе R2 или R3.

Как я уже писал, напряжение измеряется всегда между двумя точками. Иногда, в литературе можно встретить: «Напряжение в точке такой-то». Это означает напряжение между этой точкой и точкой нулевого потенциала. Создать точку нулевого потенциала можно, например, заземлив схему. Обычно «землят» схему в месте самого отрицательно потенциала около источника питания, например, как на рисунке выше. Правда это бывает не всегда, да и применение нуля довольно условно, например, если нам нужно двухполярное питание +15 и -15 вольт, то «землить» надо уже не -15в, а потенциал посредине. Если же заземлить -15в, то мы получим 0, +15, +30в. См. рисунки ниже.


Заземление также применяется в качестве защитного или рабочего. Защитное заземление называют зануление. Если нарушится изоляция схемы в каком-нибудь другом участке, отличном от земли, то по нулевому проводу потечет большой ток и сработает защита, которая отключит часть схемы. Защиту мы должны предусмотреть заранее, поставив автоматический выключатель или иное устройство на пути протекания тока.

Иногда «землить» схему нельзя или невозможно. Вместо земли применяют термин общая точка или ноль. Напряжения в таких схемах указываются относительно общей точки. При этом вся схема относительно земли, т.е. нулевого потенциала может располагаться где угодно. См. рисунок.


Обычно, Xv близко к 0 вольт. Такие незаземленные схемы с одной стороны более безопасны, поскольку если человек прикоснется одновременно к схеме и земле ток не потечет, т.к. нет обратного пути протекания тока. Т.е. схема станет «заземлена» через человека. Но с другой стороны такие схемы каверзны. Если вдруг нарушится изоляция схемы от земли в какой-либо ее точке, то мы этого не узнаем. Что может быть опасно, при больших напряжениях Xv.

Вообще земля — это термин довольно обширный и расплывчатый. Есть очень много терминов и названий земли, смотря где «землить» схему. Под землей может пониматься как защитная земля, так и рабочая земля (по протеканию тока через нее при нормальной работе), как сигнальная земля, так и силовая земля (по роду тока), как аналоговая земля, так и цифровая земля (по роду сигнала). Под землей может пониматься общая точка или наоборот, под общей точкой пониматься земля или и быть ей. Также в схеме могут присутствовать все земли одновременно. Так что надо смотреть по контексту. Есть даже такая забавная картиночка в иностранной литературе, см. ниже. Но обычно земля – это схемные 0 вольт и это точка от которой измеряют потенциал схемы.


До сих пор, упоминая источник напряжения, я не касался рода этого самого напряжения. Напряжение есть меняющееся со временем и есть не меняющееся. Т.е. переменное и постоянное. Например, напряжение, меняющееся по синусоидальному закону всем хорошо знакомо, это напряжение сети 220в в бытовых розетках. С постоянным напряжением работать очень просто, мы это уже делали выше, когда рассматривали закон Кирхгофа. А что же делать с переменным напряжением и как его рассматривать?

На рисунке приведены несколько периодов переменного напряжения 220в 50Гц (синяя линия). Красная линия – постоянное напряжение 220в, для сравнения.


Определимся, сначала что такое напряжение 220в, кстати, по новому стандарту положено считать 230в. Это действующее значение напряжения. Амплитудное значение будет в корень из 2х раз выше и составит примерно 308в. Действующее значение – это такое значение напряжения, при котором за период переменного тока в проводнике выделяется столько же теплоты, сколько и при постоянном токе такого же напряжения. Выражаясь математическим языком – это среднеквадратичное значение напряжения. В английской литературе используется термин RMS, а приборы, которые измеряют истинное действующее значение имеют знак «true RMS».

На первый взгляд это может показаться неудобным, какое-то действующее значение, но это удобно для расчетов мощности без необходимости конвертации напряжения.

Переменное напряжение еще удобно рассматривать как постоянное напряжение, взятое в какой-либо точке времени. После чего проводить анализ схемы несколько раз, изменяя знак постоянного напряжение на обратный. Сначала рассмотреть работу схемы с постоянным положительным напряжением, потом, изменить знак, с положительного на отрицательный.
Для переменного напряжения также необходимо два провода. Они называются фаза и ноль. Иногда ноль заземляют. Такая система называется однофазной. Напряжение фазы измеряется относительно нуля и меняется со временем, как показано на рисунке выше. При положительной полуволне напряжения ток протекает от фазы к активной нагрузке и от нагрузки возвращается обратно по нулевому проводу. При отрицательной полуволне ток течет по нулевому проводу и возвращается по фазному.

В промышленности широко применяют трехфазную сеть. Это частный случай многофазных систем. По сути все тоже самое, что и однофазная система, только умноженная на 3, т.е. применение одновременно трех фаз и трех земель. Впервые изобретено Н. Тесла, впоследствии усовершенствовано М. О. Доливо-Добровольским. Усовершенствование состояло в том, что для передачи трехфазного электрического тока можно было выкинуть лишние провода, достаточно четырех: три фазы ABC и нулевой провод или же вовсе три фазы, отказавшись от нуля. Нулевой провод очень часто заземляют. На рисунке ниже ноль общий.


Почему же 3 фазы, и не больше, не меньше? С одной стороны, 3 фазы гарантированно создают вращающееся магнитное поле, так необходимое электрическим двигателям для вращения или получаемое от генераторов электростанций, с другой стороны это экономически выгодно с материальной точки зрения. Меньше нельзя, а больше и не нужно.

Чтобы гарантировано создавать вращающееся поле в трехфазной сети нужно чтобы фазы напряжения были сдвинуты друг относительно друга. Если принять полный период напряжения за 360 градусов, то 360/3 = 120 градусов. Т.е. напряжение каждой фазы сдвинуто относительно друг друга на 120 градусов. См. рисунок ниже.


Здесь показан график напряжения 3-х фазной сети 380в по времени. Как видно из рисунка, все тоже самое, что и с однофазной сетью, только напряжений стало больше. 380в – это так называемое линейное напряжение сети Uл, т.е. напряжение, измеряемое между двумя фазами. На рисунке показан пример нахождения мгновенного значения Uл. Оно также изменяется по синусоидальному закону. Также наряду с линейным напряжением различают фазное Uф. Оно измеряется между фазой и нулем. Фазное напряжение в данной трехфазной сети равно 220в. Под фазным и линейным напряжение, конечно же подразумевается действующее напряжение. Соотносятся линейное к фазному напряжению, как корень из трех.
Нагрузку к трехфазной сети можно подключать как угодно – к фазному напряжению: между какой-либо фазой и нулем, либо к линейному напряжению: между двумя фазами. Если нагрузка подключена к фазному напряжению, то такая схема соединения называется звездой. Она и показана выше. Если к линейному напряжения – то соединение треугольником. Если одинаковая нагрузка подключается к линейным напряжениям между всеми тремя фазами, то такие сети симметричные. Ток через нулевой провод в симметричных сетях не течет. См рис. ниже. Промышленные сети также считаются условно симметричными. Как правило ноль в таких сетях присутствует, но лишь в защитных целях. Иногда может и отсутствовать вообще. Веселая картиночка из вики наглядно иллюстрирует как протекает ток в таких сетях.
На этом кратенький обзор по электросетям и электричеству завершен. Возможно в будущем объясню на пальцах как работает диод и транзистор, что такое стабилитрон, тиристор и другие элементы. Пишите, про что вам интересно почитать.
Библиографический список

  1. Искусство схемотехники, П. Хоровиц. 2003.
  2. GROUNDS FOR GROUNDING. A Circuit-to-System Handbook, Elya B. Joffe, Kai-Sang Lock.
  3. Wiki и интернет ресурсы.

Постоянный электрический ток: определение, механизм, характеристики

Определение 1

Постоянный ток – это упорядоченное движение заряженных частиц, движущихся в одном направлении.

По теории данные заряженные частицы относят к носителям тока. В проводниках и полупроводниках такими носителями являются электроны, в электролитах – заряженные ионы, в газах – электроны и ионы. Металлы характеризуются перемещением только электронов. Отсюда следует, что электрический ток в них – это движение электронов проводимости.

Результат прохождения электрического тока в металлах и электропроводящих растворах заметно отличается. Наличие химических процессов в металлах при протекании тока отсутствует. В электролитах под воздействием тока происходит выделение ионов вещества на электродах. Различие заключается в отличии носителей зарядов металла и электролита. В металлах – это свободные электроны, отделившиеся от атомов, в растворах – ионы, атомы или их группы с зарядами.

Необходимые условия существования электрического тока

Первое необходимое условие существования электрического тока любого вещества – наличие носителей заряда.

Для равновесного состояния зарядов необходимо равнение нулю разности потенциалов между любыми точками проводника. При нарушении данного условия, заряд не сможет переместиться. Отсюда следует, что второе необходимое условие существования электрического тока в проводнике – создание напряжения между некоторыми точками.

Определение 2

Упорядоченное движение свободных зарядов, возникающее в проводнике как результат воздействия электрического поля, называют током проводимости.

Такое движение возможно при перемещении в пространстве заряженного проводника или диэлектрика. Подобный электрический ток получил название конвекционного.

Механизм осуществления постоянного тока

Для постоянного прохождения тока в проводнике следует подсоединить к проводнику или их совокупности устройство, в котором постоянно происходит процесс разделения электрических зарядов для поддержания напряжения в цепи. Данный механизм получил название источника тока (генератора).

Силы, разделяющие заряды, называют сторонними. Они характеризуются неэлектрическим происхождением, действуют внутри источника. При разделении зарядов сторонние силы способны создать разность потенциалов между концами цепи.

Если электрический заряд перемещается по замкнутой цепи, то работа электростатических сил равняется нулю. Отсюда следует, что суммарная работа сил A, действующих на заряд, равна работе сторонних Ast

Отправить ответ

avatar
  Подписаться  
Уведомление о