Skip to content

Для чего резистор: Резистор — Википедия – что это такое и для чего нужен: виды, принцип работы, расчет сопротивления

Резистор, для чего он нужен, где применяется в автомобилях

Сегодня мы поговорим про резистор, как основной элемент любой электрической цепи автомобиля. Для чего он нужен, какие бывают резисторы, принципы их работы, какие подходят для той или иной электрической цепи.

Эти знания могут пригодиться при ремонте автомобиля.

Три основные составляющие электрического тока

Электроэнергия достаточно плотно вошла в нашу жизнь. Используется она практически везде, и в автотранспорте в том числе.

Данный вид энергии имеет три основных составляющих – напряжение, сила тока и сопротивление.

Что касается последнего параметра, то благодаря возможности создания дополнительного сопротивления в любой точке электрической цепи можно влиять на первые два параметра.

Основным элементом для создания сопротивления является резистор. Данный элемент относится к самым востребованным, и ни одна электрическая цепь без него не обходится, и заменить его чем-либо другим не получится. А в любом автомобиле электрических цепей предостаточно.

Назначение

Основное назначение резистора – создание сопротивления для возможности контроля и регулировки силы тока и сопротивления. По сути, он является своеобразным фильтром, позволяющим на выходе из него получить электроэнергию с определенными параметрами.

Обеспечивает он все это за счет удержания тока, деления и уменьшения напряжения.

Основным параметром резистора является сопротивление, которое он создает в цепи, и измеряется оно в Омах.

Резистор, для чего он нужен, где применяется в автомобилях

Резисторы в электрической цепи автомобиля.

Именно благодаря своей функции этот элемент так часто используется в автомобилях. Ниже мы рассмотрим одни из основных составляющих авто, где используется резистор и какую конкретно функцию он там выполняет.

Система охлаждения

Итак, нагрузочный резистор используется в системе охлаждения автомобиля, а точнее, – в цепи питания вентилятора радиатора.

Стоит отметить, что раньше этот электрический элемент не использовался в данной цепи, и все работало очень просто – при достижении определенной температуры охлаждающей жидкости, температурный датчик замыкал контакты цепи питания вентилятора, и он включался в работу.

Использование же резистора позволило сделать работу электродвигателя вентилятора двух — и даже трехрежимной.

Процесс подачи питания на вентилятор при этом несколько изменился. В систему добавились также реле, а за включение вентилятора у современных авто уже отвечает электронный блок управления.

Резистор, для чего он нужен, где применяется в автомобилях

То есть, электронный блок анализирует температурные показатели датчика, и подает сигнал на реле.

В зависимости от температуры реле направляет электроэнергию по определенной цепи. Если температура охлаждающей жидкости превышена незначительно, но уже требуется ее снижение, и сигнал от ЭБУ поступил, реле направляет электроэнергию через нагрузочный резистор, который создает сопротивление, и вентилятор начинает вращаться с небольшой скоростью.

Если температура будет дальше повышаться и достигнет критической точки, реле перенаправит электроэнергию по другой цепи – в обход резистора, напрямую к вентилятору, что обеспечит его работу на полную мощность, с большой скоростью вращения.

Это схема двухрежимной работы вентилятора, которая обеспечивается наличием нагрузочного резистора в цепи. Причем она упрощенная, чтобы было более понятно.

Резистор, для чего он нужен, где применяется в автомобилях

В авто с трехрежимной работой вентилятора, принцип остается тот же, но у него уже используется два резистора – один отвечает за малые обороты вращения вентилятора, второй – за средние.

Третий же режим – аварийный, при котором вентилятор вращается с максимальной скоростью, обеспечивается за счет подачи питания на него напрямую.

Система зажигания

Второй элемент автомобиля, где можно встретить резистор – это свечи зажигания. Но далеко не все свечи оснащены им.

В конструкции данных элементов он начал появляться не так давно, и задача его заключается в подавлении радиопомех.

Резистор, для чего он нужен, где применяется в автомобилях

Кстати, сейчас ведется очень много споров, нужен ли он в свечах. Ведь резистор создает сопротивление, которое в конечном итоге влияет и на искру. А ведь чем сильнее последняя, тем лучше воспламеняется горючая смесь.

Но на самом деле на качестве искры наличие резистора сказывается незначительно, а вот на свечу – только положительно. Очень сильный искровой заряд приводит к разрушению электродов, а сопротивление снижает напряжение искры.

Но не в этом его главное назначение. Мощный искровой разряд создает достаточно сильные помехи в радиочастотном диапазоне, которые могут повлиять на работу аудиосистемы автомобиля, мобильного телефона и любого другого оборудования, чувствительного к помехам данного типа.

Интересно, что необязательно устанавливать на автомобиль свечи зажигания, оснащенные резисторами.

Дело в том, что во многих моделях шумоподавляющий элемент устанавливается в наконечники проводов высокого напряжения. Также некоторые виды самих проводов обладают достаточно неплохим сопротивлением, которого хватает для подавления радиопомех.

Резистор также может быть установлен и в бегунок трамблера, причем встречается он там на многих моделях. Его задача – та же, что и в свече зажигания или наконечнике.

Резистор, для чего он нужен, где применяется в автомобилях

Важно понимать, что во всех перечисленных элементах зажигания одновременно использоваться резисторы не могут.

При последовательном подключении этих элементов все сопротивление, которое они создают, суммируется.

То есть, если резистор будет установлен в бегунке трамблера, наконечнике, свече, то они будут создавать настолько сильное сопротивление, что значительно послабят искровой заряд, и он уже не сможет качественно воспламенять смесь. А это приведет к перебоям в работе двигателя, потере мощности, увеличению расхода топлива.

Поэтому принимать решение, стоит ли устанавливать на автомобиль свечи зажигания с резистором необходимо, тщательно ознакомившись с техдокументацией, идущей к авто.

Если изготовитель указывает, что необходимо использование таких свечей, то ими лучше пользоваться.

Система обогрева салона

Еще один элемент в конструкции автомобиля, где используется резистор – система отопления салона, а точнее, – управление работой электродвигателя печки.

В любом автомобиле используется переменный резистор для изменения скорости работы электромотора обогревателя.

В нем при помощи вращающегося элемента обеспечивается возможность изменения значения сопротивления.

При включении электродвигателя на 1-ю скорость вращения, резистор обеспечивает максимальное сопротивление, при переключении на 2-ю – оно уменьшается, а при переходе на 3-ю скорость — практически полностью убирается.

Резистор, для чего он нужен, где применяется в автомобилях

 

Осветительные приборы

В последнее время резисторы стали использоваться вместе со светодиодными лампами. Данный вид ламп все больше начал применяться на авто.

Резистор, для чего он нужен, где применяется в автомобилях

Но далеко не все машины пока идут с завода, укомплектованные светодиодными осветительными приборами, а вот отдельно их купить и установить вместо штатных ламп накаливания тех же поворотников или стоп-сигналов вполне можно и многие так делают.

Но здесь возникает проблема, которая обязывает использовать резисторы.

Дело в том, что потребление электроэнергии этими лампами очень малое, из-за чего электронный блок расценивает работу светодиодов как неисправность штатной лампы.

Чтобы исправить ситуацию, используются резисторы, создающие нагрузку на линии проводки, запитывающей те осветительные приборы, в которых установлены светодиодные лампы.

Резистор, для чего он нужен, где применяется в автомобилях

В результате ЭБУ воспринимает сопротивление элемента, как работу лампы накаливания, поэтому кода ошибки не возникает.

Интересно, что при использовании таких обманок основное достоинство светодиодных ламп – малое потребление энергии, сводится к нулю, и у них остается только одно преимущество перед обычными лампами накаливания – длительный срок эксплуатации.

Резистор, для чего он нужен, где применяется в автомобилях

Виды резисторов, их особенности

Из описанных выше резисторов, которые используются в конструкции автомобиля, можно отметить два типа – нагрузочные, они же постоянные и переменные. В целом – это и есть два основных вида, которые имеют достаточно широкое применение в разных сферах.

Конечно, есть еще целый ряд всевозможных резисторов, которые отличаются по своим конструктивным особенностям. К примеру, терморезисторы, в которых сопротивление меняется от температуры, или фоторезисторы, меняющие свои параметры от освещенности. Но их мы пока касаться не будем, а рассмотрим лишь указанные два вида.

Постоянные резисторы называются так потому, что сопротивление, которое они создают – неизменное.

Резистор, для чего он нужен, где применяется в автомобилях

К примеру, если указано, что основной параметр данного элемента составляет 30 Ом, то сопротивление именно этого значения он обеспечивает и поменять его невозможно.

В переменных же резисторах сопротивление можно менять, притом вручную. Примером тому является уже упомянутое управление электродвигателем системы отопления.

Резистор, для чего он нужен, где применяется в автомобилях

К переменным резисторам относятся также подстроечные.

В таких резисторах тоже можно изменять параметр вручную, но регулировка его выполняется не в любой момент, как это делается в переменном, а лишь когда требуется перенастроить работу всей схемы, куда он включен, на длительный срок.

Резистор, для чего он нужен, где применяется в автомобилях

В автотранспорте подстроечные элементы не используются, хотя их часто можно встретить в бытовой технике.

Подбор резистора по сопротивлению

Большинство людей при выходе из строя какого-то электроприбора сдают его в ремонт или заменяют, хотя во многих случаях виноват именно резистор, тем более что он – один из самых распространенных элементов в любой схеме. Но находятся и такие, кто самостоятельно берется за ремонт.

И часто у любителей самостоятельного ремонта возникает вопрос, как правильно подобрать резистор для той или иной схемы.

Для этого возьмем простейшую схему, включающую источник питания и один потребитель.

Еще вначале было указано, что электроэнергия имеет три основные характеристики – напряжение, сила тока и сопротивление. Именно по этим параметрам и производятся все необходимые расчеты, используя для этого закон Ома.

Согласно этого закона, поскольку нам необходимо определение сопротивления, следует напряжение поделить на силу тока.

К примеру, наш источник питания обеспечивает цепь напряжением 12 В, с силой тока 0,02 А.

Чтобы определить сопротивление проводим математические расчеты – 12/0,02 и получаем сопротивление цепи 600 Ом.

Теперь непосредственно о том, как высчитать сопротивление резистора для использования в той или иной схеме. Для примера возьмем источник питания на 12 В и потребитель (лампу накаливания 3,5 В, 0,28 А).

Вначале рассчитывается сопротивление лампы – 3,5/0,28 = 12,5 Ом. Теперь узнаем, какая сила тока потечет через имеющуюся лампу – для этого берем напряжение источника питания и делим на сопротивление: 12/12,5 = 0,96 А, что в 3,5 раза превышает необходимую для работы потребителя силу тока, и если подключить потребитель, то нить лампы попросту перегорит.

Чтобы перегорания не произошло, необходимо сопротивление в цепи, равное 43,75 Ом (12,5 * 3,5). А поскольку лампа сама создает сопротивление, то в схему необходимо подключить добавочный резистор на 30 Ом. В ходе расчетов получаем – 12 В/ 42,5 Ом (сопротивление лампы и резистора) = 0,28 А.

Резистор, для чего он нужен, где применяется в автомобилях

То есть получили силу тока, необходимую для нормальной работы потребителя. В данном случае включенный в схему элемент выступил в качестве ограничителя силы тока.

Мощность рассеивания

Помимо сопротивления у резистора есть еще один немаловажный параметр – мощность рассеивания.

Любой резистор выступает своего рода ограничителем и благодаря своему сопротивлению проводит через себя только определенное напряжение и силу тока. При этом излишки, которые он не пропустил в себе не накапливает, а преобразует их в тепловую энергию и рассеивает.

Поэтому предусмотрены обозначения резисторов по мощности рассеивания.

Резистор, для чего он нужен, где применяется в автомобилях

Несоответствие данного элемента по мощности рассеивания приведет к его перегреву и разрушению. Мощность рассеивания измеряется в Ваттах.

Определить мощность рассеивания можно как по напряжению, проходящему через него, так и по силе тока.

Что касается напряжения, то формула для расчета выглядит так:

Где:

  1. Р – мощность;
  2. U – напряжение в цепи;
  3. R – сопротивление резистора.

Для расчета по силе тока формула имеет такой вид:

Где:

  1. P – мощность;
  2. I – сила тока, проходящая через резистор;
  3. R – сопротивление.

Важным условием при выборе резистора по данному параметру является то, что мощность рассеивания у него должна быть вдвое больше, чем полученная при расчетах.

К примеру, мы имеем силу тока в 0,1 А и сопротивление резистора в 100 Ом.

Исходя из формулы, получаем мощность рассеиваний в 1 Ватт (0,12 * 100 = 1), но для нормальной работы элемента выбираем резистор с мощностью рассеивания в 2 Ватт.

Отметим, что все изготавливаемые резисторы имеют строго определенное значение мощности рассеивания, что облегчает их выбор.

К тому же можно даже визуально определить, какая у резистора мощность рассеивания. Здесь все просто, чем больше по размерам элемент, тем выше значение.

Резистор, для чего он нужен, где применяется в автомобилях

Здесь мы рассмотрели резисторы – одни из самых распространенных элементов в любой электрической схеме автомобиля. Ведь они позволяют контролировать основные параметры электрической энергии благодаря воздействию всего лишь на одну из ее характеристик.

Напоследок отметим, что при расчетах необходимо следить за размерностью параметров. То есть, использовать только амперы, вольты и омы, и если указано, что сила тока составляет 20 мА, то следует перевести это значение в амперы, получив для расчетов значение в 0,02 А.

для чего он нужен? Как узнать, какой резистор нужен?

При создании радиоэлектронных схем применяется множество различных элементов. Одни из наиболее используемых, без которых практически невозможно обойтись, — это резисторы. Что они собой являют? Какие типы есть? Какой их параметр наиболее важен? И какие особенности есть при последовательном и параллельном соединении?

Что такое резистор?

резистор для чего он нуженТак называют пассивный элемент электрической цепи, который оказывает сопротивление току во время его протекания. В больших схемах они применяются чаще, чем любой другой элемент электроники. Важным является обеспечение режима смещения транзисторов при использовании в усилительных каскадах. Но наиболее значимой функцией признают контроль и регулирование напряжения и значений токов в электрических цепях. Мы позднее рассмотрим, какие их типы бывают. В рамках статьи будет уделено внимание 5 основным, которые чаще всего используются, но могут быть и другие. Когда проводится расчет резисторов, то обязательно следует оценить, какая необходима мощность.

Хотите понять, что необходимо в конкретном случае?

зачем нужен резистор

Как узнать, какой резистор нужен при создании схем? Первоначально следует понять, что обязательным является знание силы тока или значение сопротивления нагрузки. В рамках статьи будет рассмотрено два варианта влияния на характеристики схемы:

1) Если ничего неизвестно, то берём переменный резистор и подключаем его последовательно с нагрузкой. Вращаем регулятор до того момента, пока у нас не будет нужное напряжение. Теперь вместо переменного сопротивления подключаем постоянное с необходимыми параметрами. Измерьте ток, что идёт после резистора и перемножает полученное значение с напряжением, что подаётся. Тогда будем знать, сколько и куда подавать.

2) Необходимо знать ранее указанные величины тока и нагрузки. Для повышения точности вычисления желательно также знать и значение внутреннего сопротивления источника питания.

Давайте смоделируем немного другие условия действий. Есть один резистор в качестве нагрузки, закон Ома и необходимость рассчитать необходимое для цепи сопротивление. Это довольно интересный момент и он заслуживает, чтобы ему было уделено внимание. Почему была выбрана именно такая формулировка? Дело в том, что люди, которые только начинают заниматься созданием схем, очень часто задают такой вопрос. Но, увы, цепь рассуждений, которой они идут, является немного неверной. Рассчитать необходимое значение с одним законом Ома здесь не выйдет. Необходимо дополнительно воспользоваться формулой вычисления добавочного резистора: СДБ = СН(НИП-НН)/НН=СН(х-1). Разберём формулу:

СДБ – сопротивление добавочного резистора;

НИП – напряжение источника питания;

СН – сопротивление нагрузки;

Х = НИП/НН;

НН – напряжение, что нужно получить на нагрузке.

Воспользуемся этой формулой. Допустим, что при сопротивлении в 1 Ом СДБ будет составлять 0,6 Ом. Если мы поставим 5 Ом, то конечный результат будет 3,3 Ом. Почему всё так? Это из-за того, что чем меньший показатель имеет сопротивление нагрузки, тем большая характеристика тока в цепи. При этом будет просаживаться источник питания, ведь он тоже создаёт определённые помехи для прохождения тока. А учитывая, что с этим будет падать и напряжение, то выходит, что нужен добавочный резистор с меньшими характеристиками для получения желаемого напряжения. Это напряжение буквально «на пальцах». Может быть сложно понять, что и как, но вы попробуйте.

Постоянный резистор

какие резисторы нужны для светодиодов

Так называют устройства, которые являются обладателями постоянного значения сопротивления. Эта характеристика резистора не меняется под действием внешних воздействий (температуры, протекающего тока, света, приложенного напряжения) в разумных рамках. Если так разобраться, то про все радиоэлементы можно сказать, что у них есть внутренние шумы и нестабильности из-за стороннего влияния. Но обычно это всё настолько ничтожно, что игнорируется любительской радиоэлектроникой и имеет смысл только при создании действительно сложных систем, которые даже не факт, что где-то собираются сейчас.

Переменный резистор

для чего нужен резистор отопителя

Так называют устройства, значение сопротивления которых можно изменить с помощью специальной ручки (она может быть ползункового, кнопочного или вращающегося типа). Зачем нужен резистор подобного типа? Хорошим примером применения данного элемента является регулятор громкости на звуковых колонках компьютера или мобильного телефона.

Построечный резистор

Так называются устройства, режим работы которых меняется лишь изредка. Чтобы регулировать значения сопротивления, необходимо с помощью отвертки покрутить шлиц, который имеет резистор. Для чего он нужен? Широкое распространение они получили на печатных платах радиосхем в качестве делителя тока или напряжения.

Фоторезистор

как узнать какой резистор нужен

Это специальные устройства, которые могут менять значение своего сопротивления под влиянием света. Фоторезисторы производятся из полупроводниковых материалов. Если необходимо реагировать на наличие видимого света, то применяют селенид и сульфид кадмия. Чтобы регистрировать инфракрасное излучение, используют германий.

Терморезистор

Это специальное устройство, с помощью которого можно измерять температуру внешней среды. Терморезистор также используется в цепях термостабилизации для транзисторных каскадов. Как уже можно было догадаться, его сопротивление может меняться под воздействием температуры. В инкубаторах для цыплят, оранжереях, производственных аппаратах — везде можно найти этот резистор. Для чего он нужен? Чтобы при достижении определенной температурной границы включались системы отопления\охлаждения.

Рассеиваемая мощность

резистор для чего он нужен в машинеЭто поглощаемая резистором энергия, которая образовывается током и напряжением. Из-за того, что происходит именно рассеивание, а не сохранение, данное устройство и называется пассивным. Благодаря этому о резисторе можно говорить как об активном элементе, который одинаково может работать в цепях переменного и постоянного токов.

Обозначение мощности рассеивания

Как понять, что может сделать постоянный резистор? Для этого необходимо посмотреть на его обозначение:

  1. Когда есть две косые линии, мощность рассеивания составляет 0,125 Вт.
  2. Есть одна косая линия — мощность рассеивания равняется 0,25 Вт.
  3. Одна горизонтальная линия — мощность рассеивания 0,5 Вт.
  4. Одна вертикальная линия — мощность рассеивания 1 Вт.
  5. Две вертикальные линии — мощность рассеивания 2 Вт.
  6. Две косые линии, что создают латинскую букву V, — мощность рассеивания 5 Вт.

Начиная от одного Ватта, для обозначения используются римские цифры.

Последовательное соединение

Когда имеет смысл применять подобный подход? Если надо получить значительное сопротивление, но есть резисторы с малым номиналом, то используют последовательно соединение. Чтобы оценить, что и как сделано в схеме, то нужно просуммировать их характеристики.

Параллельное соединение

А где необходим такой подход? Здесь общее сопротивление резисторов будет равняться сумме, которая является ему обратно пропорциональной. Эту величину также называют «проводимость». Вам может быть немного сложно понять, о чем автор ведёт речь, поэтому предлагаем взглянуть на такую формулу (С — сопротивление):

1/Собщее=1/С1+1/С2+…+1/Сх.

Применение

резистор для чего он нужен фотоВот мы и поняли, что такое резистор, для чего он нужен. Фото, размещённые в статье, позволяют понять, как он выглядит. Но хочется уделить внимание и его применению. Итак, резистор. Для чего он нужен в машине? Как вы знаете, в автомобилях используется значительное количество электроники. Вот для контроля её работы его и применяют. Для чего нужен резистор печки в автомобиле? Видели возможность переключения и настройки температурного режима? Вот для чего нужен резистор отопителя! Ведь без него можно было бы включить только заранее установленные настройки и всё. Теперь подумаем, зачем нужен резистор для светодиода? С его помощью можно регулировать яркость его свечения. Как вы могли догадаться, если внимательно читали статью, ответ на вопрос о том, какие резисторы нужны для светодиодов, — переменные!

Заключение

Как видите, резистор — это необходимая и полезная вещь, которая имеет широкие возможности применения. Теоретически обойтись без резистора можно в простейших схемах, на пару деталей, при том, что источники энергии будут очень точно выбраны. Но такое маловероятно, и для достижения необходимого значения этих показателей придётся длительное время подбирать их. Вот для упрощения процесса и применяются резисторы, ведь они позволяют проводить значительные перепады характеристик, открывая возможность даже кратного их изменения.

Что необходимо знать о резисторах? / Habr

Резистор: кусочек материала, сопротивляющийся прохождению электрического тока. К обоим концам присоединены клеммы. И всё. Что может быть проще?

Оказывается, что это совсем не просто. Температура, ёмкость, индуктивность и другие параметры играют роль в превращении резистора в довольно сложный компонент. И использовать его в схемах можно по-разному, но мы сконцентрируемся на разных видах резисторов фиксированного номинала, на том, как их делают и как они могут пригодиться в разных случаях.

Начнём с самого простого и старого.




Углеродный композит в проигрывателе

Их часто называют «старыми» резисторами. Они широко применялись в 1960-х, но с появлением других типов резисторов и благодаря достаточно большой себестоимости, их использование сейчас ограничено. Они состоят из смеси керамического порошка с углеродом, связанных при помощи смолы. Углерод хорошо проводит ток, и чем больше его в смеси, тем меньше сопротивление. Провода присоединяются с концов. Они покрываются краской или пластиком, служащими изоляцией, а сопротивление и допуск обозначаются цветными полосками.

Сопротивление таких резисторов можно перманентно изменить, подвергнув их высокой влажности, высокому напряжению или перегреву. Допуск составляет 5% или более. Это просто твёрдый цилиндр с хорошими высокочастотными характеристиками. Также они хорошо переносят перегрев, несмотря на свой малый размер, и всё ещё используются в блоках питания и сварочных контроллерах.

Однако их возраст не остановил меня от использования мешка таких резисторов, купленных мною в комиссионке с целью изготовления различных сопротивлений, которые были нужны мне для моего проекта муз. проигрывателя 555. На фото как раз моя поделка.


Производятся нанесением слоя чистого углерода на керамический цилиндр и последующего удаления углерода с целью формирования спирали. Итог покрывается кремнием. Толщина слоя и ширина оставшегося углерода управляют сопротивлением, а допуск таких резисторов бывает от 2%, лучше, чем у предыдущих. Благодаря чистому углероду сопротивление меньше меняется с температурой.

Температурный коэффициент сопротивления углеродно-плёночных резисторов составляет от 200 до 500 ppm/C – миллионных долей на градус Цельсия. 200 ppm/C значит, что с каждым градусом сопротивление не изменится больше, чем на 200 Ом на каждый МОм общего сопротивления. В процентах это можно выразить как 0,02%/C. Если температура изменится на 80 С, при показателе 200 ppm/C сопротивление резистора поменяется на 1,6%, или на 16 кОм.

Такие резисторы выпускаются номиналом от 1 Ом до 10 кОм, мощностью от 1/16 Вт до 5 Вт и выдерживают напряжения в несколько киловольт. Обычно используются в высоковольтных блоках питания, рентгеновских аппаратах, лазерах и радарах.


Металлическая плёнка делается схожим с углеродной образом, путём размещения металлического слоя (часто это никель хром) на керамике, с последующим вырезанием спирали. Согласно документации от производителя Vishay, после присоединения клемм спираль раньше обрабатывали шлифовкой, но сейчас для этого используют лазеры. Результат покрывается лаком и помечается цветовой кодировкой или текстом.

Сопротивление резисторов из металлической плёнки меняется меньше, чем у углеродно-плёночных. ТКС находится в районе 50-100 ppm/C. 50 ppm/C аналогичны 0,005%/C. Использовав аналогичный приведённому выше пример с резистором в 1 МОм, изменение температуры на 80 С приведёт в случае резистора 50 ppm/C к изменению сопротивления на 0,4%, или на 4 кОм.

Допуск у них меньше, порядка 0,1%. Также обладают хорошими шумовыми характеристиками, низкой нелинейностью и хорошей стабильностью по времени, и используются для множества целей.


Случай схож с металлической плёнкой, только обычно используется оксид олова с примесью оксида сурьмы. Ведут себя такие резисторы лучше, чем углеродные или металлические плёнки, если говорить о напряжении, перегрузках, скачках и высоких температурах. Резисторы на углеродной плёнке работают до 200 С, на металлической – до 250-300 С, а резисторы на плёнке из оксида – до 450 С. При этом их стабильность весьма хромает.


Производятся намоткой провода на пластиковый, керамический или стекловолоконный цилиндр. Поскольку провод можно отрезать довольно точно, номинал их сопротивления можно выбрать с большой точностью с допуском не хуже 0,1%. Чтобы получить резистор с высоким сопротивлением, нужно использовать очень тонкий и длинный провод. Провод можно сделать тоньше для меньшей мощности или толще для большей мощности. Его можно изготавливать из большого числа металлов и сплавов, включая никель хром, медь, серебро, хромистой стали и вольфрама.

Разрабатываются с прицелом на возможность работы при высоких температурах: вольфрамовые выдерживают температуры до 1700 С, серебряные – от 0 до 150 С. ТКС у высокоточных проволочных резисторов составляет порядка 5 ppm/C. У резисторов, предназначенных для высоких мощностей, ТКС выше.

Работают на мощностях от 0,5 Вт до 1000 Вт. Резисторы на несколько сотен Вт могут быть покрыты высокотемпературным кремнием или стекловидной эмалью. Для увеличения теплоотвода могут быть оборудованы алюминиевым кожухом с пластинами, работающими как радиатор.


Виды намотки

Поскольку это практически катушки, у них присутствует индуктивность и ёмкость, из-за чего на высоких частотах они ведут себя плохо. Для уменьшения этих эффектов применяются различные хитрые схемы намотки, например, бифилярная, намотка на плоском носителе, и намотка Аэртона-Перри.

У бифилярной намотки отсутствует индукция, но высокая ёмкость. Намотка на плоском и тонком носителе сближает провода и уменьшает индукцию. Намотка Аэртона-Перри, благодаря тому, что провода идут в разных направлениях и находятся близко друг от друга, уменьшает самоиндукцию и ёмкость, поскольку в местах пересечения напряжение одинаково.

Потенциометры делают на основе проволочных резисторов благодаря их надёжности. Также они используются в прерывателях и предохранителях. Их индукцию можно увеличить и использовать их как датчики тока, измеряя индуктивное сопротивление.


Используют фольгу толщиной в несколько микрон, обычно из никель хрома с добавлениями, расположенную на керамической подложке. Они наиболее стабильные и точные из всех, даром что существуют с 1960-х. Необходимое сопротивление достигается фототравлением фольги. Не имеют индуктивности, обладают низкой ёмкостью, хорошей стабильностью и быстрой тепловой стабилизацией. Допуск может быть в пределах 0,001%.

ТКС составляет 1 ppm/C. При изменении температуры на 80 С мегаомный резистор поменяет сопротивление всего на 0.008% или 80 Ом. Интересен способ, которым достигается подобная точность. При увеличении температуры увеличивается и сопротивление. Но резистор делается так, что увеличение температуры приводит к сжатию фольги, из-за чего сопротивление падает. Суммарный эффект приводит к тому, что сопротивление почти не меняется.

Хорошо подходят для аудиопроектов с токами высоких частот. Также подходят для проектов, требующих высокую точность, например, электронных весов. Естественно, используются в областях, где ожидаются большие колебания температуры.


В основном применяются для поверхностного монтажа. Плёнка в толстоплёночных резисторах в 1000 раз толще, чем в тонкоплёночных. Это самые дешёвые резисторы, так как толстая плёнка дешевле.

Тонкооплёночные резисторы изготавливаются ионным напылением никель хрома на изолирующую подложку. Затем применяется фототравление, абразивная или лазерная чистка. Толстоплёночные изготавливаются печатью по трафарету. Плёнка представляет собой смесь связующего вещества, носителя и оксида металла. В конце процесса применяется абразивная или лазерная чистка.

Допуск тонкоплёночных резисторов находится на уровне 0,1%, а ТКС – от 5 до 50 ppm/C. У толстоплёночных допуск бывает 1%, а ТКС — 50 до 200 ppm/C. Тонкоплёночные резисторы меньше шумят.

Тонкоплёночные резисторы применяются там, где требуется высокая точность. Толстоплёночные можно использовать практически везде – в некоторых ПК можно насчитать до 1000 толстоплёночных резисторов поверхностного монтажа.

Существуют и другие виды резисторов постоянного номинала, но в ящичках для резисторов вы, скорее всего, встретите один перечисленных.

Что такое резистор? | AUDIO-CXEM.RU

Резистор представляет собой пассивный элемент электрической цепи, то есть не вносит в электрическую цепь энергию, а только потребляет её. В электротехнике резистор, как идеализированный элемент электрической цепи, характеризующийся только сопротивлением электрическому току, называют сопротивлением.

При сопротивлении протеканию электрического тока через резистор, последний нагревается, преобразуя энергию электрического тока в тепловую энергию, рассеивая тепло в окружающую среду.

Если говорить простым языком, то резистор ограничивает ток, текущий по проводнику.

Для полного понимания, сразу приведу аналогию. Представим, что у нас есть трубопровод, по которому течет вода с определенным давлением. В нашей аналогии диаметр трубы и будет резистором (сопротивлением), а количество воды, проходящее через данный диаметр трубы в единицу времени, будет силой тока. Чем меньше диаметр трубы, тем больше сопротивление, следовательно, меньше сила тока. Напряжением в нашей аналогии будет давление воды в трубе.

Одной из основных характеристик резистора является сопротивление. Сопротивление измеряется в Омах.

1 кОм = 1000 Ом

1 Мом = 1000000 Ом
Следующая основная характеристика, это рассеиваемая мощность, которая измеряется в Ваттах.

Самые распространенные резисторы с рассеваемой мощностью от 0.125 до 2 Вт и более.

Погрешность тоже бывает различная, в основном 5%. В моем городе других не продают. Есть высокоточные резисторы с погрешностью 1% и менее, но таких компонентов в нашем городе нет.

Есть и другие характеристики, но они не так важны.

Давайте наглядно посмотрим, как резистор ограничивает ток. Соберем простую схему:

Амперметр показывает потребление тока равное 19 мА. Напряжение подаваемое в цепь 3.3 В. Светодиод светит ярко.

 

Теперь добавим в цепь резистор, сопротивлением 1.3 кОм. Схема будет выглядеть так:

Соберем схему на монтажной плате:

Мы видим, что яркость светодиода уменьшилась. Ток, текущий через светодиод и резистор уменьшился с 19 до 0.5 мА.


Похожие статьи

Обсуждение:Резистор — Википедия

Материал из Википедии — свободной энциклопедии

Для чего используютя резисторы? Что они делают?

Практически все электронные компоненты (как и большинство предметов, произведенных человеком), имеют маркировку. Не записывать же их все в категорию Маркировка? Вы посмотрите на эту категорию — уже сейчас это просто свалка всего. Если будет статья «Маркировка резисторов», то ее можно.

Именно свалка всего, объединённая одним — каждый предмет в этой свалке несёт на себе какие-то цифро-буквенно-цветовые или графические обозначения, расшифровать которые можно только используя специальные таблицы, договорённости, местные стандарты и т.п. В то же время, информация, закодированная в этих обозначениях может быть принципиально важна. К тому же, та же цветовая маркировка резисторов используется вообще где попало, так красят дроссели и конденсаторы, например. Не проще-ли, встретив что-то непонятно маркированное, пошарить по категории Маркировка и там, возможно, найти что-то подходящее, чем каждый раз думать, а что-же это вообще такое? Логотип завода (какого-нибудь 3M), обозначение стандарта (СТБ, например) или номер модели или номинал изделия? Поэтому я и придумал категорию Маркировка. И резисторам там самое место. ManN 15:22, 23 июля 2007 (UTC)
  1. Вот у меня в руках «непонятно маркированный предмет», на котором написано 101. Допустим, этот предмет есть в категории Маркировка. Как мне теперь «пошарить по категории Маркировка», чтобы найти описание этого предмета?
  2. Если следовать вашему замыслу, то в категорию Маркировка должны войти все промаркированные предметы мира. Поэтому категорию можно с таким же успехом назвать
    Все
    . А такая категория, согласитесь, бесполезна. Если мне нужно будет расшифровать маркировку яйца, то я сделаю это через статью яйцо (еда), а не через категорию Маркировка. Нужна ли тогда категория маркировка? Да, но она должна включать статьи о маркировке как таковой, безотносительно предметов (например, штрихкод)
  1. 101 может означать номинал (резистора, например) из ряда E192 или дату в одной из извращённых форм. Если всё это не подходит, то это, возможно, en:IO Interactive, например. В любом случае набор возможных кодированных маркировок есть.
  2. В те счастливые времена, когда на резисторе помещалась надпись «Эриксонъ. Сопротивленiе 1000 ОмЪ.» такая категория вообще не нужна была-бы. А сколько Вам понадобится времени, чтобы узнать, что современное «01B» — это то же самое? … А кодированную маркировку на польских или немецких яйцах Вы видели? Имея категорию Маркировка можно, в конце-концов, задуматься и над этим и по крайней мере дополнить нашу статью «яйцо» ссылкой. … Штрихкод там есть. ManN 05:53, 24 июля 2007 (UTC)
  1. Да я знаю, что это может означать. Вы ответьте на вопрос: как категория Маркировка (в ее нынешнем виде) поможет мне узнать, что это означает? Вот конкретно, куда смотреть, где «шарить»? (ответ: никак не поможет)
  2. Опять тот же вопрос. Вот я вижу «01B» на предмете, куда смотреть в Маркировке, чтобы понять смысл обозначения? И ответьте еще на вопрос: что, все-таки, помещать в Маркировку? Все, что может быть промаркировано? —Кae 08:17, 24 июля 2007 (UTC)
  1. Ответ: смотреть все статьи из категории по порядку, пока не найдётся что-то подходящее. Именно для этого они там и собраны «кучей».
  2. В Маркировке дойти до статьи «Резисторы» (которой там нет) и посмотреть таблицу. (Я дополнил, на SMD 0603 уже никакие цветные полоски не помещаются)… Да, помещать всё, что может быть промаркировано способом, непонятным «непосвящённому». ManN 08:54, 24 июля 2007 (UTC)
  • «Вот у меня в руках «непонятно маркированный предмет»» — положить на место, если не догадываетесь, что это может быть 🙂 а если догадываетесь — проверить догадки пошарив по статьям ваших догадок//Berserkerus 21:53, 24 июля 2007 (UTC)
    • а по категориям вообще легко.//Berserkerus 21:55, 24 июля 2007 (UTC)

Итак, есть предложения по статье: нужно разделить как минимум резистор с точки зрения электротехники (идеальный резистор, паразитные параметры, схема замещения на ВЧ, схема замещения на НЧ с учетом шумов) и с точки зрения компонента электрической цепи (физического резистора). Соответственно разбить материал на разделы либо вынести всё что касается резистора с точки зрения электротехники в отдельный раздел.

Заодно определиться что всё же в сути статьи — сначала идеальный резистор, а потом переход на реальный или реальный с указанием на анализ с точки зрения электротехники (отдельной главой) и идеального резистора… В таком контексте определение ГОСТ для идеального резистора некорректно т.к. определение ГОСТ не уточняет есть или нет паразитные параметры, а определение идеального резистора на это указывает чётко (на отсутствие таковых)… Без подобных уточнений и правок статья понемногу превращается в кашу из отовсюду понемногу на мой взгляд.Sobiratel sxem (обс.) 09:56, 5 июня 2019 (UTC)Андрей

Цвет корпусов резисторов о чём либо сообщает? Не полоски маркировки, а именно цвет. А то с одинаковыми полосками к примеру есть голубые и бежевые. 37.113.180.54 05:12, 14 июля 2019 (UTC)

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *