Skip to content

Что такое резистор: что это такое, устройство, принцип работы, виды

Содержание

Что такое резистор | Виды, типы, как измерить сопротивление

Что такое резистор

Резистор – это самый распространенный радиоэлемент, который используется в электронике. Я могу со 100% уверенностью сказать, что абсолютно на любой плате какого-либо устройства вы найдете хотя бы один резистор. Резистор имеет важное свойство – он обладает активным сопротивлением электрическому току. Существует также и реактивное сопротивление. Подробнее про реактивное и активное сопротивление.

Виды резисторов

Существует множество видов резисторов, которые используются в радио-электронной промышленности. Давайте разберем основные из них.

Постоянные резисторы

Постоянное резисторы выглядят примерно вот так:

Слева мы видим большой зеленый резистор, который рассеивает очень большую мощность. Справа –  маленький крохотный SMD резистор, который рассеивает очень маленькую мощность, но при этом отлично выполняет свою функцию.

Про то, как определить сопротивление резистора, можно прочитать в статье маркировка резисторов.

Вот так выглядит  постоянный резистор на электрических схемах:

Наше отечественное изображение резистора изображают прямоугольником (слева), а заморский вариант (справа), или как говорят – буржуйский, используется в иностранных радиосхемах.

Вот так маркируются мощности на советских резисторах:

Далее мощность маркируется с помощью римских цифр. V – 5 Ватт, X – 10 Ватт, L  -50 Ватт и тд.

Какие еще бывают виды резисторов? Давайте рассмотрим самые распространенные:

20 ваттный стекловидный с проволочными выводами, 20 ваттный с монтажными лепестками,30 ваттный в стекловидной эмали, 5 ваттный и 20 ваттный с монтажными лепестками

1, 3, 5 ваттные керамические; 5,10,25, 50 ваттные с кондуктивным теплообменом

2, 1, 0.5, 0.25, 0.125 ваттные углеродной структуры;  SMD резисторы типоразмеров 2010, 1206, 0805, 0603,0402; резисторная SMD сборка, 6,8,10 выводные резисторные сборки для сквозного монтажа, резистор  в DIP корпусе

 

 

 

 

Переменные резисторы

Переменные резисторы выглядят так:

На схемах обозначаются так:

Соответственно отечественный и зарубежный вариант.

А вот  и их цоколевка (расположение выводов):

Переменный резистор, который управляет напряжением называется потенциометром, а который управляет силой  тока – реостатом. Здесь заложен принцип делителя напряжения и делителя тока соответственно. Различие между потенциометром и реостатом в схеме подключения самого переменного резистора. В схеме с реостатом в переменном резисторе соединяется средний и крайний выводы.

[quads id=1]

Переменные резисторы, у которых сопротивление можно менять только при помощи отвертки или шестигранного ключика, называются подстроечными переменными резисторами. У них есть специальные пазы для регулировки сопротивления (отмечены красной рамкой):

А вот  так  обозначаются подстроечные резисторы и их схемы включения в режиме реостата и потенциометра.

Термисторы

Термисторы – это резисторы на основе полупроводниковых материалов. Их сопротивление резко зависит от температуры окружающей среды. Есть такой важный параметр термисторов, как ТКС – тепловой коэффициент сопротивления. Грубо говоря, этот коэффициент показывает на сколько изменится сопротивление термистора при изменении температуры окружающей среды.

Этот коэффициент может быть как отрицательный, так и положительный.  Если ТКС отрицательный, то такой термистор называют термистором, а если ТКС положительный, то такой термистор называют позистором. 

У термисторов  при увеличении температуры окружающей среды сопротивление падает. У позисторов с увеличением температуры окружающей среды  растет и сопротивление.

Так как термисторы обладают отрицательным коэффициентом (NTC — Negative Temperature Coefficient — отрицательный ТКС), а позисторы положительным коэффициентом (РТС — Positive Temperature Coefficient — положительный ТКС), то и на схемах они будут обозначаться соответствующим образом.

Варисторы

Есть также особый класс резисторов, которые резко изменяют свое сопротивление при увеличении напряжения –  это варисторы. 

Это свойство варисторов широко используют от защиты перенапряжений в цепи, а  также от импульсных скачков напряжения. Допустим  у нас “скакануло” напряжение. Все это дело “чухнул” варистор и сразу же резко изменил сопротивление в меньшую сторону. Так как сопротивление варистора стало очень маленьким, то весь электрический ток сразу же начнет протекать через него, тем самым защищая основную цепь радиоэлектронного устройства. При этом варистор берет всю мощность импульса на себя и очень часто платит за это своей жизнью, то его выгорает наглухо

На схемах варисторы обозначаются вот таким образом:

Фоторезисторы

Большой популярностью также пользуются фоторезисторы. Они изменяют свое сопротивление, если на них посветить. В этих целях можно применять как солнечный свет, так и искусственный, например, от фонарика.

На схемах они обозначаются вот таким образом:

Тензорезисторы

Принцип действия их работы основан на растяжении тонких печатных проводников. При растяжении они становятся еще тоньше. Это все равно, что вытягивать жевательную резинку. Чем больше вы ее вытягиваете, тем тоньше она становится. А как вы знаете, чем тоньше проводник, тем бОльшим сопротивлением он обладает.

На схемах тензорезистор выглядит вот так:

Вот анимация работы тензорезистора, позаимствованная с Википедии.

Ну и как вы догадались, тензорезисторы используются в электронных весах, а также в различных датчиках, где применяется какое-либо давление, либо сила.

Как измерить сопротивление резистора

Любой резистор обладает сопротивлением. Кто не в курсе, что такое сопротивление и как оно измеряется, в срочном порядке читаем эту статью. Сопротивление измеряется в Омах. Но как же нам узнать сопротивление резистора? Есть прямой и косвенный методы.

Прямой метод он самый простой. Нам нужно взять мультиметр и просто замерять сопротивление резистора. Давайте рассмотрим, как все это выглядит. Я беру мультиметр, выставляю крутилку на измерение сопротивления и цепляюсь к выводам резистора.

измерение сопротивления

Резистор я брал на 1 кОм. Он мне показал 976 Ом, что в принципе тоже нормально, так как у таких резисторов всегда существует некая погрешность.

Косвенный метод измерения заключается в том, что мы будем рассчитывать сопротивление резистора через закон Ома.

формула сопротивления через закон Ома

Поэтому, чтобы узнать сопротивление резистора, нам надо напряжение на концах резистора поделить на силу тока, которая течет через резистор. Все довольно просто!

Допустим, я хочу узнать сопротивление нити накала лампочки, когда она источает свет. Думаю, некоторые из вас в курсе, что сопротивление холодной вольфрамовой нити и раскаленной – это абсолютно разные сопротивления. Я ведь не смогу измерить мультиметром в режиме измерения сопротивления раскаленную вольфрамовую нить лампы накаливания, так ведь? Поэтому, нам как нельзя кстати подойдет эта формула

Давайте же узнаем это на опыте. У меня есть лабораторный блок питания, который показывает сразу напряжение и силу тока, которая течет через нагрузку. Беру лампу, выставляю на блоке питания напряжение, которое написано на самой лампе и подключаю ее к клеммам блока питания.

лампа накаливания потребление тока

Итак, получается, что на выводах лампы сейчас напряжение 12 Вольт, а ток, который течет в цепи, а следовательно и через лампу  0,71 Ампер.

Получаем, что сопротивление раскаленной нити лампы в данном случае составляет

Последовательное и параллельное соединение резисторов

Все вышеописанные резисторы можно соединять параллельно или последовательно. При параллельном соединении выводы резисторов соединятся в общих точках.

В этом случае, чтобы узнать общее сопротивление всех резисторов в цепи, достаточно будет воспользоваться формулой, где сопротивление между точками А и В (RAB) и есть то самое R общее:

При последовательном соединении номиналы резисторов просто тупо суммируются

В этом случае

Хорошее видео по теме

 

 

Похожие статьи по теме “резисторы”

Маркировка резисторов

Фоторезистор

RC цепь

Активное и реактивное сопротивление

Что такое сопротивление

Закон Ома

РЕЗИСТОР — это… Что такое РЕЗИСТОР?

  • РЕЗИСТОР — (от латинского resisto сопротивляюсь), устройство на основе проводника с нормированным постоянным (постоянный резистор) или регулируемым (переменный резистор) активным сопротивлением, используемое в электрических цепях для обеспечения требуемого… …   Современная энциклопедия

  • Резистор — (от латинского resisto сопротивляюсь), устройство на основе проводника с нормированным постоянным (постоянный резистор) или регулируемым (переменный резистор) активным сопротивлением, используемое в электрических цепях для обеспечения требуемого… …   Иллюстрированный энциклопедический словарь

  • РЕЗИСТОР — (англ. resistor от лат. resisto сопротивляюсь), радио или электротехническое изделие, основное функциональное назначение которого оказывать известное активное сопротивление электрическому току. Резистор характеризуют номинальным значением… …   Большой Энциклопедический словарь

  • резистор — резистер, варистор Словарь русских синонимов. резистор сущ., кол во синонимов: 7 • варистор (2) • …   Словарь синонимов

  • резистор — Элемент электрической цепи, предназначенный для использования его электрического сопротивления. [ГОСТ Р 52002 2003] омическое сопротивление резистор [IEV number 151 13 19] EN resistor two terminal device characterized essentially by its… …   Справочник технического переводчика

  • РЕЗИСТОР F1 — см. Рекомендуется для использования в свежем виде. Раннеспелый. Период от массовых всходов до начала технической спелости 90 100 дней. Растение низкорослое. Лист среднего размера, зеленый, слабопузырчатый, восковой налет слабый. Кочан округлый,… …   Энциклопедия семян. Овощные культуры

  • РЕЗИСТОР — радио или электротехническое изделие, обладающее только активным электрическим сопротивлением и определяющее в цепи силу тока и напряжение. Различают Р.: проволочные и непроволочные, постоянного и переменного сопротивлений класса точности от… …   Большая политехническая энциклопедия

  • Резистор — Иное название этого понятия  «Сопротивление»; см. также другие значения. Шесть резисторов разных номиналов и точности, промаркированные с помощью цветовой схемы Резистор …   Википедия

  • резистор — а; м. [англ. resistor] Радио или электротехническая деталь, создающая сопротивление в электрической цепи. * * * резистор (англ. resistor, от лат. resisto  сопротивляюсь), радио или электротехническое изделие, основное функциональное назначение… …   Энциклопедический словарь

  • Резистор — 1 . Резистор D. Widerstand E. Resistor F. Résistance По ГОСТ 19880 74* Источник: ГОСТ 21414 75: Резисторы. Термины и определения оригинал документа …   Словарь-справочник терминов нормативно-технической документации

  • Принцип работы резистора, что такое резистор и как он работает

    Что такое резистор? Это элемент электрической сети, который ограничивает ток. Резистор — английское слово. В переводе на русский означает сопротивление.

    Обозначение резистора на схеме

    На рисунке показано простейшее обозначение резистора на электрической схеме. Справа в углу показаны реальные резисторы. Как видим, схематичное изображение сопротивления похоже на его реальную форму.

    Изучение электротехники, радиодела начинается с закона Ома для участка цепи:

    I = U/R, где

    I – сила тока,

    U – Напряжение,

    R – Сопротивление.

    Если по резистору течет ток силой 1 А, а напряжение на его концах равно 1 В, то говорят, что сопротивление равно 1 Ом.

    Закон Ома для участка цепи

    В нижней формуле на рисунке показана зависимость сопротивления от удельного сопротивления — ρ, физических размеров резистора (L- протяженность в см, S – площадь поперечного сечения в см2). Как видим, чем длиннее проводник (резистор), тем больше его сопротивление. Чем больше S, тем меньше R. Надо отметить, что любой проводник имеет сопротивление.

    Виды резисторов

    Резисторы бывают трех видов:

    1. Постоянные – величина сопротивления у которых не меняется. Надо отметить, что небольшие изменения все-таки происходят из-за изменения температуры. Но эти изменения не существенны, так как не влияют на работу цепи.
    2. Переменные – их сопротивление меняется в определенных пределах. Например, реостаты. Когда мы вращаем ручку радиоприемника для изменения звука или перемещаем ползунок, мы меняем сопротивление цепи.
    3. Подстроечные — меняют величину при помощи винта. Делается это редко, для получения нужных параметров цепи.

    Принцип работы резистора простым языком

    Все электронные приборы состоят из радиодеталей, которые делятся на два больших типа: активные и пассивные.

    Активные усиливают электрические сигналы. Слабый сигнал на входе управляет мощным на выходе. В этом случае коэффициент усиления больше единицы.

    Резистор относится к пассивному типу деталей, у которого коэффициент усиления меньше единицы.

    В советское время резисторы именовали сопротивлениями. В наши дни эти детали называют резисторами. Сделано это потому, что все детали, применяемые в электронике, обладают сопротивлением. Чтобы не путаться, активные сопротивления назвали резисторами.

    Все проводники имеют сопротивление, которое считается вредным, так как это приводит к нагреву элемента по которому течет ток. К тому же теряется электрическая мощность. Сопротивление резистора является полезным. Он нагревается и выделяет тепло. На этом принципе работают нагревательные печки и лампы, применяемые в быту.

    Принцип работы переменного резистора

    Схема потенциометра

    Поворотом ручки меняется длина резистора, и как результат сила тока. На рисунке показан переменный резистор с тремя выводами – потенциометр. Сопротивление между концами 1 и 3 меняется от 0 до максимума, в зависимости от положения ручки. Такая же картина между концами 2 и 3, но наоборот. То есть если сопротивление 1 – 3 растет, 2 – 3 уменьшается. Когда переменный резистор имеет два конца – имеем реостат.

    На рисунке показан поворотный переменный резистор. Бывают также ползунковые, где движок перемещается по прямой. Поворотом ручки сопротивление меняется от нуля до максимума. Потенциометры широко применяются в аудиоаппаратуре.

    Потенциометр

    Потенциометры утапливают в цилиндрические и параллелепипедные корпуса. Внутри корпуса имеется резистивный элемент подковообразной формы. По оси детали выходит металлическая ручка, поворотом которой меняется положение токосъемника, который расположен на противоположном конце.

    Пластина токосъемника надежно прижата к резистивному элементу, за счет упругой силы. Ее изготавливают из стали или из бронзы. Напряжение подается на крайние концы потенциометра. За счет вращения ручки, токосъемник скользит по резистивному элементу, меняя напряжение между крайними и средним концами.

    На рисунке показан проволочный потенциометр, у которого резистивный слой изготовлен из проволоки. Провод с высоким сопротивлением наматывается на подковообразный каркас. Затем контактная поверхность кольца шлифуется и полируется. Это делается для обеспечения надежности соединения ползунка с проводящим слоем.

    Изготавливают также непроволочные потенциометры. В них резистивный слой нанесен на кольцеобразную или прямоугольную основу из изоляционного материала.

    Принцип работы подстроечного резистора

    После монтажа деталей электронного прибора, обычно его характеристики отличаются от номинальных. Для доводки показателей прибора применяют подстроечные резисторы. В принципе это те же переменные резисторы, но выделенные в отдельную группу, потому что конструктивно отличаются от переменных резисторов. У них нет ручек, вращая которые изменяются. Вместо них отверстия под отвертку шлицевую или прямую.

    Подстроечный резистор с крестовиковым шлицом

    В процессе работы прибора, через некоторое время, его параметры меняются. Для привидения их к номиналу применяют подстроечные резисторы.

    По типу перемещения ползунка бывают подстроечные резисторы с перемещением по прямой и с перемещением по окружности.

    Для точной настройки параметров электронного прибора используют подстроечные резисторы с большим числом оборотов. В них изменение сопротивления от минимума до максимума осуществляется за несколько оборотов или даже за десятки оборотов подстроечного вала. В этих резисторах перемещение контакта происходит при помощи червячной передачи.

    Принцип работы резистора печки автомобиля

    Схема отопителя автомобиля

    У обычной ВАЗовской печки четыре скорости. Как видим из рисунка скорость вращения мотора печки зависит от резисторов. Переключатель резисторов является переключателем скоростей отопителя. Для того, чтобы воздух, поступаемый в салон из печки был бы теплым, двигатель должен быть прогрет. Часто водители включают печку для охлаждения двигателя, в случае его перегрева.

    Если не нужно нагревать салон автомобиля (в теплое время), то воздух нагнетается в салон напрямую, минуя радиатор печки, через фильтр отопителя. Для этого есть специальная заслонка, которая переключается из салона автомобиля водителем.

    Зная схему подключения резистора печки, можно легко заменить это сопротивление, в случае выхода его из строя. Сделать это можно самостоятельно, а не платить большие деньги в автосервисе.

    Понравилась статья? Расскажите друзьям: Оцените статью, для нас это очень важно:

    Проголосовавших: 6 чел.
    Средний рейтинг: 4.5 из 5.

    Что такое резистор и зачем он нужен. Часть 1

    Приветствую, друзья!

    Сегодня мы познакомимся ещё с одним «кирпичиком» электроники — резистором.

    Мы не будем рассматривать все многообразие современных резисторов, но ознакомимся с принципом их действия.

    И дадим кое-какие практические рекомендации применительно к компьютерам и периферийным устройствам.

    Но сначала немного теории «на пальцах».

    Проводники, полупроводники и диэлектрики

    С точки зрения прохождения электрического тока (движения заряженных частиц) все вещества можно условно разделить на три большие группы — проводники, полупроводники и диэлектрики.

    Проводники — это вещества, которые, в первом приближении, хорошо проводят ток, полупроводники — это вещества, которые плохо проводят ток, диэлектрики — не проводят ток вообще. Класс вещества определяется степенью сопротивление электрическому току.

    Степень сопротивления вещества определяется строением его молекул и наличием различного количества свободных заряженных частиц.

    Меньше всего сопротивляются прохождению электрического тока проводники, больше всего —  диэлектрики.

    Большинство металлов и их сплавов являются проводниками.

    Проводники используются для доставки электрической энергию от генератора к потребителю.

    Чтобы энергия доходила без больших потерь, необходимо, чтобы проводники (провода и кабели) обладали низким сопротивлением. Лучшими проводниками являются серебро, медь и алюминий.

    Полупроводники в чистом виде плохо проводят электрический ток.

    Но при добавлении определенных веществ в них появляется избыток заряженных частиц того или иного знака (p – положительно заряженных частиц и n – отрицательно заряженных).

    При соединении двух полупроводников  различного знака получается такая фундаментальная вещь как p-n переход.

    P-n переход является основой большинства полупроводниковых приборов (диодов, транзисторов и т.п.)

    В компьютере присутствуют и проводники, и полупроводники, и диэлектрики.

    Так, например, материнская плата вашего компьютера сделана из диэлектрического материала (стеклотекстолита), на поверхности которого расположены медные проводники, к которым припаяны различные детали.

    Процессор вашего компьютера содержит в себе несколько миллионов полупроводниковых транзисторов.

    Кроме того, на плате полно отдельных (дискретных) диодов, транзисторов, конденсаторов и резисторов.

    Что такое резистор

    Резистор — это электронная деталь (условно относящаяся к классу проводников), обладающая сопротивление электрическому току.

    В электронной технике очень часто надо внести в электрическую цепь не просто сопротивление, но сопротивление определенной величины.

    Чем больше сопротивление электрической цепи, тем меньше соответствии с законом Ома ток в ней  при том же напряжении:

    I = U/R, где I – электрический ток, U – напряжение, R – сопротивление

    Если ток представить в виде движения стада животных, то пастух будет представлять собой напряжение. Сопротивлением в этом случае будет выступать нрав животных. Стадо можно заставить двигаться быстрее (увеличить силу тока), если пастух начнет щелкать бичом (поднимется напряжение).

    Ток (сила тока) измеряется в амперах, напряжение — в вольтах, сопротивление – в омах.

    Все эти единицы названы в честь физиков Анри-Мари Ампера, Алессандро Вольты и Георга Ома.

    Резисторы могут иметь сопротивление от долей Ома до десятков и сотен Мегом (миллионов Ом). Электрическая лампочка накаливания – это, по существу, также резистор, обладающий сопротивлением в несколько десятков или сотен Ом (в зависимости от мощности лампы).

    Постоянные, переменные и подстрочные резисторы

    Постоянный резистор — это деталь с двумя выводами, которая вносит в электрическую цепь постоянное сопротивление.

    Постоянный резистор представляет собой стержень из диэлектрического материала (чаще всего из керамики) на поверхности которой нанесена токопроводящая пленка из углерода или металлического сплава.

    На торцы стержня плотно насажены «чашечки», переходящие в проволочные выводы. Чем тоньше плёнка, тем больше сопротивление.

    На поверхность стержня могут наноситься канавки, увеличивающие сопротивление. Резистор с небольшим значением сопротивления может представлять собой керамическое основание с намотанным на него тонким проводом.

    Для защиты резистивного слоя сверху наносится слой компаунда или лака, поверх которого наносится буквенно-цифровая маркировка или маркировка в виде нескольких цветных колец.

    Раньше выводы резисторов в большинстве случаев были медными. Теперь же часто основу этих выводов составляет железо (которое дешевле меди).

    Очень часто возникает задача изменить вносимое в электрическую цепь сопротивление. Это задачу выполняют переменные или подстроечные резисторы, у которых три (или более) вывода.

    Переменные резисторы отличаются тем, что токопроводящий слой на них нанесен виде подковы, к концам которой подключены два неподвижных вывода.

    Третий вывод – подвижный — скользит по подкове, поэтому при перемещении его сопротивление между ним и крайними выводами меняется.

    Положение подвижного вывода можно менять посредством соединенной с ним вращающейся рукоятки.

    Подстроечный резистор отличается от переменного тем, что в нем труднее повернуть рукоятку.

    Часто в рукоятке подстроечного резистора делают прорези под шлиц отвертки.

    Иногда после регулировки электрической схемы рукоятку заливают компаундом или полиэтиленом —  чтобы невозможно было ее повернуть и сбить настройку.

    Кстати, регулятор громкости в ваших настольных акустических системах – это переменный резистор.

    SMD резисторы

    Если посмотреть на материнскую плату компьютера, можно увидеть другое конструктивное исполнение резисторов (и других деталей тоже). Это SMD (Surface Mounted Device) исполнение, предназначенное для монтажа на поверхность платы.

    Традиционный резистор с проволочными выводами монтируется «через отверстие» (through hole).

    При этом SMD резисторы выглядят в виде «кирпичиков» различного размера без проволочных выводов. Выводами в этом случае является торцы кирпичика, покрытые припоем.

    При использовании SMD компонентов увеличивается плотность монтажа, уменьшаются размеры изделий, и в плате не нужно сверлить сотни отверстий.

    Кроме того, из-за отсутствия длинных проволочных выводов уменьшается паразитная емкость и индуктивность резистора, что улучшает характеристики устройства в целом.

    Выбор необходимого типоразмера SMD осуществляется исходя из необходимой рассеиваемой мощности. Здесь действует та же физика: чем больше размер, тем большую мощность может рассеивать резистор. Типоразмеры SMD резисторов и рассеиваемая мощность приведены в таблице.

    Конструктивно SMD резистор представляет собой кусочек из той же керамики в виде параллелепипеда с нанесенной на его поверхность резистивной пленкой. Толщина и состав резистивных пленок могут быть различными.

    Условно SMD резисторы разделяют на толстопленочные (10-70 микрометров) и тонкопленочные (единицы микрометров и менее), которые различаются технологией производства. Резистивные пленки могут быть из нихрома, нитрида тантала, оксида свинца и других материалов. Точная подстройка номинала резистора осуществляется с помощью луча лазера.

    Сверху резистивный слой защищен защитным слоем с нанесенной на нем маркировкой.

    Существует SMD резисторы с нулевым сопротивлением, которые используется в качестве перемычек.

    Тепловое действие электрического тока

    При прохождении через проводник электрический ток оказывает тепловое действие — проводник нагревается. Степень нагрева определяется величиной тока и сопротивлением в соответствии с законом Джоуля-Ленца.

    Q = I²*R*t, где Q – количество теплоты, I – сила тока, R – сопротивление, t — время

    На этом принципе работают паяльники и всякого рода нагреватели.

    Заканчивая первую часть статьи, отметим, что и «обычный» резистор в электронной схеме тоже в той или иной мере нагревается.

    Через резисторы могут проходить различные токи, поэтому на них может рассеиваться различная мощность.

    Тепловая мощность рассеивается в виде излучения. Интенсивность излучения определяется в том числе и площадью поверхности излучения.

    Поэтому, чтобы рассеять бОльшую мощность, требуется бОльшая поверхность излучения, и, соответственно, бОльшие габариты резистора.


    Что такое резистор — простым языком

    Резистор – пассивный элемент электрической цепи. Также его называют “сопротивление”, благодаря способности ограничивать ток, создавая для него препятствие.

    Резисторы используются практически во всех электрических схемах. Чаще всего их используют для деления или уменьшения напряжения, управления силой тока.

    Принцип работы резистора

    Основная задача резистора – ограничение тока, который через него проходит. В данному случае работает закон Ома:

    U=IxR, где U – напряжение, I – сила тока, R – сопротивление

    Ом – единица измерения сопротивления.  

    Для лучшего понимания принципа работы резистора, можно представить гибкий шланг для воды. В нем под напором течет вода, но затем сверху положили кирпич. Диаметр трубы изменился, поэтому вода будет вытекать в меньшем объеме. Аналогично это работает и с током: его величина уменьшается при прохождении через резистор.

    Когда через резистор проходит ток, его величина снижается. Поэтому можно сделать вывод о том, что часть электрической энергии , которая прошла через сопротивление, преобразовалась в тепловую энергию. 

    Область применения 

    Самый простой способ использования резистора, как ограничителя тока в цепи – схема подключение светодиода. 

    Если подключить светодиод к батарейке без резистора, он быстро выйдет из строя (сгорит), так как ток, проходящий через светодиод, будет слишком большой.

    Резистор иногда может выступать в роли делителя напряжения:

    Если последовательно соединить два резистора с одинаковыми значениями сопротивления, а концы этой цепочки присоединить к выводам батарейки, то напряжение в точке соединения резисторов будет равно половине напряжения батарейки (2,25 В в случае батарейки 4.5 В). Такая цепочка называется делителем напряжения.

    U=U1+U2

    Виды резисторов

    По способу монтажа бывают резисторы:

    • Выводные. Такой вид резисторов используется в простых схемах. 

    • SMD.Разработаны для монтажа автоматизированными системами, таким образом ускоряется и упрощается производство. От выводных резисторов отличаются отсутствием “ножек”.

    Маркировка резисторов

    На резистор не наносятся цифры, так как это дорого и непрактично (они будут очень мелкими). В связи с чем номинал и допуск кодируются с помощью разноцветных полосок.

     

    В зависимости от серии резистора колеблется количество полос на его корпусе. Принцип их расшифровки при этом не меняется. 

    Что такое резистор и для чего он предназначен | Энергофиксик

    Пожалуй, самым используемым элементом в электронике является резистор или как его еще именуют по-простому – сопротивление. Если вы посмотрите на абсолютно любую схему, вы найдете не одно сопротивление. А как работает резистор и из чего он состоит, об этом и поговорим в данной статье.

    Содержание

    Определение и обозначение по ГОСТу

    Существующие разновидности

    Как работает резистор

    Главные характеристики

    Область применения

    Заключение

    Определение и обозначение по ГОСТу

    Итак, для начала давайте дадим определение нашему с вами элементу. Резистор (от латинского «resisto») дословно переводится как «сопротивляюсь». Даже из названия становится ясна основная задача данного элемента – оказывать сопротивление протекающему через элемент электрическому току.

    Сопротивление относится к классу пассивных элементов, то есть оно способно лишь ограничивать проходящий ток и напряжение. Условное обозначение согласно ГОСТ 2.728-74 представлено на рисунке ниже:

    yandex.ru

    yandex.ru

    Существующие разновидности

    Классификация резисторов осуществляется сразу по нескольким параметрам, так, например, по способу монтажа различают следующие модификации:

    1. Выводные. Это классический и распространенный вариант используется для монтажа сквозь печатную плату. Такое исполнение резисторов до сих пор используется в простых схемах, где использование SMD компонентов нецелесообразно или невозможно.

    2. SMD. У данных сопротивлений нет привычных «ножек». Такие элементы созданы для монтажа автоматизированными системами, что значительно ускоряет и упрощает производство.

    По технологии изготовления резисторы бывают следующие:

    1. Проволочные. В данных резисторах в роли резистивного элемента выступает намотанная на сердечник проволока и для того, чтобы снизить паразитную индуктивность, используется бифилярная намотка. В таких сопротивлениях используется проволока с низким удельным сопротивлением и температурным коэффициентом.

    2. Металлопленочные и композитные. В данных элементах в роли резистивных элементов выступают пленки из специализированных сплавов.

    В основном используются следующие материалы

    Причем SMD элементы или чип — резисторы выпускаются тонкопленочными или толстопленочными и в роли резистивного материала применяется

    Конструктивно резисторы различаются на:

    1. Постоянные. Величина сопротивления в таком сопротивлении задана при производстве и не изменяется.

    2. Переменные. Это так называемые подстроечные резисторы и потенциометры. У таких изделий присутствует орган управления, с помощью которого можно изменять сопротивление.

    yandex.ru

    yandex.ru

    3. Нелинейные. У таких сопротивлений элемент изменяется в зависимости от воздействующих на изделие факторов, например, под воздействием температуры, света, напряжения и т. 2*R

    Именно потому что происходит рассеивание мощности на резисторе очень важно правильно выбирать такие сопротивления, которые будут стабильно работать при длительном нахождении изделия под нагрузкой.

    Примечание. Резисторы выбираются с запасом по мощности в 20% -30 %.

    Главные характеристики

    Главными характеристиками абсолютно любого резистора являются следующие три величины:

    1. Сопротивление

    2. Максимальная рассеиваемая мощность.

    3. Класс точности или допуск. От данного параметра зависит насколько реальные параметры изделия могут отличаться от заявленных паспортных данных.

    Область применения

    Итак, вы уже знаете, что резистор выполняет функцию ограничения тока в цепи. Самым простым примером такого ограничения является схема подключения обычного светодиода. Причем величина ограничивающего сопротивления в этом случае вычисляется по формуле:

    yandex.ru

    yandex.ru

    Так же резистор может выступать в роли делителя напряжения. Выходное напряжение рассчитывается по следующей формуле:

    yandex.ru

    yandex.ru

    Еще с помощью резистора можно задать ток транзистору, что по факту является таким же ограничителем:

    yandex.ru

    yandex.ru

    Заключение

    Это лишь малая толика информации о казалось бы таком простом и одновременно сложном элементе как резистор. Если Вы хотите узнать больше, то всегда можете подписаться на канал или найти интересующую вас информацию в специализированной литературе.

    Спасибо за ваше внимание!

    Как выбрать подходящий резистор

    Все, что вам нужно знать о том, как правильно выбрать резистор для вашего первого проекта печатной платы

    Вы планируете приступить к вашему первому проекту печатной платы? Есть множество радиодеталей, которые вы в конечном итоге будете использовать. Однако нет другой такой детали, которая была бы так печально известна, как простой резистор. Если вы когда-либо видели печатную плату, то могли заметить резисторы по всей ее поверхности. Они контролируют силу тока и заставляют светиться светодиоды. Но что именно представляет собой резистор? Как он работает? Как вообще выбрать подходящий резистор для вашего первого проекта печатной платы? Не бойтесь, мы поможем вам и подскажем все необходимое, что вам нужно знать.

    Итак… что такое резистор?

    Резисторы – это одни из множества пассивных компонентов. Их задача относительно проста, но очень важна – создавать сопротивление току в электрической цепи. Видели, как загорается светодиод? За эту возможность необходимо поблагодарить резистор. Устанавливая в электрическую цепь резистор последовательно со светодиодом, вы получаете яркое свечение, при этом ничего не перегорает!

    Основной характеристикой резистора является сопротивление, измеряемое в Омах (Ом). Если раньше вы прослушали базовый курс электроники, то, скорее всего, изучили закон Ома. При работе с резисторами вы будете вновь и вновь иметь с ними дело.

    Закон Ома — это единственная формула для нахождения сопротивления

    Найти обозначение резистора на схеме легко. Международное обозначение – стандартизированный прямоугольник, но в стандартах США резистор обозначается зигзагообразной линией – это сделано для простоты его нахождения. Вне зависимости от внешнего вида символа, каждый резистор на концах имеет выводы, обозначенные на схеме.

    Обозначения резистора на схемах, принятое в США (слева) и соответствующее международным стандартам (справа). На схемах можно встретить оба обозначения.

    Какие бывают резисторы?

    Повсеместно встречаются резисторы совершенно разных конструкций. Все резисторы можно разделить на две категории по типу конструкции и по резистивному материалу. Рассмотрим обе категории.

    Тип конструкции

    Постоянные резисторы – как следует из названия, эти резисторы имеют постоянное сопротивление и точность, не зависящие от изменения температуры, освещенности и так далее.

    Переменные резисторы – эти радиоэлементы обладают переменным сопротивлением. Потенциометр – великолепный пример такого резистора. У него есть регулятор, который можно вращать для увеличения или уменьшения сопротивления. Другие разновидности переменных резисторов – это подстроечный резистор и реостат.

    Нелинейные резисторы – эти резисторы как хамелеоны, они могут изменять свое сопротивление в зависимости от той или иной физической величины, воздействующей на резистор – температуры, уровня освещенности и даже магнитного поля. Нелинейные резисторы – это термистор, фоторезистор, варистор и магниторезистор.

    Резистивный материал

    Все резисторы можно разбить на группы по материалам, из которых они изготовлены и которые в огромной степени влияют на их способность оказывать сопротивление электрическому току. Вот эти резисторы по используемым материалам:

    • Углеродистые композиционные резисторы;

    • Углеродистые пленочные резисторы;

    • Металлопленочные резисторы;

    • Тонко и толстопленочные резисторы;

    • Фольговые резисторы;

    • Проволочные резисторы.

    Углеродистые композиционные резисторы – это резисторы, изготовленные по самой старой технологии, популярной в производстве резисторов малой точности. Их все еще можно найти в схемах, где могут быть импульсы высоких энергий.

    Старый углеродистый пленочный резистор.

    Такие резисторы все еще используются там, где точность не важна

    Из всех вышеперечисленных типов резисторов по резистивному материалу старейшими являются проволочные резисторы. Их все еще можно встретить на старых печатных платах устройств большой мощности, в которых необходимо сопротивление, заданное с большой точностью. Эти древние резисторы широко известны благодаря тому, что большой надежностью обладают даже резисторы с малым сопротивлением.

    Проволочный резистор – старейший и наиболее точный из доступных резисторов

    Сегодня наиболее широко применяются металлопленочные и металлооксидные резисторы, они лучше всего обеспечивают с неизменной точностью номинальное сопротивление, а также меньше подвержены влиянию изменения температуры.

    Наиболее широко применяемый металлооксидный резистор

    обеспечивает неизменную точность номинального сопротивления

    Как используются резисторы?

    Можно найти резисторы, используемые самыми различными способами. Они применяются не только для того, чтобы оказывать сопротивление электрическому току. Резисторы используются в делителях напряжения, для производства тепла, в цепях сопряжения и нагрузки, для управления усилением и для настройки постоянных времени. Практическое применение резисторов можно найти в цепях питания электрических тормозов поездов, здесь они помогают высвобождению всей накопленной кинетической энергии.

    Серьезное сопротивление – взгляните на тормоза у этого поезда,

    которые высвобождают накопленную кинетическую энергию

    Вот еще несколько замечательных устройств, в которых используются эти универсальные резисторы:

    • Измерение величины электрического тока – вы можете измерять падение напряжения на включенном в цепь прецизионном резисторе с заранее известным сопротивлением. Расчет тока производится по закону Ома;

    • Питание светодиодов – слишком большой ток, протекающий через светодиод, сожжет этот прекрасный фонарик. Соединив последовательно со светодиодом резистор, вы можете контролировать силу тока через светодиод, обеспечивая его яркое сияние.

    • Питание электромоторов вентиляторов – сердцем системы автомобильной вентиляции является электромотор вентилятора печки. Специальный датчик используется для управления скоростью вращения крыльчатки вентилятора. Резистор такого типа, используемый в датчике, называется, (кто бы мог подумать!) резистором мотора вентилятора!

    Резистор мотора вентилятора в ответе за движение воздуха в машине

    Как измеряется номинал резистора?

    Эта характеристика, с которой вы будете сталкиваться снова и снова, называется сопротивлением. Величина сопротивления наносится на резистор различными способами. В настоящее время существуют два стандарта нанесения значения сопротивления резистора на корпус резистора – это цветовая маркировка или маркировка SMD-резисторов.

    Цветовая маркировка

    Возможно, вы уже сталкивались с системой цветовой маркировки, если когда-либо возились с макетом электронной схемы. Эта техника была изобретена в 20-х годах прошлого века. Значения величины сопротивления и точности резистора отображалась при помощи нескольких цветных полос, нанесенных на корпус резистора.

    Обратите внимание, что цветные полосы на резисторах различаются,

    обозначая их уникальные номинальные значения сопротивления и точности.

    Большинство резисторов, которые могут попасть к вам в руки, будет иметь четыре цветные полосы. Вот как следует их читать:

    • Первые две полосы указывают первые цифры номинального значения сопротивления;

    • Третья полоса указывает множитель, на который следует умножить число, состоящее из двух цифр, указанных первыми двумя полосами.

    • И, наконец, четвертая полоса указывает точность резистора. Точность очень сильно влияет на стоимость используемого резистора и на цену готового изделия. Поэтому чтобы сэкономить деньги на производстве печатных плат, точность резисторов следует выбирать разумно.

    Каждый цвет на резисторе соответствует определенному числу. Вы можете воспользоваться удобным калькулятором номинала резистора по его цветовому коду для быстрого определения номинала в будущем. Если вам легче запомнить наглядную информацию, то ниже мы приводим великолепное видео, в котором рассказано о принципе цветовой маркировки резисторов.

    Резисторы для поверхностного монтажа – SMD-резисторы

    Не у всех резисторов размеры позволяют нанести на него цветовую маркировку. Это особенно актуально, когда речь идет о радиоэлементах для поверхностного монтажа (SMD). Чтобы маркировка смогла поместиться на небольшой поверхности устройства, SMD-резисторы имеют цифровую маркировку. Если вы посмотрите на современную печатную плату, то заметите, что SMD-резисторы еще имеют одинаковые размеры. Это помогает стандартизировать процесс производства с использованием высокоскоростных автоматов размещения деталей.

    Как читать номинал на верхней стороне SMD-резисторов

    Как выбрать подходящий резистор

    Итак, пришло время наиболее важной части нашей статьи. Давайте узнаем, как определить, какой именно резистор нам нужен для вашего первого проекта печатной платы. Мы разобьем эту задачу на следующие три шага:

    1. Расчет требуемого сопротивления;

    2. Расчет номинальной мощности;

    3. И, наконец, выбор резистора исходя из двух значений найденных ранее.

    Шаг 1 – Расчет требуемого сопротивления

    Именно здесь для расчета требуемого сопротивления нам понадобится закон Ома. Вы можете воспользоваться одной из стандартных формул ниже, если значения напряжения и силы тока известны.

    Шаг 2 – Расчет номинальной мощности

    Теперь необходимо выяснить, какое количество энергии должен будет рассеивать резистор. Эту величину можно рассчитать по следующей формуле:

    В данной формуле P – мощность рассеивания в Ваттах, V – падение напряжения на резисторе в Вольтах, а R – сопротивление резистора в Омах. Ниже мы привели краткий пример использования данной формулы для расчета в конкретной цепи.

    Простая цепь для демонстрации расчета номинальной мощности

    Цепь выше содержит светодиод, падение напряжения на котором составляет 2 В, резистор с сопротивлением 350 Ом и источник питания 9 В. Какая мощность будет рассеиваться на искомом резисторе? Давайте посмотрим. Сначала нам необходимо найти падение напряжения на резисторе. Поскольку источник питания дает 9 В, а на светодиоде падает 2 В, то получим:

    9 В – 2 В = 7 В

    Эти значения можно подставить в формулу:

    P = 7 В * 7 В / 350 Ом = 0,14 Ватта

    Шаг 3 – Выбор резистора

    Теперь, когда у нас есть величины сопротивления и мощности, пора подобрать подходящий радиоэлемент у поставщика радиодеталей. Мы всегда рекомендуем выбирать из стандартных резисторов, которые поставляются в продажу каждым продавцом. Выбирая стандартные резисторы, вы значительно упростите себе жизнь, когда дело дойдет до производства устройства. В США тремя ведущими поставщиками радиоэлементов, качество которых не вызывает сомнений – это Digikey, Mouser и Farnell/Newark.

    Сопротивление сильно

    Теперь мы охватили всю информацию о резисторах, которая может вам понадобиться для вашего первого проекта печатной платы. Резисторы настолько многофункциональны, что вы увидите, как раз за разом используете их россыпи в своих электронных устройствах. В следующий раз, когда вам понадобиться выбрать резистор, вспомните три простых шага – рассчитайте сопротивление, найдите мощность и выберите поставщика!

    Прежде чем вы броситесь размечать обозначения резисторов и их корпусов в вашем приложении для конструирования печатных плат, не было бы проще, если бы кто-то сделал это за вас? Уже сделали! Для многих систем проектирования печатных плат существует большое количество бесплатных библиотек радиоэлементов. И резисторы там тоже есть!

    Что такое резистор и для чего он нужен?

    «Что такое резистор?» она спросила.

    «Это компонент, который препятствует прохождению тока», — сказал я.

    «Хм… я не понимаю. Что это делает с моей схемой? » она спросила.

    «Ну, на самом деле ничего не делает активно, — сказал я.

    Иногда бывает трудно понять, что делают основные электронные компоненты.

    Ранее я писал о том, что делают индуктивности и конденсаторы.

    А что с резистором?

    Резистор — это компонент, устойчивый к току. Если добавить резистор последовательно со схемой — ток в цепи будет ниже, чем без резистора.

    БЕСПЛАТНО Бонус: Загрузите Basic Electronic Components [PDF] — мини-книгу с примерами, которая научит вас, как работают основные компоненты электроники.

    Что такое резистор?

    В резисторе нет ничего волшебного. Возьмите длинный провод и измерьте сопротивление, и вы поймете, что сопротивление — это обычное свойство проводов (за исключением сверхпроводников).

    Некоторые резисторы состоят именно из этого. Длинный провод.

    Но вы также можете найти резисторы из других материалов. Как этот резистор из углеродной пленки:

    Что резистор делает с моей схемой?

    Резистор является пассивным устройством и не выполняет никаких активных действий с вашей схемой.

    На самом деле это довольно скучное устройство. Если добавить к нему напряжение, ничего особенного не произойдет. Ну, может, потеплеет, но все.

    НО, используя резисторы, вы можете спроектировать свою схему так, чтобы она имела токи и напряжения, которые вы хотите иметь в своей цепи.

    Значит, резистор дает разработчику контроль над своей схемой! Как насчет этого?

    Научиться работать с резисторами

    В начале моей карьеры в электронике я думал, что резисторы были случайно размещены в цепи, и я подумал, что они вам на самом деле не нужны.

    Например, я помню, как видел схему с батареей 9 В, резистором и светодиодом. Затем я попытался использовать только батарею и светодиод, и он все еще работал!

    Но через несколько секунд светодиод действительно стал горячим. Так жарко, что я чуть не обжег пальцы. Потом я начал понимать, что, возможно, в этих резисторах что-то есть.

    Подробнее об использовании токоограничивающего резистора.

    В электронике важно научиться работать с резисторами. Один фундаментальный навык, который вам следует изучить, — это использование закона Ома.

    Узнайте о выборе резистора.

    И когда вы будете готовы сделать еще один шаг, вот еще несколько статей о работе с резисторами и законе Ома:

    Возвращение из «Что такое резистор?» в «Электронные компоненты онлайн»

    Что такое резистор? — Основы схемотехники

    Резистор — это пассивный двухконтактный электрический компонент, который ограничивает ток, протекающий в электрических или электронных цепях.Его свойство сопротивляться протеканию тока называется сопротивлением , выраженным в Ом (Ом), названным в честь немецкого физика Георга Симона Ома. Резисторы бывают разных размеров. Его размер прямо пропорционален его номинальной мощности. Номинальная мощность — это максимальная мощность, которую резистор может рассеять без повреждения из-за чрезмерного нагрева. Чем больше площадь поверхности, покрываемой резистором, тем больше мощности он может рассеять.

    Типы резисторов

    На самом деле существует два типа резисторов: постоянные и переменные.

    Типы резисторов

    Постоянные резисторы предназначены для установки правильных условий в цепи. Их значения никогда не следует изменять для настройки схемы, так как они были определены на этапе проектирования. Он может иметь углеродный состав или намотанный стружкой и проволокой. Он также может быть изготовлен из смеси тонко измельченного углерода или быть очень маленьким по размеру и иметь высокую мощность.

    Переменные резисторы имеют фиксированные резистивные элементы и ползунок.Ползунок нажимает на основной резисторный элемент, так что будет три соединения; два соединены с третьим элементом и один — с ползунком. Примеры этого — потенциометры, реостаты, триммеры и т. Д.

    Как работают резисторы?

    Подключение резистора в цепи уменьшит ток на определенную величину. Если посмотреть на резисторы снаружи, они, скорее всего, выглядят одинаково. Однако, если вы сломаете его, вы увидите изолирующий керамический стержень, проходящий через середину, с медной проволокой, обернутой вокруг.Сопротивление зависит от витков меди. Чем тоньше медь, тем выше сопротивление, так как электронам труднее проходить через нее. Как мы выяснили, электронам легче течь в материалах некоторых проводников, чем в изоляторах.

    Джордж Ом изучил взаимосвязь между сопротивлением и размером материала, из которого изготовлен резистор. Он доказал, что сопротивление (R) материала увеличивается с увеличением его длины. Это означает, что более длинные и тонкие провода обеспечивают большее сопротивление.С другой стороны, сопротивление уменьшается с увеличением толщины проводов. Сказав это, Георг Ом придумал уравнение, объясняющее эту взаимосвязь:

    где ρ = удельное сопротивление (Ом-м)

    Примечание: Проводники имеют гораздо более низкое удельное сопротивление, чем изоляторы. При комнатной температуре алюминий имеет примерно 2,8 x 10 -8 Ом · м, тогда как медь значительно меньше 1,7 x 10 -8 Ом-м. Кремний имеет удельное сопротивление около 1000 Ом · м, а стекло — около 1012 Ом · м.Удельное сопротивление различается для разных материалов.

    Цветовая маркировка резистора 4-полосный резистор с цветовой кодировкой

    Для четырехполосного резистора с цветовой кодировкой 1-я и 2-я полосы представляют 1-ю и 2-ю значащие цифры, 3-я полоса представляет множитель, а 4-я полоса представляет допуск.

    5-полосный резистор с цветовой кодировкой

    Для пятиполосного резистора с цветовой кодировкой (высокоточного резистора) 1-я, 2-я и 3-я полоса представляют 1-ю, 2-ю и 3-ю значащую цифру, 4-я полоса — множитель, а 5-я полоса — допуск.

    Для некоторых четырехполосных резисторов с цветовой кодировкой другая дополнительная полоса (5-я полоса) указывает надежность в процентах отказов на 1000 часов (1000 ч) использования.

    Таблица цветовой кодировки резисторов

    Резисторы SMD

    SMD означает Устройство для поверхностного монтажа . Он используется для создания технологии поверхностного монтажа. SMD имеют небольшие выводы или контакты, которые припаяны к контактным площадкам на поверхности платы, а не провода, которые проходят через печатную плату.Это устраняет необходимость в отверстиях в доске и позволяет более полно использовать обе стороны доски. Поскольку SMD слишком малы, на них нет места для печати традиционного кода цветных полос. По этой причине были разработаны новые коды SMD.

    Система EIA-96

    Эта система основана на серии E96 и предназначена для резисторов с допуском 1%. Значения обозначаются двумя (2) цифрами для обозначения номинала резистора и одной (1) буквой для множителя. Два числа представляют собой код, который указывает значение сопротивления с помощью трех значащих цифр.В таблицах ниже показано значение каждого кода. Например, 38C = 24300 Ом ± 1%.

    Код резистора SMD Таблица значений для системы EIA-96

    Трех- и четырехзначная система

    В этой системе первые две или три цифры указывают числовое значение сопротивления резистора, а последняя цифра дает множитель — степень десяти, на которую следует умножить данное значение сопротивления резистора. Например:

    • 273 = 27 Ом x 10 3 или 27000 Ом (27 кОм)
    • 7992 = 799 Ом x 10 2 или 79900 Ом (79.9 кОм)

    Примечание: Буква «R» используется для обозначения положения десятичной точки для значений сопротивления ниже 10 Ом. Например, 0R5 будет 0,5 Ом, а 0R01 будет 0,01 Ом.

    Номинальная мощность резистора

    Каждый раз, когда через резистор проходит ток из-за наличия напряжения на нем, электрическая энергия теряется в виде тепла. Чем больше ток, тем горячее будет резистор. Резистор может работать при любой комбинации напряжения и тока до тех пор, пока он не превышает номинальную мощность, которую резистор может преобразовывать в тепло или поглощать без каких-либо повреждений.

    Номинальная мощность резистора определяется как количество тепла, которое резистор может выдержать, не жертвуя своей производительностью за определенное время. По закону Ома, когда через сопротивление протекает ток, на нем падает напряжение, производя продукт, связанный с мощностью. Другими словами, если сопротивление подвергается действию напряжения или проводит ток, оно всегда будет потреблять электроэнергию. Учитывая это, мы можем сказать, что эти три величины — мощность, напряжение и ток — находятся в треугольнике мощности.

    Треугольник мощности резистора

    Использование треугольника мощности резистора — лучший способ рассчитать мощность, рассеиваемую в резисторе, если мы знаем значения напряжения и тока на нем. Кроме того, закон Ома позволяет нам рассчитать рассеиваемую мощность с учетом значения сопротивления резистора. Мы можем получить два альтернативных варианта приведенного выше выражения для мощности резистора, если нам известны значения по крайней мере двух из трех — напряжения, тока и сопротивления.

    На основе треугольника мощности рассеиваемая электрическая мощность любого резистора в цепи постоянного тока может быть рассчитана по одной из следующих трех стандартных формул:

    где V — напряжение на резисторе в вольтах, I — ток, протекающий через резистор, в амперах, а R — сопротивление резистора в омах (Ом).

    Типы материалов резисторов

    Ниже представлены различные типы материалов резисторов, их плюсы и минусы, а также способы их использования:

    1. Углеродный композит состоит из смеси мелких частиц углерода и непроводящего керамического материала, спрессованного в цилиндрическую форму и обожженного. Величина сопротивления зависит от размеров корпуса и соотношения углеродного и керамического материала. Чем больше углерода вы добавите, тем ниже сопротивление.Резисторы из углеродного состава очень надежны, но имеют низкую точность с максимальным допуском около 5%.
    2. Углеродная пленка — это чистая углеродная пленка, заключенная в изолирующий цилиндрический сердечник, разрезанный по спирали для увеличения резистивного пути. Он точнее углепластика. Однако там, где требуется высокая импульсная стабильность, используются специальные углеродные пленочные резисторы.
    3. Металлические пленки производятся из нитрида тантала, но чаще они изготавливаются из нихрома.В качестве резистивного материала используется комбинация керамики и металла. Он имеет лучшую стабильность, температурный коэффициент и устойчивость, чем углеродные пленки. Типичные допуски составляют от 0,5% до 2% с температурным коэффициентом от 50 до 100 ppm / K. Стабильность ниже, чем с проволочной обмоткой, но его высокочастотные свойства лучше.
    4. Проволочная обмотка создается с использованием обмоточного провода сопротивления, имеющего спиральный непроводящий сердечник. Провод сопротивления изготовлен из хромоникелевого сплава, а сердцевина — из керамики или стекловолокна с покрытием, защищенным стекловидной эмалью.Он не подходит для приложений с частотой выше 50 кГц, поскольку спиральная обмотка имеет емкостные и индуктивные эффекты. Лучше всего его использовать для высокой точности или для приложений с большой мощностью.
    5. Прецизионный резистор представляет собой тонкую объемную металлическую фольгу, приклеенную к керамической подложке. Это наиболее точный и стабильный тип, он отличается очень низкотемпературным коэффициентом сопротивления, который используется в приложениях с высокими требованиями к точности.
    6. Металлооксидная пленка .В отличие от металлической пленки, ее резистивный материал обычно представляет собой оксид металла, например оксид олова. Он полезен в приложениях, требующих более высокой износостойкости, поскольку имеет более высокую рабочую температуру, что делает его более надежным и стабильным.
    Сводка ключевых показателей эффективности для каждого материала резистора

    Как работают резисторы? Что внутри резистора?

    Криса Вудфорда. Последнее изменение: 17 сентября 2020 г.

    Когда вы впервые узнаете об электричестве, вы обнаружите, что материалы делятся на две основные категории, называемые проводниками и изоляторы.Проводники (например, металлы) пропускают электричество через их; изоляторы (например, пластмассы и дерево), как правило, этого не делают. Но нет ничего так просто, не так ли? Любое вещество будет вести электричество, если на него подать достаточно большое напряжение: даже воздух, который обычно является изолятором, внезапно становится проводником, когда в облаках накапливается мощное напряжение — вот что делает молния. Вместо того, чтобы говорить о проводниках и изоляторах, это часто яснее говорить о сопротивлении: легкость, с которой что-нибудь позволит электричеству течь через него.У проводника низкое сопротивление, в то время как изолятор имеет гораздо более высокое сопротивление. Устройства под названием резисторы позволяют вводить точно контролируемые величины сопротивления в электрические цепи. Давайте подробнее разберемся, что они из себя представляют и как они работают!

    Фото: четыре типичных резистора, установленных бок о бок в электронной схеме. Резистор работает, преобразуя электрическую энергию в тепло, которое рассеивается в воздухе.

    Что такое сопротивление?

    Электричество течет через материал, переносимый электронами, крошечные заряженные частицы внутри атомов.В широком смысле говоря, материалы, которые хорошо проводят электричество, — это те, которые позволяют электронам свободно течь. через них. В металлах, например, атомы заперты в прочная кристаллическая структура (немного похожа на металлическую подъемную раму в детская площадка). Хотя большинство электронов внутри этих атомов зафиксированные на месте, некоторые из них могут проходить сквозь конструкцию, унося с собой электричество. Поэтому металлы — хорошие проводники: металл относительно небольшое сопротивление протекающим через него электронам.

    Анимация: Электроны должны проходить через материал, чтобы переносить через него электричество. Чем тяжелее электронам течь, тем больше сопротивление. Металлы обычно имеют низкое сопротивление потому что электроны могут легко проходить через них.

    Пластмассы совсем другие. Хотя часто они твердые, у них нет того же кристаллическая структура. Их молекулы (которые обычно очень длинные повторяющиеся цепи, называемые полимерами), связаны между собой в такие способ, которым электроны внутри атомов полностью заняты.Там Короче говоря, нет свободных электронов, которые могут перемещаться в пластмассах. проводить электрический ток. Пластик — хорошие изоляторы: ставят до высокого сопротивления протекающим через них электронам.

    Это все немного расплывчато для такого предмета, как электроника, которая требует точного контроля электрических токов. Вот почему мы определяем сопротивление, точнее, напряжение в вольтах, необходимое для через цепь протекает ток 1 ампер. Если требуется 500 вольт для сделать расход 1 ампер, сопротивление 500 Ом (написано 500 Ом).Ты можешь см. это соотношение, записанное в виде математического уравнения:

    V = I × R

    Это известно как закон Ома для немецкого языка. физик Георг Симон Ом (1789–1854).

    Фото: Используя мультиметр, подобный этому, вы можете автоматически определить сопротивление электронного компонента; измеритель пропускает через компонент известный ток, измеряет напряжение на нем и использует закон Ома для расчета сопротивления. Хотя мультиметры достаточно точны, вы должны помнить, что провода и щупы также имеют сопротивление, которое внесет ошибку в ваши измерения (чем меньше сопротивление, которое вы измеряете, тем больше вероятная ошибка).Здесь я измеряю сопротивление громкоговорителя в телефоне, которое, как вы можете видеть на цифровом дисплее, составляет 36,4 Ом. Вставка: переключатель на мультиметре позволяет мне измерять различные сопротивления (200 Ом, 2000 Ом, 20K = 20000 Ом, 200K = 200000 Ом и 20M = 20 миллионов Ом).

    Сопротивление бесполезно?

    Сколько раз вы слышали такое в фильмах о плохих парнях? Это часто верно и в науке. Если материал имеет высокое сопротивление, он означает, что электричеству будет сложно пройти через него.Чем больше электричеству приходится бороться, тем больше энергии потрачено впустую. Это звучит вроде плохая идея, но иногда сопротивление далеко не «бесполезно» и на самом деле очень полезно.

    Фото: Нить накаливания внутри старой лампочки. Это очень тонкий провод с умеренным сопротивлением. Он нагревается, поэтому ярко светится и излучает свет.

    В лампочке старого образца, например, электричество проходит через очень тонкий кусок проволоки называется нитью.Провод такой тонкий, что электричество действительно нужно бороться, чтобы пройти через это. Это делает провод чрезвычайно горячий — настолько сильно, что даже излучает свет. Без сопротивление, такие лампочки не работают. Конечно недостаток в том, что приходится тратить огромное количество энергии на нагрев нить. Такие старые лампочки зажигают свет, тепло, поэтому их называют лампами накаливания; Новые энергоэффективные лампочки излучают свет, не выделяя много тепла, благодаря совершенно иному процессу флуоресценции.

    Тепло, которое выделяют нити, не всегда тратится впустую. В таких приборах, как электрические чайники, электрические радиаторы, электрические души, кофеварки и тостеры, есть более крупные и прочные версии волокон, называемые нагревательные элементы. Когда через них протекает электрический ток, они получают достаточно горячей, чтобы вскипятить воду или приготовить хлеб. В нагревательных элементах, по крайней мере, сопротивление далеко не бесполезно.

    Сопротивление также полезно в таких вещах, как транзисторные радиоприемники и телевизор. наборы.Предположим, вы хотите уменьшить громкость на телевизоре. Ваш ход ручка громкости, и звук становится тише, но как это происходит? Регулятор громкости на самом деле является частью электронного компонента, называемого переменный резистор. Если вы уменьшите громкость, вы на самом деле повышение сопротивления в электрической цепи, которая приводит в движение громкоговоритель телевизора. Когда вы включаете сопротивление, электрический ток, протекающий по цепи, уменьшается. С меньшим током, меньше энергии для питания громкоговорителя, поэтому он звучит намного тише.

    Фотография: «Переменный резистор» — это очень общее название компонента, сопротивление которого можно изменять в зависимости от перемещение диска, рычага или какого-либо элемента управления. Более конкретные типы переменных резисторов включают потенциометры (небольшие электронные компоненты с тремя выводами) и реостаты (обычно намного больше и сделанные из нескольких витков спирального провода со скользящим контактом, который перемещается по катушкам, чтобы «отвести» некоторую часть сопротивления). . Фотографии: 1) Маленький переменный резистор, действующий как регулятор громкости в транзисторном радиоприемнике.2) Два больших реостата от электростанции. Ты можешь увидеть регуляторы набора, которые «отталкивают» большее или меньшее сопротивление. Фото Джека Баучера из журнала Historic American Engineering Record любезно предоставлено Библиотекой Конгресса США.

    Как работают резисторы

    Люди, занимающиеся изготовлением электрических или электронных цепей для особых рабочие места часто нуждаются в точном сопротивлении. Они могут сделайте это, добавив крошечные компоненты, называемые резисторами. Резистор — это небольшой пакет сопротивления: подключите его к цепи, и вы уменьшите ток на точную величину.Снаружи все резисторы выглядят более-менее то же самое. Как вы можете видеть на верхнем фото на этой странице, резистор — это короткий червеобразный компонент с цветными полосами на сторона. Он имеет два соединения, по одному с каждой стороны, так что вы можете зацепить это в цепь.

    Что происходит внутри резистора? Если вы сломаете одну открытую и соскоблите внешнее покрытие изоляционной краски, вы можете увидеть изолирующий керамический стержень, проходящий через середину, с медной проволокой, обернутой снаружи.Такой резистор называют проволочным. Количество витков меди регулирует сопротивление очень точно: чем больше витков меди, тем тоньше медь, тем выше сопротивление. В резисторах меньшего номинала предназначен для схем малой мощности, медная обмотка заменена на спиральный узор из углерода. Такие резисторы намного дешевле марки и называются карбон-пленкой. Как правило, резисторы с проволочной обмоткой более точны и стабильны при более высоких рабочих температурах.

    Фото: внутри резистора с проволочной обмоткой.Разломайте пополам, соскребите краску, и вы сможете отчетливо увидеть изолирующий керамический сердечник и проводящий медный провод, обернутый вокруг него.

    Как размер резистора влияет на его сопротивление?

    Предположим, вы пытаетесь протолкнуть воду по трубе. Различные виды трубок будут более или менее услужливыми, поэтому более толстая труба будет сопротивляться воде меньше, чем более тонкая и более короткая труба будет оказывать меньшее сопротивление, чем более длительное. Если вы заполните трубу, скажем, галькой или губкой, вода будет по-прежнему просачиваться через него, но гораздо медленнее.Другими словами, длина, площадь поперечного сечения (площадь вы смотрите в трубу, чтобы увидеть, что внутри), и все, что внутри трубы, влияет на ее сопротивление воде.

    Электрические резисторы очень похожи — на них действуют те же три фактора. Если вы сделаете провод тоньше или длиннее, электронам будет труднее перемещаться по нему. И, как мы уже видели, электричеству труднее проходить через одни материалы (изоляторы), чем через другие (проводники). Хотя Георг Ом наиболее известен тем, что связывает напряжение, ток и сопротивление, он также исследовал взаимосвязь между сопротивлением и размером и типом материала, из которого изготовлен резистор.Это привело его к другому важному уравнению:

    R = ρ × L / A

    Проще говоря, сопротивление (R) материала увеличивается с увеличением его длины (поэтому более длинные провода обеспечивают большее сопротивление) и увеличивается с уменьшением его площади (более тонкие провода обеспечивают большее сопротивление). Сопротивление также связано с типом материала, из которого изготовлен резистор, и в этом уравнении это обозначено символом ρ, который называется удельным сопротивлением и измеряется в единицах Ом · м (омметры).У разных материалов очень разные удельные сопротивления: проводники имеют гораздо более низкое удельное сопротивление, чем изоляторы. При комнатной температуре алюминий имеет сопротивление около 2,8 x 10 90 · 10 2 −8 90 · 103 Ом · м, в то время как медь (лучший проводник) значительно ниже — 1,7 90 · 10 2 −8 90 · 103 Ом · м. Кремний (полупроводник) имеет удельное сопротивление около 1000 Ом · м, а стекло (хороший изолятор) измеряет около 10 12 Ом · м. Из этих цифр видно, насколько разные проводники и изоляторы обладают способностью переносить электричество: кремний примерно в 100 миллиардов раз хуже, чем медь, а стекло снова примерно в миллиард раз хуже!

    Диаграмма: Хорошие проводники: сравнение удельного сопротивления 10 обычных металлов и сплавов с удельным сопротивлением серебра при комнатной температуре.Например, вы можете видеть, что нихром, сплав, используемый в нагревательных элементах, имеет примерно в 66 раз большее сопротивление, чем аналогичный кусок серебра. Данные из разных источников.

    Сопротивление и температура

    Сопротивление резистора непостоянно, даже если это определенный материал фиксированной длины и площади: оно постепенно увеличивается с до при повышении температуры. Почему? Чем горячее материал, тем сильнее его атомы или ионы качаются и тем труднее его выдерживать. электроны должны пробираться сквозь них, что приводит к более высокому электрическому сопротивлению.Говоря в широком смысле, удельное сопротивление большинства материалов линейно увеличивается с температурой (поэтому, если вы увеличите температура на 10 градусов, удельное сопротивление увеличивается на определенную величину, а если его увеличивать еще на 10 градусов удельное сопротивление снова возрастает на ту же величину). Если вы охладите материал , ​​вы снизите его удельное сопротивление, а если охладите его до чрезвычайно низкого температуры, иногда можно заставить сопротивление вообще исчезнуть, что является известным явлением. как сверхпроводимость.

    Диаграмма: Сопротивление материала увеличивается с температурой. На этой диаграмме показано, как удельное сопротивление (основное сопротивление материала, независимо от его длины или площади) увеличивается почти линейно при повышении температуры от абсолютного нуля до примерно 600 К (327 ° C) для четырех обычных металлов. Построено с использованием исходных данных из «Удельное электрическое сопротивление выбранных элементов» П. Десаи и др., J. Phys. Chem. Ref. Data, Том 13, № 4, 1984 г. и «Удельное электрическое сопротивление меди, золота, палладия и серебра» Р.Matula, J. Phys. Chem. Ref. Data, Vol 8, No. 4, 1979, любезно предоставлено Национальным институтом стандартов и технологий США. Открытые данные.

    Типы, применение, детали »Электроника

    Резисторы

    являются одними из наиболее широко используемых компонентов в электронных схемах — существует множество различных типов резисторов, имеющих разные свойства и используемых по-разному в разных схемах.


    Resistor Tutorial:

    Resistors Overview Углеродный состав Карбоновая пленка Металлооксидная пленка Металлическая пленка Проволочная обмотка SMD резистор MELF резистор Переменные резисторы Светозависимый резистор Термистор Варистор Цветовые коды резисторов Маркировка и коды SMD резисторов Характеристики резистора Где и как купить резисторы Стандартные номиналы резисторов и серия E


    Резисторы всех типов в большом количестве используются в производстве электронного оборудования.Фактически, резистор, вероятно, является наиболее распространенным типом электронного компонента, используемого в электрических и электронных схемах.

    Существует большое количество различных типов резисторов, которые можно купить и использовать. Свойства этих разных резисторов различаются, и это помогает получить резистор правильного типа для любой конкретной конструкции, чтобы гарантировать получение наилучших характеристик.

    Хотя многие резисторы будут работать в различных приложениях, тип резистора может быть важен в некоторых случаях.Соответственно, необходимо знать о различных типах резисторов и о том, в каких приложениях можно использовать каждый тип резистора.

    Выбор резисторов с постоянными выводами или различных типов

    Что такое резистор?

    Резисторы

    используются практически во всех электронных схемах и многих электрических. Резисторы, как следует из их названия, противостоят току электричества, и эта функция является ключевой для работы большинства цепей.

    Примечание о сопротивлении:

    Сопротивление — один из ключевых факторов, используемых в электрических и электронных схемах.Сопротивление — это свойство материалов сопротивляться потоку электричества, и оно регулируется законом Ома.

    Подробнее о Сопротивление.

    Для резисторов используются два основных символа схемы. Самый старый из них до сих пор широко используется в Северной Америке и состоит из зубчатой ​​линии, обозначающей провод, используемый в резисторе. Другой символ цепи резистора представляет собой небольшой прямоугольник, который часто называют международным символом резистора, и он более широко используется в Европе и Азии.

    Символы цепи резистора

    Единицей измерения или сопротивления является Ом, Ом, а значения резистора могут быть указаны в единицах Ом — Ом, тысячи Ом или килом — кОм и миллионы Ом, мегом, МОм. При написании на схемах таких значений, как 10 кОм, можно увидеть, что это означает 10 кОм или 10 кОм. Знак Омега часто опускается, а десятичная точка заменяется множителем: например, 1R5 будет 1,5 Ом, 100R — 100 Ом, 4k7 — 4,7 кОм, 2M2 — 2,2 МОм и т. Д.

    Есть много разных типов резисторов.Некоторые из них предназначены для специальных применений, таких как использование в качестве переменных резисторов, а другие используются для ограничения перенапряжения, в то время как другие обеспечивают переменное сопротивление в зависимости от температуры. Все эти характеристики можно использовать.

    Однако для постоянных резисторов необходимо учитывать разные характеристики.

    Несмотря на то, что фактическое сопротивление компонента имеет первостепенное значение, необходимо учитывать и другие характеристики. Рассеиваемая мощность, шум, индуктивность, термическая стабильность и ряд других характеристик могут влиять на работу цепи, в которой используется резистор.

    Различные материалы и структура резистора могут иметь большое влияние. Соответственно, при выборе резистора, который будет использоваться, эти характеристики также должны быть приняты во внимание.

    Принципиальное различие типов резисторов

    Первые основные категории, к которым могут быть отнесены различные типы резисторов, — это то, являются ли они постоянными или переменными. Эти разные типы резисторов используются для разных приложений:

    • Постоянные резисторы: Постоянные резисторы на сегодняшний день являются наиболее широко используемым типом резисторов.Они используются в электронных схемах для установки правильных условий в цепи. Их значения определяются на этапе проектирования схемы, и их никогда не следует изменять для «настройки» схемы. Существует множество различных типов резисторов, которые можно использовать в различных обстоятельствах, и эти различные типы резисторов более подробно описаны ниже.
    • Переменные резисторы: Эти резисторы состоят из фиксированного резистивного элемента и ползунка, который подключается к основному резистивному элементу.Это дает три соединения с компонентом: два соединены с фиксированным элементом, а третье — с ползунком. Таким образом, компонент действует как переменный делитель потенциала, если используются все три соединения. Можно подключить к ползунку и одним концом, чтобы обеспечить резистор с переменным сопротивлением.
      Потенциометр предварительной настройки углеродной пленки Переменные резисторы и потенциометры широко используются для всех форм управления: — от регуляторов громкости на радиоприемниках и ползунков в аудиомикшерах до множества областей, где требуется переменное сопротивление.
      Потенциометр и переменный резистор Строго говоря, потенциометр — это компонент, в котором есть фиксированный резистор, который имеет ползунок для обеспечения деления потенциала от напряжения наверху. Переменный резистор фактически такой же, но с ползунком, соединенным с одним концом резистора, так что он обеспечивает истинное переменное сопротивление.

    Типы постоянных резисторов

    Есть несколько различных типов постоянного резистора:

    • Состав углерода: Резистор углеродного состава — это тип резистора, который когда-то был очень распространен — ​​он был основным типом резистора, но теперь редко используется, потому что новые формы резистора обеспечивают лучшую производительность, они меньше и тоже дешевле.

      Резисторы из углеродного состава получают путем смешивания гранул углерода со связующим, которое затем превращается в небольшой стержень. Этот тип резистора был большим по сегодняшним стандартам и имел большой отрицательный температурный коэффициент.
      Резисторы также страдали от больших и беспорядочных необратимых изменений сопротивления в результате нагрева или старения. В дополнение к этому гранулированный характер углерода и связующего приводит к возникновению высокого уровня шума при протекании тока.


    • Углеродная пленка: Этот тип резистора был представлен на заре транзисторной технологии, когда уровни мощности имели тенденцию к снижению.
      Карбоновый пленочный резистор Углеродный пленочный резистор формируется путем «крекинга» углеводорода на керамическом каркасе. Сопротивление полученной осажденной пленки устанавливали путем врезания спирали в пленку. Это сделало эти резисторы очень индуктивными и мало пригодными для многих ВЧ приложений. Они показали температурный коэффициент от -100 до -900 частей на миллион на градус Цельсия. Углеродная пленка защищена либо конформным эпоксидным покрытием, либо керамической трубкой.
    • Металлооксидный пленочный резистор: Этот тип резистора в настоящее время является наиболее широко используемой формой резистора.Вместо углеродной пленки в этом типе резисторов используется пленка оксида металла, нанесенная на керамический стержень. Как и в случае с углеродной пленкой, сопротивление можно регулировать, вырезая в пленке спиральную канавку. Пленка снова защищена конформным эпоксидным покрытием. Этот тип резистора имеет температурный коэффициент около + или — 15 частей на миллион на градус Цельсия, что дает ему гораздо лучшие характеристики по сравнению с любым резистором на основе углерода. Кроме того, этот тип резистора может поставляться с гораздо меньшим допуском, стандартным является 5% или даже 2%, а доступны версии с 1%.Они также демонстрируют гораздо более низкий уровень шума, чем углеродные резисторы, однако в основном они были заменены металлическими пленочными резисторами.
    • Металлический пленочный резистор: Металлический пленочный резистор очень похож на металлооксидный пленочный резистор. Визуально он очень похож, и производительность также сопоставима. Вместо металлооксидной пленки в этом типе резистора используется металлическая пленка, как следует из названия. Могут использоваться такие металлы, как никелевый сплав.
      Металлопленочный резистор с выводами Металлопленочный резистор — это тип, который наиболее широко используется, когда требуется резистор с выводами.
    • Резистор с проволочной обмоткой: Этот тип резистора обычно предназначен для приложений с большой мощностью. Эти резисторы изготавливаются путем наматывания на каркас провода с более высоким, чем обычно, сопротивлением (провод сопротивления).

      Более дорогие разновидности наматываются на керамический каркас и могут быть покрыты стекловидной или силиконовой эмалью.Этот тип резистора подходит для высоких мощностей и демонстрирует высокий уровень надежности при высоких мощностях вместе со сравнительно низким уровнем температурного коэффициента, хотя это будет зависеть от ряда факторов, включая первый, используемый провод и т. Д. В качестве резисторов с проволочной обмоткой часто предназначены для приложений с высокой мощностью, некоторые разновидности спроектированы таким образом, что их можно установить на радиаторе, чтобы гарантировать, что мощность рассеивается в металлоконструкциях, чтобы ее можно было унести.

      Ввиду того, что они намотаны, они не подходят для работы на частотах выше низких, хотя, если намотать части резистивного провода в разных направлениях, индуктивность можно несколько уменьшить.


    • Резисторы для поверхностного монтажа: Технология поверхностного монтажа, SMT в настоящее время является основным форматом, используемым для электронных компонентов. Их проще использовать в автоматизированном производстве, и они способны обеспечить очень высокий уровень производительности. В резисторах SMT используются технологии, аналогичные другим формам, но в формате для поверхностного монтажа.

    Другие типы резисторов

    Хотя большинство резисторов представляют собой стандартные постоянные резисторы или переменные резисторы, существует ряд других типов резисторов, которые используются в более узких или специализированных приложениях.

    • Светозависимый резистор / фоторезистор: Светозависимые резисторы или фоторезисторы изменяют свое сопротивление в зависимости от уровня освещенности. Они используются в ряде сенсорных приложений и во многих случаях представляют собой очень экономичное решение.

      Типичный светодиодный резистор, зависимый от света Светозависимые резисторы имеют задержку во времени, необходимое для реагирования на изменение освещенности, но они дешевы и просты в использовании.


    • Термистор: Как видно из названия, термисторы являются термочувствительными резисторами.Сопротивление термистора зависит от температуры. Некоторые имеют отрицательный температурный коэффициент, термисторы NTC, другие имеют положительный температурный коэффициент, термисторы PTC.
    • Варистор: Варисторы доступны в нескольких формах. По сути, эти электронные компоненты изменяют свое сопротивление в зависимости от приложенного напряжения, и в результате они находят применение для защиты от скачков напряжения и перенапряжения. Часто их можно увидеть как Movistors, что является сокращением слов M etal O xide V ar istor .

      Выбор варисторов с выводами Варисторы — это устройства, которые широко используются в удлинителях сети с защитой от перенапряжения или переходных процессов и используются для защиты компьютеров. Следует помнить, что каждый раз, когда варистор получает импульс, его свойства незначительно меняются.


    Хотя резисторы можно рассматривать как простые электронные компоненты для использования, существует ряд параметров, которые необходимо учитывать при выборе правильного типа резистора.Важны не только сопротивление, но и параметры. Выдерживаемое напряжение, рассеиваемая мощность и тип самого резистора — все это влияет на производительность. Поскольку доступно множество типов резисторов, необходимо выбирать правильный тип для каждого конкретного применения. Таким образом можно гарантировать лучшую производительность.

    Другие электронные компоненты:
    Резисторы Конденсаторы Индукторы Кристаллы кварца Диоды Транзистор Фототранзистор Полевой транзистор Типы памяти Тиристор Разъемы ВЧ разъемы Клапаны / трубки Аккумуляторы Переключатели Реле
    Вернуться в меню «Компоненты».. .

    Резисторы — learn.sparkfun.com

    Добавлено в избранное Любимый 48

    Примите стойку, стойку сопротивления

    Резисторы — самые распространенные электронные компоненты. Они являются важной частью практически каждой цепи. И они играют важную роль в нашем любимом уравнении — законе Ома.

    В этом разделе résistance мы рассмотрим:

    • Что такое резистор ?!
    • Блоки резисторы
    • Обозначение цепи резистора
    • Последовательные и параллельные резисторы
    • Различные варианты резисторов
    • Цветовое кодирование Расшифровка
    • Расшифровка резистора поверхностного монтажа
    • Примеры применения резистора

    Считайте чтение…

    Некоторые концепции в этом руководстве основаны на предыдущих знаниях в области электроники. Прежде чем переходить к этому руководству, подумайте о том, чтобы сначала прочитать (хотя бы бегло просмотр) эти:


    Хотите попробовать резисторы?

    и nbsp

    и nbsp

    Основы резистора

    Резисторы — это электронные компоненты, которые обладают постоянным постоянным электрическим сопротивлением. Сопротивление резистора ограничивает поток электронов через цепь.

    Это пассивных компонента , то есть они только потребляют энергию (и не могут ее генерировать). Резисторы обычно добавляются в схемы, где они дополняют активных компонентов , таких как операционные усилители, микроконтроллеры и другие интегральные схемы. Обычно резисторы используются для ограничения тока, деления напряжений и подтягивания линий ввода / вывода.

    Блоки резисторов

    Электрическое сопротивление резистора измеряется в Ом . Символ ома — греческая заглавная буква омега: & ohm ;.(Несколько окольным) определение 1 & ohm; — это сопротивление между двумя точками, где 1 вольт (1 В) приложенной потенциальной энергии будет подталкивать 1 ампер (1 А) тока.

    В единицах СИ большие или меньшие значения Ом могут быть сопоставлены с префиксом, например, кило-, мега- или гига-, чтобы облегчить чтение больших значений. Очень часто можно увидеть резисторы в диапазоне килоомов (кОм;) и мегаомов (МОм;) (гораздо реже можно увидеть резисторы в миллиомах (м & Ом;)). Например, 4,700 Ом; резистор эквивалентен 4.7к & Ом; резистор и 5,600,000 Ом; резистор можно записать как 5,600 кОм; или (чаще) 5.6M & ohm ;.

    Схематическое обозначение

    Все резисторы имеют две клеммы, , по одной клемме на каждом конце резистора. При моделировании на схеме резистор будет отображаться как один из этих двух символов:

    Два общих условных обозначения резистора. R1 — это 1 кОм в американском стиле; резистор, а R2 — международный 47кОм; резистор.

    Выводы резистора — это каждая линия, идущая от волнистой линии (или прямоугольника). Это то, что подключается к остальной части схемы.

    Обозначения схемы резистора обычно дополняются значением сопротивления и именем. Значение, отображаемое в омах, очевидно, имеет решающее значение как для оценки, так и для фактического построения схемы. Название резистора обычно — R перед числом. Каждый резистор в цепи должен иметь уникальное имя / номер.Например, вот несколько резисторов в цепи таймера 555:

    В этой схеме резисторы играют ключевую роль в установке частоты на выходе таймера 555. Другой резистор (R3) ограничивает ток через светодиод.


    Типы резисторов

    Резисторы

    бывают разных форм и размеров. Они могут быть сквозными или поверхностными. Это может быть стандартный статический резистор, набор резисторов или специальный переменный резистор.

    Прерывание и монтаж

    Резисторы

    будут иметь один из двух типов оконечной нагрузки: сквозное отверстие или поверхностный монтаж. Эти типы резисторов обычно обозначаются аббревиатурой PTH (сквозное отверстие с покрытием) или SMD / SMT (технология или устройство для поверхностного монтажа).

    Резисторы со сквозным отверстием поставляются с длинными гибкими выводами, которые можно вставить в макетную плату или вручную припаять к макетной плате или печатной плате (PCB). Эти резисторы обычно более полезны при макетировании, прототипировании или в любом другом случае, когда вы не хотите паять крошечные, маленькие 0.Резисторы SMD длиной 6 мм. Длинные выводы обычно требуют обрезки, и эти резисторы неизбежно занимают гораздо больше места, чем их аналоги для поверхностного монтажа.

    Наиболее распространенные сквозные резисторы поставляются в аксиальной упаковке. Размер осевого резистора зависит от его номинальной мощности. Обычный резистор ½ Вт имеет диаметр около 9,2 мм, тогда как резистор меньшей Вт имеет длину около 6,3 мм.

    Резистор мощностью полуватта (½Вт) (вверху) мощностью до четверти ватта (Вт).

    Резисторы для поверхностного монтажа обычно представляют собой крошечные черные прямоугольники, оканчивающиеся с обеих сторон еще меньшими, блестящими, серебряными проводящими краями.Эти резисторы предназначены для установки на печатных платах, где они припаяны к ответным посадочным площадкам. Поскольку эти резисторы такие маленькие, их обычно устанавливает робот и отправляет через печь, где припой плавится и удерживает их на месте.

    Крошечный 0603 330 & Ом; резистор, парящий над блестящим носом Джорджа Вашингтона на вершине [США квартал] (http://en.wikipedia.org/wiki/Quarter_ (United_States_coin).

    Резисторы SMD

    бывают стандартных размеров; обычно либо 0805 (0.08 дюймов в длину на 0,05 дюйма в ширину), 0603 или 0402. Они отлично подходят для массового производства печатных плат или в конструкциях, где пространство является драгоценным товаром. Однако для ручной пайки им нужна твердая и точная рука!

    Состав резистора

    Резисторы

    могут быть изготовлены из различных материалов. Чаще всего современные резисторы изготавливаются из углеродной, металлической или металлооксидной пленки марки . В этих резисторах тонкая пленка проводящего (но все же резистивного) материала намотана спиралью вокруг и покрыта изоляционным материалом.Большинство стандартных простых сквозных резисторов имеют углеродную или металлическую пленку.

    Загляните внутрь нескольких углеродных пленочных резисторов. Значения сопротивления сверху вниз: 27 Ом, 330 Ом; и 3,3 МОм. Внутри резистора углеродная пленка обернута вокруг изолятора. Чем больше обертываний, тем выше сопротивление. Довольно аккуратно!

    Другие сквозные резисторы могут быть намотаны проволокой или изготовлены из сверхтонкой металлической фольги.Эти резисторы обычно являются более дорогими, более дорогими компонентами, специально выбранными из-за их уникальных характеристик, таких как более высокая номинальная мощность или максимальный температурный диапазон.

    Резисторы для поверхностного монтажа обычно бывают толстыми или тонкопленочными . Толстая пленка обычно дешевле, но менее точна, чем тонкая. В обоих типах резисторов небольшая пленка из резистивного металлического сплава помещается между керамической основой и стеклом / эпоксидным покрытием, а затем соединяется с концевыми токопроводящими краями.

    Пакеты специальных резисторов

    Существует множество других резисторов специального назначения. Резисторы могут поставляться в предварительно смонтированных пакетах из пяти или около того резисторных матриц. Резисторы в этих массивах могут иметь общий вывод или быть настроены как делители напряжения.

    Массив из пяти 330 Ом; резисторы, соединенные вместе на одном конце.

    Переменные резисторы (т.е. потенциометры)

    Резисторы тоже не обязательно должны быть статичными. Переменные резисторы, известные как реостаты , представляют собой резисторы, которые можно регулировать в пределах определенного диапазона значений.Аналогичен реостату потенциометр . Горшки соединяют два резистора внутри последовательно, и регулируют центральный отвод между ними, создавая регулируемый делитель напряжения. Эти переменные резисторы часто используются для входов, например регуляторов громкости, которые необходимо регулировать.


    Расшифровка маркировки резистора

    Хотя они могут не отображать свое значение напрямую, большинство резисторов имеют маркировку, показывающую их сопротивление. Резисторы PTH используют систему цветовой кодировки (которая действительно добавляет немного изящества схемам), а резисторы SMD имеют свою собственную систему маркировки значений.

    Расшифровка цветовых полос

    Осевые резисторы со сквозным отверстием обычно используют систему цветных полос для отображения своего значения. Большинство из этих резисторов будут иметь четыре цветных полосы, окружающие резистор, хотя вы также найдете пять полосных и шесть полосных резисторов.

    Четырехполосный резистор

    В стандартных четырехполосных резисторах первые две полосы обозначают две старшие цифры номинала резистора. Третья полоса — это весовое значение, при котором умножает две значащие цифры на десять.

    Последняя полоса указывает допуск резистора. Допуск объясняет, насколько более или менее фактическое сопротивление резистора можно сравнить с его номинальным значением. Ни один резистор не сделан идеально, и различные производственные процессы приведут к лучшим или худшим допускам. Например, 1 кОм; резистор с допуском 5% на самом деле может быть где-то между 0,95 кОм; и 1.05кОм ;.

    Как определить, какая группа первая и последняя? Последний диапазон допусков часто четко отделен от диапазонов значений, и обычно это либо серебро, либо золото.

    Пяти- и шестиполосные резисторы

    Пятиполосные резисторы имеют третью полосу значащих цифр между первыми двумя полосами и полосой умножителя . Пятиполосные резисторы также имеют более широкий диапазон допусков.

    Шестиполосные резисторы — это, по сути, пятиполосные резисторы с дополнительной полосой на конце, которая указывает температурный коэффициент. Это указывает на ожидаемое изменение номинала резистора при изменении температуры в градусах Цельсия. Обычно эти значения температурного коэффициента чрезвычайно малы, в диапазоне ppm.

    Цветовые полосы резистора декодирования

    При расшифровке цветовых полос резисторов обратитесь к таблице цветовых кодов резисторов, подобной приведенной ниже. Для первых двух полос найдите соответствующее цифровое значение этого цвета. 4,7 кОм; Резистор, показанный здесь, имеет в начале цветные полосы желтого и фиолетового цветов, которые имеют числовые значения 4 и 7 (47). Третья полоса 4,7 кОм; красный, что означает, что 47 следует умножить на 10 2 (или 100). 47 умножить на 100 — это 4700!

    4.7к & Ом; резистор с четырьмя цветными полосами

    Если вы пытаетесь сохранить код цветовой полосы в памяти, может помочь мнемоническое устройство. Существует несколько (иногда сомнительных) мнемоник, которые помогают запомнить цветовую кодировку резистора. Хороший, который раскрывает разницу между b Отсутствие и b rown:

    « B ig b rown r abbits o ften y ield g reat b ig v ocal g roans inger2 napped napped .«

    Или, если вы помните «ROY G. BIV», вычтите индиго (бедный индиго, никто не помнит индиго) и добавьте черный и коричневый к передней части и серый и белый к задней части классической цветовой схемы радуги. .

    Таблица цветов резистора

    Проблемы со зрением? Щелкните изображение для лучшего просмотра!

    Калькулятор цветового кода резистора

    Если вы предпочитаете пропустить математику (мы не будем судить!) И просто воспользуетесь удобным калькулятором, попробуйте один из них!

    Четырехполосные резисторы
    Диапазон 1 Диапазон 2 Диапазон 3 Диапазон 4
    Значение 1 (MSV) Значение 2 Вес Допуск
    Черный (0) Коричневый (1) Красный (2) Оранжевый (3) Желтый (4) Зеленый (5) Синий (6) Фиолетовый (7) Серый (8) Белый (9) Черный (0) Коричневый (1) Красный (2) Оранжевый (3) Желтый (4) Зеленый (5) Синий (6) Фиолетовый (7) Серый (8) Белый (9) Черный (1) Коричневый (10) Красный (100) Оранжевый (1k) Желтый (10k) Зеленый (100k) Синий (1M) Фиолетовый (10M) Серый (100M) Белый (1G) Золото (± 5%) Серебро (± 10%)

    Сопротивление: 1 кОм; ± 5%

    Пяти- и шестиполосные резисторы
    Примечание: Рассчитайте здесь свой шестиполосный резистор, но не забудьте добавить температурный коэффициент к окончательному значению резистора.
    Диапазон 1 Диапазон 2 Диапазон 3 Диапазон 4 Диапазон 5
    Значение 1 (MSV) Значение 2 Значение 3 Вес Черный (0) Коричневый (1) Красный (2) Оранжевый (3) Желтый (4) Зеленый (5) Синий (6) Фиолетовый (7) Серый (8) Белый (9) Черный (0) Коричневый (1) Красный (2) Оранжевый (3) Желтый (4) Зеленый (5) Синий (6) Фиолетовый (7) Серый (8) Белый (9) Черный (0) Коричневый (1) Красный (2) Оранжевый (3) Желтый (4) Зеленый (5) Синий (6) Фиолетовый (7) Серый (8) Белый (9) Черный (1) Коричневый (10) Красный (100) Оранжевый (1k) Желтый (10k) Зеленый (100k) Синий (1M) Фиолетовый (10M) Серый (100M) Белый (1G) Золото (± 5%) Серебро (± 10%) Коричневый (± 1%) Красный (± 2%) Зеленый (± 0.5%) Синий (± 0,25%) Фиолетовый (± 0,1%) Серый (± 0,05%)

    Сопротивление: 1 кОм; ± 5%

    Расшифровка маркировки для поверхностного монтажа

    У резисторов SMD

    , таких как в корпусах 0603 или 0805, есть собственный способ отображения их значения. Есть несколько распространенных методов маркировки этих резисторов. Обычно на корпусе печатается от трех до четырех символов — цифр или букв.

    Если три символа, которые вы видите, это , все числа , вы, вероятно, смотрите на резистор с маркировкой E24 .Эти маркировки действительно имеют некоторое сходство с системой цветных полос, используемой на резисторах PTH. Первые два числа представляют собой первые две наиболее значимые цифры значения, последнее число представляет величину.

    В приведенном выше примере резисторы обозначены 104 , 105 , 205 , 751 и 754 . Резистор с маркировкой 104 должен быть 100 кОм; (10×10 4 ), 105 будет 1M & Ом; (10×10 5 ) и 205 составляет 2M & Ом; (20×10 5 ). 751 — 750 Ом; (75×10 1 ) и 754 составляет 750 кОм; (75×10 4 ).

    Еще одна распространенная система кодирования — E96 , и она самая загадочная из всех. Резисторы E96 будут обозначены тремя символами — двумя цифрами в начале и буквой в конце. Два числа сообщают вам первые , три цифры значения, соответствующие одному из не столь очевидных значений в этой поисковой таблице.

    907 900 89 907 239 907 237
    907 907 9007 9024 907 900 9072 3205 907

    Буква в конце представляет множитель, соответствующий чему-то в этой таблице:

    Код Код
    Код Значение Код значения Значение
    Код Значение
    Код Значение
    01 100
    17 9024 9024 907 907 49 316
    65 464
    81 681
    02 102
    102
    907 23
    50 324
    66 475
    82 698
    03 105
    19 154 9023 907 227 227 907 227 227 907 332
    67 487
    83 715
    04 107
    20 157 9024 9023 9023 9024 907 9024 907 9007 52 340
    68 499
    84 732
    05 110
    7 23723 110
    7 162 902 907
    53 348
    69 511 90 724
    85 750
    06113
    22 165
    38 243 907 243 907 523
    86 768
    07 115
    23 169
    39724 907 23 907 71 536
    87 787
    08 118
    24 174
    9024 9024
    72 549
    88 8 06
    09 121
    25 178
    41 261
    57383 57 383 825
    10 124
    26 182
    42 267
    58 90 845
    11 127
    27 187
    43 274
    9024 907 9023 907 907 590

    91 866
    12 130
    28 191
    44 280
    60 412
    76 607
    76 604 133
    29 196
    45 287
    61 422
    77
    14 137
    30 200
    46 294
    62 432 9482
    931
    15 140
    31
    47 301
    63 442
    79 649
    95 9524 907 907 1432 907 907 1432 907 907 1432 907 32 210
    48 309
    64 453
    80 665
    001
    Letter Множитель Letter Множитель Letter Множитель
    A 1 D 1000
    Y или R 0,01 B или H 10 E 907 23 0,1 C 100 F 100000

    Итак, резистор 01C — наш хороший друг, 10 кОм; (100×100), 01B — 1 кОм; (100×10), а 01D — 100 кОм.Это просто, другие коды могут быть не такими. 85A на картинке выше 750 & Ом; (750×1) и 30C на самом деле 20k & ohm ;.


    Номинальная мощность

    Номинальная мощность резистора — одна из наиболее скрытых величин. Тем не менее это может быть важно, и это тема, которая возникает при выборе типа резистора.

    Мощность — это скорость, с которой энергия преобразуется во что-то другое. Он рассчитывается путем умножения разности напряжений в двух точках на ток, протекающий между ними, и измеряется в ваттах (Вт).Лампочки, например, превращают электричество в свет. Но резистор может превратить только электрическую энергию, проходящую через него, в тепла . Хит обычно не лучший товарищ по играм с электроникой; слишком много тепла приводит к дыму, искрам и пожару!

    Каждый резистор имеет определенную максимальную номинальную мощность. Чтобы резистор не перегревался слишком сильно, важно убедиться, что мощность на резисторе не превышает его максимального значения. Номинальная мощность резистора измеряется в ваттах и ​​обычно находится между & frac18; Вт (0.125 Вт) и 1 Вт. Резисторы с номинальной мощностью более 1 Вт обычно называют силовыми резисторами и используются специально из-за их способности рассеивать мощность.

    Определение номинальной мощности резистора

    Номинальная мощность резистора обычно определяется по размеру его корпуса. Стандартные сквозные резисторы обычно имеют номинальную мощность ¼ или ½ Вт. Силовые резисторы более специального назначения могут указывать свою номинальную мощность на резисторе.

    Эти силовые резисторы могут выдерживать гораздо большую мощность, прежде чем они сработают.Сверху справа в нижний левый приведены примеры резисторов 25 Вт, 5 Вт и 3 Вт со значениями 2 Ом, 3 Ом; 0,1 & Ом; и 22к & Ом. Меньшие силовые резисторы часто используются для измерения тока.

    О номинальной мощности резисторов для поверхностного монтажа обычно можно судить также по их размеру. Резисторы типоразмера 0402 и 0603 обычно рассчитаны на 1/16 Вт, а резисторы 0805 могут потреблять 1/10 Вт.

    Измерение мощности на резисторе

    Мощность обычно рассчитывается путем умножения напряжения на ток (P = IV).Но, применяя закон Ома, мы также можем использовать значение сопротивления при расчете мощности. Если нам известен ток, протекающий через резистор, мы можем рассчитать мощность как:

    Или, если мы знаем напряжение на резисторе, мощность можно рассчитать как:


    Резисторы серии

    и параллельные

    Резисторы постоянно соединяются вместе в электронике, обычно в последовательной или параллельной схеме. Когда резисторы объединены последовательно или параллельно, они создают общее сопротивление , которое можно рассчитать с помощью одного из двух уравнений.Знание того, как сочетаются значения резисторов, пригодится, если вам нужно создать конкретное значение резистора.

    Резисторы серии

    При последовательном соединении значения резисторов просто складываются.

    Резисторы Н. Общее сопротивление — это сумма всех последовательных резисторов.

    Так, например, если у вас всего , нужно иметь , 12,33 кОм; резистор, найдите некоторые из наиболее распространенных номиналов резисторов 12 кОм; и 330 Ом, и соединить их последовательно.

    Резисторы параллельные

    Найти сопротивление параллельно включенных резисторов не так-то просто. Общее сопротивление резисторов N , включенных параллельно, является обратной суммой всех обратных сопротивлений. Это уравнение может иметь больше смысла, чем последнее предложение:

    резисторов Н, включенных параллельно. Чтобы найти общее сопротивление, инвертируйте каждое значение сопротивления, сложите их, а затем инвертируйте.

    (Сопротивление, обратное сопротивлению, на самом деле называется проводимостью , так что короче: проводимость параллельных резисторов является суммой каждой из их проводимости).

    Как частный случай этого уравнения: если у вас только два резистора , подключенных параллельно, их полное сопротивление может быть вычислено с помощью этого чуть менее инвертированного уравнения:

    Как еще , более частный случай этого уравнения, если у вас есть два параллельных резистора равного значения , общее сопротивление составляет половину их значения. Например, если два 10k & ohm; резисторы включены параллельно, их полное сопротивление 5кОм.

    Сокращенно сказать, что два резистора подключены параллельно, можно с помощью оператора параллельности: || .Например, если R 1 находится параллельно с R 2 , концептуальное уравнение может быть записано как R 1 || R 2 . Намного чище и скрывает все эти неприятные фракции!

    Резисторные сети

    В качестве специального введения в вычисление полного сопротивления учителя электроники любят , когда их ученики сталкиваются с сумасшедшими, запутанными цепями резисторов.

    Приручить резисторный сетевой вопрос может быть что-то вроде: «какое сопротивление между выводами A до B в этой цепи?»

    Чтобы решить такую ​​проблему, начните с задней части схемы и упростите ее до двух терминалов.В этом случае R 7 , R 8 и R 9 идут последовательно и могут складываться вместе. Эти три резистора подключены параллельно с R 6 , поэтому эти четыре резистора можно превратить в один с сопротивлением R 6 || (R 7 + R 8 + R 9 ). Делаем нашу схему:

    Теперь четыре крайних правых резистора можно упростить еще больше. R 4 , R 5 и наш конгломерат R 6 — R 9 все последовательно и могут быть добавлены.Тогда все эти последовательные резисторы подключены параллельно с R 3 .

    И это всего три резистора между клеммами A и B . Добавьте их! Таким образом, общее сопротивление этой цепи составляет: 1 + 2 + 3 || ( 4 + 5 + 6 || ( 7 + рэнд) 8 + Р 9 )).


    Примеры приложений

    Резисторы

    присутствуют практически во всех электронных схемах.Вот несколько примеров схем, которые сильно зависят от наших друзей-резисторов.

    Резисторы

    — это ключ к тому, чтобы светодиоды не взорвались при подаче питания. Посредством соединения резистора последовательно со светодиодом ток, протекающий через два компонента, может быть ограничен до безопасного значения.

    При выборе токоограничивающего резистора обратите внимание на два характерных значения светодиода: типичное прямое напряжение и максимальный прямой ток .Типичное прямое напряжение — это напряжение, которое требуется для включения светодиода, и оно варьируется (обычно где-то между 1,7 В и 3,4 В) в зависимости от цвета светодиода. Максимальный прямой ток обычно составляет около 20 мА для основных светодиодов; непрерывный ток через светодиод всегда должен быть равен или меньше этого номинального тока.

    После того, как вы получили эти два значения, вы можете подобрать токоограничивающий резистор с помощью следующего уравнения:

    В S — это напряжение источника — обычно напряжение батареи или источника питания.V F и I F — это прямое напряжение светодиода и желаемый ток, который проходит через него.

    Например, предположим, что у вас есть батарея на 9 В для питания светодиода. Если ваш светодиод красный, то прямое напряжение может быть около 1,8 В. Если вы хотите ограничить ток до 10 мА, используйте последовательный резистор примерно 720 Ом.

    Делители напряжения

    Делитель напряжения представляет собой схему резистора, которая преобразует большое напряжение в меньшее. Используя всего два последовательно подключенных резистора, можно создать выходное напряжение, составляющее часть входного напряжения.

    Вот схема делителя напряжения:

    Два резистора, R 1 и R 2 , соединены последовательно, и источник напряжения (V в ) подключен через них. Напряжение от V на выходе до GND можно рассчитать как:

    Например, если R 1 было 1,7 кОм; и R 2 составлял 3,3 кОм, входное напряжение 5 В можно было преобразовать в 3,3 В на выводе выхода V .

    Делители напряжения

    очень удобны для считывания показаний резистивных датчиков, таких как фотоэлементы, гибкие датчики и силочувствительные резисторы.Одна половина делителя напряжения — это датчик, а часть — статический резистор. Выходное напряжение между двумя компонентами подается на аналого-цифровой преобразователь на микроконтроллере (MCU) для считывания значения датчика.

    Здесь резистор R 1 и фотоэлемент создают делитель напряжения для создания переменного выходного напряжения.

    Подтягивающие резисторы

    Подтягивающий резистор используется, когда вам нужно смещать входной вывод микроконтроллера в известное состояние.Один конец резистора подключен к выводу MCU, а другой конец подключен к высокому напряжению (обычно 5 В или 3,3 В).

    Без подтягивающего резистора входы на MCU можно оставить плавающими . Нет гарантии, что на плавающем контакте высокий (5 В) или низкий (0 В) вывод.

    Подтягивающие резисторы часто используются при взаимодействии с входом кнопки или переключателя. Подтягивающий резистор может смещать входной контакт, когда переключатель разомкнут. И это защитит цепь от короткого замыкания при замкнутом переключателе.

    В приведенной выше схеме, когда переключатель разомкнут, входной вывод MCU подключен через резистор к 5В. Когда переключатель замыкается, входной контакт подключается непосредственно к GND.

    Величина подтягивающего резистора обычно не требует особого указания. Но он должен быть достаточно высоким, чтобы не терять слишком много мощности, если к нему приложить 5 В или около того. Обычно значения около 10 кОм; работать хорошо.


    Покупка резисторов

    Не ограничивайте количество резисторов.У нас есть наборы, пакеты, отдельные детали и инструменты, которым просто не сможет противостоять .

    Наши рекомендации:

    Щелкните здесь, чтобы просмотреть больше резисторов в каталоге
    инструментов:

    Цифровой мультиметр — базовый

    В наличии TOL-12966

    Цифровой мультиметр (DMM) — незаменимый инструмент в арсенале каждого энтузиаста электроники.Цифровой мультиметр SparkFun, h…

    21 год

    Инструмент для гибки выводов резистора

    В наличии ТОЛ-13114

    Этот маленький кусочек пластика с зазубринами — инструмент для гибки выводов резистора. Этот маленький…

    3

    Ресурсы и дальнейшее развитие

    Теперь, когда вы начинающий эксперт по резисторам, как насчет изучения некоторых более фундаментальных концепций электроники! Резисторы, конечно, не единственный базовый компонент, который мы используем в электронике, есть еще:

    Или, может быть, вы хотите подробнее изучить применение резисторов?

    Определение резистора по Merriam-Webster

    ре · систор | \ ri-ˈzi-stər \ : Устройство, имеющее электрическое сопротивление и используемое в электрической цепи для защиты, работы или контроля тока.

    Что такое резистор?

    Ранее мы узнали, что такое напряжение, как его можно сделать и как оно работает в электронике.В этой статье мы узнаем о самом фундаментальном компоненте электроники — резисторе!

    Что такое сопротивление?

    Прежде чем мы сможем узнать о резисторах, нам сначала нужно понять, что такое сопротивление. Сопротивление — это способность материала сопротивляться электрическому потоку, и все материалы обладают измеримой величиной сопротивления. Некоторые материалы, такие как резина и стекло, обладают невероятно высоким сопротивлением и называются изоляторами. Такие материалы, как медь и золото, имеют очень низкое сопротивление и называются проводниками.Однако некоторые материалы имеют сопротивление между проводниками и изоляторами и называются полупроводниками. Сантехника может быть очень удобной аналогией сопротивления с большими трубами, имеющими низкое сопротивление, в то время как маленькие трубы имеют большое сопротивление.

    Характеристики сопротивления

    Сопротивление измеряется в омах, имеет символ Ω и было названо в честь Джорджа Саймона Ома, открывшего закон Ома. Закон Ома гласит, что ток через проводник обратно пропорционален сопротивлению проводника при фиксированной разности потенциалов.Короче говоря, если сопротивление падает, то ток растет, а если сопротивление растет, то ток падает. Сопротивление 1 Ом определяется как сопротивление, необходимое для создания тока 1 А с разностью потенциалов 1 В.

    Сопротивление против удельного сопротивления

    Важно понимать разницу между сопротивлением и удельным сопротивлением, поскольку, хотя они и связаны, они относятся к двум разным вещам. Сопротивление — это общее измеренное сопротивление материала, тогда как удельное сопротивление материала — это его сопротивление на единицу длины и площади поперечного сечения.Это означает, что медный провод может иметь очень низкое удельное сопротивление, но может иметь высокое сопротивление, если сделать его очень длинным и узким. Это также означает, что резина теоретически может быть очень широкой и очень короткой и будет иметь низкое сопротивление. Для обозначения удельного сопротивления используется символ ρ (rho) с единицей измерения Ом / м.

    Что такое резистор

    Теперь, когда мы узнали об сопротивлении и удельном сопротивлении, пора узнать о резисторах! Резисторы — это компоненты в электронике, которые добавляют сопротивление цепи и, возможно, являются наиболее фундаментальным компонентом.В то время как все компоненты (включая провода) в цепи имеют сопротивление, резисторы устанавливаются для преднамеренного добавления сопротивления, но также могут использоваться для регулировки выходных сигналов усилителя, установки битов конфигурации и управления выходным напряжением регулятора. В электронных схемах резисторы могут иметь один из двух символов в зависимости от того, следуете ли вы американскому стандарту или международному стандарту. В американских схемах используются волнистые линии, появившиеся в то время, когда резисторы изготавливались из тонких жилок проволоки, намотанных вокруг тела.В международных схемах используется прямоугольный прямоугольник, который является наиболее часто используемым символом. Какой из них вы будете использовать, зависит от вас, но лучше придерживаться международного стандарта, поскольку он используется в большем количестве стран.

    Существует два основных типа резисторов; фиксированные и переменные. Фиксированные резисторы — это те, сопротивление которых не изменяется, в то время как переменные резисторы могут регулировать свое сопротивление. Два показанных выше символа относятся только к фиксированным резисторам, в то время как все переменные резисторы имеют разные символы в зависимости от их типа.

    Типы резисторов

    — сквозные, SMD, подстроечные резисторы, потенциометры, LDR и

    Существует несколько типов резисторов. Существуют сквозные резисторы, резисторы для поверхностного монтажа (SMD), подстроечные резисторы, потенциометры, светозависимые резисторы (LDR) и термисторы. Каждый выполняет одну и ту же задачу по оказанию сопротивления, но по-разному. Узнайте все о различных разновидностях резисторов!

    Различные типы резисторов:

    • сквозное отверстие
    • Подстроечные резисторы
    • Устройство для поверхностного монтажа или SMD
    • Легкие зависимые резисторы (LDR)
    • Термисторы
    • Потенциометры

    Что такое резисторы в сквозное отверстие?

    Резисторы для сквозных отверстий — это резисторы, у которых есть ножки, которые вставляются в сквозные отверстия в печатной плате и затем припаяны.Эти резисторы бывают самых разных типов в зависимости от их применения, причем углеродная пленка является наиболее распространенной, а металлическая пленка используется в приложениях, требующих точности. В углеродных и металлопленочных резисторах используются цветные полосы для обозначения их сопротивления, причем наиболее распространенными являются четырехполосные резисторы. Резисторы в сквозное отверстие также бывают разной номинальной мощности, причем 1 / 4Вт являются наиболее популярными среди производителей, но доступны и более мощные. Резисторы очень большой мощности часто изготавливаются из керамических материалов и имеют монтажные отверстия, но не часто встречаются в электронике.

    Что такое резисторы SMD?

    Резисторы SMD

    — это те, которые размещаются в корпусах для устройств поверхностного монтажа (SMD) и в основном встречаются в современных коммерческих продуктах. Хотя производители могут использовать компоненты SMD, их часто сложнее использовать из-за их очень небольшого размера. Эти резисторы, однако, значительно дешевле, а также их проще использовать в автоматизированных процессах (например, в установках для захвата и установки), отсюда и их популярность в коммерческой сфере. Как и сквозные резисторы, резисторы SMD бывают самых разных форм и размеров в зависимости от рассеиваемой мощности и области применения.Большинство этих резисторов используют цифры на корпусе для обозначения их сопротивления, но более современные резисторы SMD теперь настолько малы, что на них даже нельзя напечатать цифры.

    Что такое подстроечные резисторы?

    Подстроечные резисторы

    — это переменные резисторы, которые позволяют проектировщику выполнять точную настройку схемы. Эти типы резисторов могут быть либо в сквозном отверстии, либо в корпусе SMD, и, как правило, на них напечатано их общее значение сопротивления. Подстроечным резисторам обычно требуется несколько полных оборотов на входе, чтобы внести небольшие изменения в их сопротивление, и это полезно в приложениях, требующих тщательного контроля сопротивления цепи, например, в усилителях.

    Что такое потенциометры?

    Потенциометры — это переменные резисторы с тремя контактами, которые позволяют регулировать сопротивление (с помощью двух ножек) или регулируемое напряжение (с использованием всех трех ножек). В отличие от подстроечных резисторов, потенциометры часто используются для базового управления, где точность не требуется, но требуется управление. Потенциометры обычно не допускают более полного оборота, например, регуляторы громкости. У них есть два предела, минимальный и максимальный, и регулировка между этими двумя точками регулирует громкость.Хотя потенциометры SMD действительно существуют, их часто можно найти в корпусах со сквозными отверстиями, поскольку они требуют механической стабильности при использовании.

    Что такое LDR или светозависимые резисторы?

    Light Dependent Resistors, или LDR, представляют собой резисторы, сопротивление которых зависит от падающего на них света. Эти резисторы доступны как для поверхностного монтажа, так и для сквозных отверстий, причем чаще используются сквозные отверстия. Однако эти устройства сделаны с использованием сульфида кадмия, который является токсичным веществом и запрещен согласно RoHS, поэтому эти устройства быстро исчезают.Если требуется светочувствительная схема, лучше использовать фотодиод.

    Что такое термисторы?

    Термисторы — это переменные резисторы, сопротивление которых зависит от их температуры, и доступны как в исполнении для сквозного монтажа, так и в исполнении для поверхностного монтажа. Из этих категорий существуют еще две, которые показывают, как сопротивление термистора изменяется в зависимости от температуры; Положительный температурный коэффициент (PTC) или отрицательный температурный коэффициент (NTC). Термисторы PTC — это те, сопротивление которых увеличивается с температурой, в то время как сопротивление термистора NTC уменьшается при повышении температуры.

    Наборы резисторов

    При использовании резисторов в цепях важно знать два уравнения, которые сообщают вам общее сопротивление цепи в зависимости от их конфигурации. Короче говоря, резисторы, включенные последовательно, складываются, а резисторы, включенные параллельно, вычитаются (но очень сложным образом).

    Для резисторов серии

    Для резисторов, включенных параллельно

    1 / RTобщ = 1 / R1 + 1 / R2 + ⋯ 1 / Rn

    Цветовой код резистора

    Большинство стандартных резисторов имеют цветовую маркировку, которая помогает рассчитать сопротивление резистора.Как правило, на резисторе указаны значение сопротивления, номинальная мощность и допуск. Для резисторов меньшего размера это указывается цветными полосами. Таким образом, цветовая кодировка резистора указывает общее значение сопротивления конкретного резистора. Резисторы бывают трех-, четырех-, пяти- и шестиполосными. У трехполосного резистора первые две полосы показывают значение сопротивления, а третья полоса — множитель. В случае четырехполосного резистора первые две полосы дают значения сопротивления, затем множитель, затем промежуток между третьей и четвертой полосами, указывающий направление считывания, а четвертая полоса указывает свой допуск.Пятиполосный резистор дает сопротивление с первыми тремя полосами, умножитель — с четвертой, а допуск — с пятой. Шестиполосный резистор указывает сопротивление своими первыми тремя полосами, множитель — четвертой, допуск — пятой, а интенсивность отказов — шестой.

    Обычное применение резисторов в реальных условиях

    Так как же резисторы используются в реальной жизни? Это довольно распространенные компоненты. Часто можно встретить резисторы, используемые для управления усилением, тепловыделения, деления напряжения и управления колебаниями напряжения в сочетании с конденсатором, поглощением мощности в РЧ-передатчиках и других приложениях.

    Реальное использование резисторов:

    • Светодиоды — последовательно включенные резисторы предельного тока и пониженного напряжения
    • Регулировка усиления в амперах
    • Контроль колебаний напряжения у конденсатора (например, светофор)

    Что такое резистор и что такое сопротивление — последние мысли

    Резисторы

    имеют решающее значение в современной электронике, поскольку они способны ограничивать ток, управляющие напряжения и обеспечивать конфигурацию схем.

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *