Skip to content

Бетон из керамзита: Керамзитобетон: пропорции для его приготовления

Содержание

Чем так хорош бетон с керамзитом (керамзитобетон).

В области строительства происходит постоянный поиск новых материалов, что привело к появлению и новых видов бетона.

В нашей стране на большинстве строек в настоящее время применяется товарный бетон и железобетон, однако появившиеся новые материалы готовы составить им достойную конкуренцию. Одним из таких материалов является керамзитобетон, который сходен по своим свойствам с тяжелыми бетонами, однако значительно дешевле.  Нужно отметить, что отечественными производителями керамзитобетон незаслуженно забыт. Если у нас на долю керамзитобетона приходится не более 10% всего строительства, то за рубежом керамзитобетонное домостроение занимает около 40%. Особо популярен этот материал в Германии, Чехии, Голландии и Скандинавских странах, где блоки из керамзитобетона носят название «биоблоков». 

Что такое?

 
 Исходное сырье для этого материала — керамзит, являющийся экологически чистым продуктом. Он получается из вспененной и обожженной глины, приобретающей структуру наподобие застывшей пены. Покрывающая гранулу спекшаяся оболочка делает ее высокопрочной. Все это позволяет использовать керамзит в качестве основного вида пористого заполнителя. 

Преимущества:

  •  Среди его достоинств особо можно выделить прекрасные теплоизоляционные свойства, повышенную прочность, устойчивость к температурным перепадам и экологическая безопасность.
  • Из керамзитобетонных блоков строят жилые здания, вспомогательные постройки и отдельные строительные элементы. При этом огромную роль в выборе для постройки именно этого материала играет его теплопроводность. При одинаковых показателях плотности и прочности блоки из керамзитобетона обладают лучшей теплопроводностью, в отличие от блоков из ячеистого бетона.  
  • Он имеет достаточную прочность для использования его в строительстве, притом, что он дешевле, чем обычный бетон.
  • Звукоизоляционные свойства намного превышают способности легкого бетона.
  • По сравнению с другими видами бетона, керамзитобетон отличается устойчивостью к влаге и химическому воздействию едких щелочей, углекислот, воды и т.д.
  •  Благодаря тому, что в составе нет крупных фракций, он имеет небольшой вес.
  •  Регулирует влажность воздуха в помещении. Сочетая в себе лучшие качества дерева и камня, в то же время, керамзитобетон не нуждается в особом уходе, не боится огня и ржавчины.
  • Обладает и рядом преимуществ перед кирпичом. Удельный вес керамзитобетонных блоков ниже кирпичной кладки в 2,5 раза.

Также один блок стандартного размера заменяет семь кирпичей. И, кроме того, квалифицированный каменщик за смену выполнит из блоков в три раза больше объема работы, чем из кирпичной кладки.  Однако, как и любой другой материал, бетон с керамзитом имеет и свои недостатки. Главным его минусом является его высокая пористость, поэтому по сравнению с тяжелым бетоном керамзитобетон не отличается высокой морозостойкостью, прочностью и плотностью. Также нужно сказать о хрупкости керамзитобетона, что ограничивает область его применения в строительстве. Так, для возведения фундаментов целесообразнее применять не керамзит, а обычный бетон.   Но, несмотря на недостатки, положительные характеристики позволяют широко использовать его в строительстве. Кроме возведения стен, он применяется для реконструкции и ремонта, в качестве теплоизоляции помещений, при создании крыш и перекрытий.

3 вида бетона из керамзита:

 Плотный, крупнопористый (без песка) и поризованный.  По назначению бывает теплоизоляционным, конструктивно-теплоизоляционным и конструктивным. 

  • Керамзитобетон теплоизоляционный используется, как видно из названия, для теплоизоляции зданий и сооружений.
  • Конструктивно-теплоизоляционный керамзитобетон применяют преимущественно для крупных блоков и стеновых панелей.
  • Конструктивный керамзитобетон применяют для несущих конструкций зданий и сооружений (например, мостов). Его применение вместо обыкновенного тяжелого бетона существенно снижает массу и стоимость больших железобетонных конструкций. 

 Цена бетона с керамзитом зависит от нескольких существенных факторов. Во-первых, стоимость материала зависит от вида керамзитобетона. Чем больше прочность материала, тем дороже он будет стоить. Так, конструктивный керамзитобетон, обладающий высокой прочностью и используемый часто для строительства мостов, часто предпочитают тяжелому бетону. Следовательно, такая цена бетона будет самая высокая. Наоборот, наиболее легкий теплоизоляционный является самым дешевым.  Таким образом, бетон с керамзитом – это современный строительный материал, который обладает рядом преимуществ, и нашел широкое применение в различных областях строительства. Использование керамзитобетона помогает уменьшить сроки строительства, сэкономить на рабочей силе и снизить расходы на электроэнергию.

Пропорции керамзитобетона для стяжки своими руками, фракции, состав смеси

Широко используемый в бытовых строениях, а также при многоэтажном строительстве, керамзитобетон обрел свою популярность из-за ряда преимуществ. Многие из плюсов материала приобретены благодаря свойствам глины, входящей в состав керамзита. Сюда относится малый удельный вес, устойчивость к биологическим воздействиям, огнеупорность, долговечность, качественная гидро- и теплоизоляция. Отсюда стяжка пола из керамзитобетона обеспечит надежное основание для любого покрытия пола.

Оглавление:

  1. Пропорции смеси
  2. Особенности изготовления
  3. Нюансы укладки раствора для стяжки

Но есть и некоторые отрицательные моменты, осложняющие ее самостоятельное использование. К примеру, далеко не быстрый период времени проведения работ, так как бетон требует дополнительной шлифовки для создания ровной поверхности. Существует несколько разновидностей стяжки с керамзитом. Это может быть классическая заливка, полусухой или же сухой вариант. Каждый вид подбирается конкретно под строительный объект, требуемую нагрузку на основание, величину неровностей пола.

Рекомендована для помещений с неровностями, для утепления пола на первых этажах зданий. Одинаково хорошо подходит для внутренних и наружных работ, для придания полу необходимого уклона, при устройстве системы теплых полов. В продаже существуют варианты готовых строительных смесей на основе керамзита. Их применение целесообразно при высоких перепадах пола, до 30 см. Но и такой раствор вполне можно изготовить своими силами.

Пропорции для стяжки

В зависимости от характера поверхности подбирается необходимый состав. Соотношение материалов зависит от фракции используемой стяжки из керамзитобетона и предполагаемых нагрузок на основание. В классическом варианте заливки, так называемом мокром способе, применяется следующая пропорция цемента, воды, песка, керамзита – 1:1:3:2. В перерасчете на массу, при расходе керамзита 0,5-0,7 м3 потребуется 1,3-1,5 т смеси песка и цемента.

Вариации с пропорцией компонентов позволяют осуществить приготовление различных марок керамзитобетона. Таким образом, для М150 соотношение цемент-песок-керамзит – 1:3,5:5,7. Соответственно, рецепт смеси с теми же составляющими для М300 выглядит так: 1:1,9:3,7. А для подобной марки бетона М400 – 1:1,2:2,7.

Рекомендации по приготовлению

Керамзитобетон своими руками изготовить совсем не сложно. Прежде всего, необходимо правильно подобрать керамзит. Он представляет собой легкоплавкую глину, обработанную термическим способом. Материал выпускается в нескольких видах:

  • керамзитовый гравий – элементы правильной круглой формы;
  • керамзитовый щебень – несформированные фракции больших размеров;
  • керамзитовый песок – мелкодробленый результат переработки керамзита.

Для приготовления керамзитобетона для пола используется только гравий фракцией 5-20. Более крупные применяются в полусухом или сухом способе. Керамзитовый песок же делает более прочными и теплоемкими тонкие виды стяжек толщиной менее 3 см. Керамзит по рекомендациям необходимо заранее замочить в воде, таким образом, чтобы частички не всплывали. Благодаря гидрофильным свойствам материала, его пористая структура быстро впитает в себя достаточное количество воды. Результатом чего окажется масса гравия без видимых скоплений влаги.

Далее порционно добавляется соотношение песка и цемента при постоянном перемешивании. Это продолжается до тех пор, пока гранулы керамзита не станут цементного цвета. Весь процесс приготовления стяжки проще всего проводить с помощью бетономешалки. При отсутствии последней вполне подойдет любая просторная металлическая емкость, способная вместить в себя весь объем керамзитобетона.

Стоит уделить особое внимание выбору марки цемента для бетона. Для надежного схватывания и высокой удельной прочности она должна быть не менее М400-М500. Карьерный песок для приготовления керамзитобетона используется промытый. Предварительно просеивается своими силами. Для достижения более высокой прочности, приобретения морозостойкости и долговечности стяжки многими специалистами рекомендуется добавление пластификаторов. Пропорции добавки определяются производителем того или иного состава и указываются на упаковке. Помимо готового покупного раствора пластификатор допускается изготовить самому, используя жидкое мыло или стиральный порошок.

Вода в соотношение раствора для стяжки вносится из расчета 200-300 л на 1 м3. Пропорция варьируется в зависимости от влажности материалов. Здесь главное добиться нужной консистенции, чтобы смесь уверенно расправлялась правилом. В случае избыточного количества влаги будет получен редкий состав, в котором керамзит всплывет и также воспрепятствует образованию ровной поверхности.

Укладка смеси своими силами

Расход керамзитобетона зависит от необходимой толщины слоя и величины площади пола под покрытие. Минимальная толщина керамзитобетонной стяжки – 3 см, что является одним из ее существенных недостатков, особенно при наличии небольшой высоты потолков.

Перед применением смеси рекомендуется укладка гидроизоляционного материала и демпферной ленты. Это нужно для предотвращения преждевременной потери влаги в основании, в противном случае монолит не успеет набрать прочность. Лента в свою очередь служит протектором от контакта со стеной и препятствует возможной температурной деформации.

Раствор заливается по уровню между маяками от угла помещения. Крупные неровности расправляются правилом. В силу быстрого схватывания состава процесс необходимо провести непрерывно и в короткий промежуток времени. Стоит отметить значительно меньшее время схватывания керамзитобетонной стяжки по сравнению с бетоном. Уже через двое суток по затвердевшей стяжке можно ходить.

Поверхность керамзитобетона получается далеко не зеркальной, поэтому перед финишным покрытием рекомендуется немного отшлифовать основание. Далее для конечного результата заливается слой классической цементно-песчаной стяжки.

Некоторые специалисты пользуются более простым и менее затратным по времени способом выравнивания пола с помощью керамзита. Здесь отсутствует необходимость приготовления раствора. Сухая фракция керамзитового гравия либо щебня насыпается прямо между маяками на подготовленное основание, разравнивается. Затем можно сразу приступать к заливке бетонного выравнивающего слоя. Иногда керамзит дополнительно проливают цементным молоком.

Пропорции керамзитобетона для стяжки своими руками, состав, таблицы

Керамзитобетон – это тот же цементный раствор, который применяется для заливки стяжки. Но поскольку в качестве крупного заполнителя здесь используется не тяжелый щебень, а вспученные глиняные гранулы, пол получается более теплым. Керамзит довольно хрупок и не годится для полноценного выравнивания активно эксплуатируемых поверхностей. Его главное предназначение – создание легкого тепло- и звукоизоляционного слоя, не дающего серьезного увеличения нагрузки на основание.

Оглавление:

  1. Из чего состоит керамзитобетон?
  2. Необходимые пропорции для различных марок
  3. Нюансы приготовления
  4. Особенности работы с раствором

Компоненты смеси

Чтобы сделать керамзитобетон своими руками, понадобятся вспученные гранулы крупностью 5-10 или 5-20 мм с насыпной плотностью 600-700 кг/м3. Мелкий песок не столь эффективен, но используется при устройстве тонкой заливки до 30 мм. Крупные фракции чаще применяют для сухой и полусухой стяжки. Окончательный выбор зависит от нагрузок на будущий пол:

1. Лучшие результаты показывают смеси, где присутствуют все классы крупности от 5 до 40 мм в равном соотношении. В этом случае стяжка получается чуть более плотной и тяжелой, зато достаточно прочной. При этом одновременно снижается расход цемента.

2. Для уменьшения нагрузки на перекрытия керамзит выбирают покрупнее. Готовая стяжка при большой толщине со временем может дать усадку, но только так удастся выровнять серьезные перепады поверхности, достигающие 10-15 см.

3. При небольшой толщине бетона и необходимости избавиться от усадочных явлений остается только один вариант – мелкий керамзитовый песок.

Что касается цемента, то здесь экономить нельзя, поскольку только от него зависит, насколько крепко друг с другом сцепятся гранулы вспученной глины. Как минимум, это должно быть вяжущее с марочной прочностью М400, но можно использовать и более дорогой ПЦ М500. Главное, чтобы портландцемент шел без замещающих шлаковых добавок.

К мелкофракционным заполнителям также предъявляются повышенные требования, поскольку они тоже способны влиять на прочностные характеристики керамзитобетона. Это и обычный карьерный песок, но непременно просеянный и мытый. Для уменьшения плотности стяжки и увеличения ее теплоизоляционных свойств фракции песка лучше выбирать покрупнее.

Поскольку готовый раствор не обладает достаточной подвижностью (его характеристики соответствуют самому низкому классу П1), для улучшения удобоукладываемости смеси в нее вводят пластифицирующие добавки. Можно использовать воздухововлекающие модификаторы типа СДО, которые дополнительно поризуют цементную матрицу. Но дешевле и проще самостоятельно влить в бетоносмеситель жидкое мыло из расчета 50-100 мл на ведро ПЦ.

Пропорции для разных марок

Для определения масштаба работ понадобится измерить площадь помещения и рассчитать высоту будущего слоя керамзитобетона. Объем заливки – это и есть количество глиняного заполнителя в кубометрах, от которого следует отталкиваться в дальнейших расчетах. «Теплый» монолит можно получить разной плотности – от 1000 до 1700 кг/м3 (хотя для пола лучше использовать наиболее прочные покрытия), в соответствии с этим будут изменяться и пропорции для стяжки.

Плотность керамзитобетона, кг/м3Вес на кубометр смеси, кг
Керамзит М700Цемент М400Песок
1500560430420
1600504400640
1700434380830

При хорошем увлажнении керамзита для таких пропорций хватит 140-200 л воды на куб раствора. Если же замачивание оказалось недостаточно эффективным, количество жидкости может быть увеличено до 300 л/м3.

Традиционно строители пользуются упрощенным соотношением для получения керамзитобетона марочной прочности М100 – оптимальной для устройства своими силами «теплой» стяжки. Для этого на 1 часть цемента берут:

  • 3 ч песка;
  • 4 ч вспученного керамзита;
  • 1 ч воды.

При таких пропорциях можно даже приобрести готовую сухую смесь пескоцемента, где сыпучие материалы как раз идут в соотношении 1:3. Если же стяжка нужна попрочнее, для нее просто выбирают другую рецептуру приготовления:

Марка керамзитобетонаЦементПесокКерамзит
М15013,55,7
М2002,44,8
М3001,93,7
М4001,22,7

При работе с цементом более высокой марки М500 и устройства стяжки в бытовых помещениях с эксплуатационными нагрузками не выше среднего рекомендуется использовать следующее соотношение компонентов на куб керамзита:

  • 295 кг цемента;
  • 1186 кг крупнозернистого песка;
  • 206 л воды.

Легкие стяжки готовятся из керамзита плотностью 200-300 кг/м3 без добавления песка. Здесь понадобится составить раствор с таким соотношением:

  • 720-1080 кг гранул вспученной глины;
  • 250-375 кг цемента;
  • 100-225 л воды.

Рекомендации по приготовлению

Первым в емкость засыпается керамзит. Гранулы перед этим нужно вымочить в воде, чтобы они напитались влагой и потом не тянули ее из бетона. Долив еще немного жидкости, в корыто или барабан смесителя высыпают пескоцемент, тщательно перемешивая раствор. При правильно подобранных пропорциях керамзитобетона все гранулы в процессе изготовления должны стать одинакового серого цвета – без коричневых пятнышек.

Если смесь покажется недостаточно текучей, можно добавить в нее еще немного воды. При избытке влаги досыпать сухие компоненты не следует, так как это не позволит размешать их до однородности и ухудшит качество керамзитобетона, нарушив соотношение цемента. В этом случае лучше дать немного настояться, после чего еще раз перемешать.

Приготовление должно выполняться быстро и без задержек. Как только гранулы полностью покроются цементной кашицей, состав нужно сразу выливать на основание, разравнивая по установленным маякам. Раствор с керамзитовым заполнителем схватывается быстрее обычного бетона, зато уже через неделю по такому полу можно будет свободно перемещаться. Окончательный набор прочности происходит в течение 28 дней.

Особенности работы с керамзитобетоном

На пол перед заливкой обязательно нужно постелить гидроизоляцию или обмазать его и нижнюю часть стен битумной мастикой. В противном случае влага впитается в основание, не дав цементу набрать требуемую прочность. Такая заливка получится немонолитной и очень хрупкой – будет расползаться под нагрузкой и пылить. Также по периметру комнаты обязательно следует закрепить демпферную ленту, чтобы компенсировать тепловое расширение. По окончании работ стяжка из керамзитобетона потребует дополнительной защиты от испарения влаги. Для этого ее сверху накрывают пленкой, которую через пару-тройку дней можно будет снять.

Готовый слой «теплого» бетона нуждается в финишном выравнивании – желательно с предварительной шлифовкой. Сверху он заливается обычным раствором из пескоцемента толщиной не более 30 мм (без добавления гравия). Этого достаточно, чтобы скрыть неровности, но не ухудшить теплоизоляционные характеристики чернового основания. Финишную заливку выполняют по маякам, тщательно выравнивая смесь правилом. Рейки на следующий день аккуратно извлекают, а оставшиеся следы заделывают свежим составом.

Полусухая стяжка – еще один вариант утепления и выравнивания пола с помощью керамзита, позволяющий обрабатывать небольшие участки один за другим. В этом случае на подготовленное основание с установленными маяками засыпают сухие гранулы вспученной глины – на такую высоту, чтобы 20 мм маячкового профиля оставались незакрытыми. Сверху их проливают жидким цементным раствором (молочком) и утрамбовывают, склеивая зерна керамзита между собой. Через день-два поверхность заливается финишной стяжкой – приготовление бетона для нее ничем не отличается от уже рассмотренного «мокрого» способа.

Приготовление и пропорции керамзитобетона для стяжки пола

Керамзитобетон является одним из видов лёгкого бетона, чаще всего он применяется для утепления или в процессе строительства зданий с облегчёнными стенами. По целевому назначению этот материал разделяют на теплоизоляционный, теплоизоляционно-конструктивный и конструктивный (самый прочный). Несмотря на то, что керамзитобетон наиболее востребован в виде готовых блоков, возможно также самостоятельное изготовление данного материала для создания стяжки пола или для других задач.

Рассмотрим состав и соотношение компонентов керамзитобетона, в зависимости от его назначения. Если говорить о бетонной стяжке, то включение в её состав керамзитобетона, вместо щебня или гравия, делает бетонную плиту более лёгкой и увеличивает её теплоизоляционные характеристики. Ингредиенты должны обязательно иметь правильную пропорцию в составе керамзитобетона, чтобы в последствии стяжка пола не потрескалась и обладала достаточной прочностью.

Оптимальное соотношение цемента, песка и керамзита лежит в пределах от 1:2:5 до 1:3:6, в зависимости от фракции керамзита, марки цемента, качества и влажности песка. При этом рекомендованная марка портландцемента не ниже 400. Важно понимать, что прочность керамзита, как заполнителя, значительно ниже прочности щебня, поэтому цемент низких марок здесь применять нельзя.

Использовать керамзитобетон можно также для блоков или делать заливку монолитных стен жидким керамзитобетонным раствором. Для этого рекомендуется брать следующее соотношение: на 1 часть цемента 1 часть песка и 10-12 частей керамзита фракцией до 20 мм.  Стены из раствора с такой пропорцией будут обладать достаточной прочностью, хорошей теплопроводностью и долговечностью.

Остаётся только вопрос, как замесить хороший раствор? Первым делом следует залить керамзит цементным молочком так, чтобы все гранулы полностью смочились. Состав молочка предусматривает 2 части воды на 1 часть цемента. Как мешать керамзит каждый строитель выбирает сам, исходя из доступных средств. После полноценной пропитки керамзита молочком, в него добавляются основные компоненты в расчётных пропорциях. Для фундамента керамзитобетон используется только в виде готовых заводских блоков, самостоятельное приготовление связано со слишком высокими рисками.

Состав легкого бетона из керамзита, для фундамента

Керамзитобетон – это популярный строительный материал. Каковы его свойства? Где применяется продукция? Что входит в состав легкого бетона на основе керамзита? Об этом вы прочитаете в статье.

Керамзит как основа бетона

Керамзит представляет собой искусственный пористый строительный материал. Его получают путем обжига глинистого сланца или цельной глины. В зависимости от технических условий производства, материал имеет овальную, кубическую форму или мелкогранулярную структуру, похожую на песок.

Продукцию начали производить и использовать относительно недавно – с середины шестидесятых годов прошлого столетия. Непосредственный обжиг исходного сырья производится в металлических печах с барабанным вращением. Устройства имеют диаметр 3-5 метров и длину 50-70 метров. Такие вращающиеся печи располагают под углом в 10-15 градусов к горизонтальной поверхности. Полуфабрикат засыпается в верхнюю часть системы, после чего самостоятельно скатывается к нижней части и обрабатывается плавящей форсункой. Время изготовления партии – 40-60 минут.

Керамзит – это материал с высоким коэффициентом теплоизоляции. Помимо этого он обладает средней прочностью, морозоустойчивостью, огнеупорностью, химической инертностью и долговечностью при отсутствии тяжёлых физических нагрузок на материал. Для строительных нужд его применяют:

  • В качестве наполнителя лёгких бетонов;
  • Для утепления стен, полов, подвалов и перекрытий;
  • В рамках обустройства дренажных систем дорог, располагаемых на водонасыщенных грунтах;
  • Как декоративный материал.

Керамзит используется в домашнем цветоводстве, обустройстве террариумов, гидропонике и сельском хозяйстве. Современные производственные мировые мощности выпускают свыше 90 миллионов кубометров такой продукции ежегодно на более чем 250 заводах в 50 странах мира

Характеристики и состав керамзитобетона

Керамзитобетон представляет собой монолитный, застывший естественным путем строительные материал, содержащий несколько компонентов. Его технико-эксплуатационные характеристики:

  • Объемный вес – 850-1800 килограмм на кубический метр. Характеризует общую плотность застывшего бетона вместе с пустотами.
  • Прочность – 35-75 килограмм-сил на квадратный сантиметр. Максимальная физическая нагрузка на один квадратный сантиметр, при которой материал не разрушается.
  • Морозостойкость – до 50 циклов заморозки/разморозки. Вплоть до этих значений продукция он не теряет свои прочностные свойства по сравнению с номинальными характеристиками.
  • Усадка – менее 1 миллиметра. Относительный параметр уменьшения объема керамзитобетона после окончательного окаменения.
  • Водопоглощение – 8-14 процентов. Объем влаги, способные удерживаться материалом.
  • Теплопроводность – 0,15-0,45 Вт/мГрад. Эффективная величина интенсивности прохождения тепла через бетонную поверхность с площадью в один квадратный метр.

Характеристики компонентов керамзитобетона

Керамзитобетон состоит из следующих ингредиентов:

  • Вяжущее вещество. Классические портландцемент марки М400 или М500. Объединяет сыпучие ингредиенты продукции путем химической реакции гидратации с водой.
  • Мелкозернистый заполнитель. Речной песок фракций 0,8-2 миллиметра с насыпной плотностью 1300-1500 в килограмм на кубометр. При необходимости продукция дополнительно просеивается и промывается. Допустимая концентрация мелких примесей в виде глины, золы, грунта, пыли – 6 процентов. Влажность – 3-4 процента. Мелкозернистый заполнитель создает внутренний каркас структурного раствора, нейтрализует напряжение в процессе его окаменения.
  • Крупнозернистый заполнитель. Керамзит кубической или овальной формы, фракций 5-20 миллиметров в сухом состоянии. Допустимая концентрация сторонних примесей – 2 процента. Является альтернативой классическому щебню в бетоне, формирует объём, прочностные свойства после застывания. Влияет на ряд технико-эксплуатационных параметров продукции, в частности теплопроводность, влагозащиту, огнестойкость и так далее.
  • Вода. Дистиллированная или питьевая жидкость температурой 15-30 градусов. Смачивает сыпучие ингредиенты смеси, вступающие с ней в реакцию гидратации. Спустя одни сутки после применения жидкость начинает постепенно покидать структуру бетонной смеси путем дегидратации от периферических зон к центральной части, формируя предпосылки окаменения материала.

Добавки

Помимо основных ингредиентов керамзитобетона, в базовую продукцию могут вноситься сторонние вещества. Обязательной добавкой выступают омыленная древесная смола или СДО. Она выполняет в продукции воздухововлекающая функцию, насыщая материал и обеспечивая образование пор. При необходимости (рассматривается индивидуально в зависимости от текущих технико-эксплуатационных требований к готовой продукции) применяются следующие добавки:

  • Пластификаторы. Улучшают эластичность готового раствора. После затвердевания повышает коэффициент морозостойкости и влагозащиты.
  • Замедлители твердения. Замедляют процессы затвердевания и схватывания бетонной смеси. Применяются при необходимости транспортировки материала на большие расстояния (с помощью самосвала, а не мобильного промышленного миксера), недостаточной влажности и большой среднесуточной температуре окружающей среды.
  • Антиморозные присадки. Защищают воду в растворе от замерзания при отрицательных среднесуточных температурах окружающей среды.
  • Ускорители твердения. Ускоряют процесс затвердевания бетонной смеси. Применяются при неблагоприятных климатических условиях, замедляющих процесс естественного вызревания керамзитобетона – дождливой погоде, температуре 5-10 градусов Цельсия.
  • Стабилизаторы. Нормализуют подвижность пластичной массы.
  • Гидроизоляционные присадки. Повышают класс водостойкости материала после его затвердевания и выхода на штатные технико-эксплуатационные характеристики.
  • Поризаторы. Форсируют процесс образования пор.
  • Пигменты. Придают продукту необходимый цвет при необходимости.
  • Биоцидные экстракторы. Создают дополнительную защиту от альгицидного, фунгицидного и бактерицидного воздействия на стены.
  • Антикоррозионные присадки. Противодействуют саморазрушению продукции под воздействием физико-химических внешних факторов окружающей среды.

Специфика изготовления керамзитобетонных блоков

Керамзитобетон чаще используют в рамках формирования продукции, применяющейся как альтернатива кирпичу, арболиту, пеноблоку, керамическому блоку и иным видам основы для возведения стен.

Преимущества:

  • Хорошее взаимодействие с любыми типами отделочных материалов.
  • Минимальные требования к фундаменту.
  • Быстрое проведение строительных мероприятий.
  • Легкость обработки по сравнению с деревянным брусом и иными альтернативами.
  • Простой обустройство естественной вентиляция, возможность скрепления структуры обычным пескоцементным раствором.
  • Оптимальная внутренняя плотность, исключающая раздробление и крошение керамзитобетонных блоков при их распиле, монтаже.

Достаточно часто, керамзитобетонные блоки не производят самостоятельно, а заказывают материал у производителей. Однако при наличии необходимых ингредиентов, малых объемов частного строительства возможно формирование изделий непосредственно на строительной площадке.

Стандартные пропорции ингредиентов смеси для керамзитобетонных блоков:

  • 1 часть цемента марки М500;
  • 1 часть воды;
  • 2 части песка;
  • 3 части керамзита фракции 5-10 миллиметров.

Перед изготовлением материала следует закупить ингредиенты в необходимых объемах, после чего заранее подготовить:

  • Бетономешалку или ёмкость достаточных размеров под проведение мероприятия;
  • Лопаты и ведра;
  • Рычаг для перемешивания;
  • Кирпичные формы необходимого размера, куда будет засыпаться готовая пластичная масса;
  • Средства индивидуальной защиты.

Схема замеса:

  1. Засыпьте во внутреннюю полость бетономешалки цемент и песок, тщательно перемешайте ингредиенты до однородного состояния.
  2. Порциями по 5-10 литров добавьте воду, вымешивая пескоцементный раствор и не допуская его расслаивания, образования комков.
  3. Добавьте в пластичную массу керамзит, равномерно распределяя крупнозернистый наполнитель по всему раствору.

Главное требование в рамках приготовления базовой смеси – это наличие влажности. Гранулярной керамзит в сухом состоянии быстро забирает в себя воду, поэтому при недостаточном её количестве материал становится сухим. Если это произошло, то в процессе замешивания следует дополнительно порционно вливать жидкость по 3-4 литра, интенсивно перемешивая продукцию. Когда гранулы крупнозернистого заполнителя полностью покроются цементной глазурью, то процедуру следует прекратить.

Готовая субстанция используется в течение 30-40 минут. Её рассыпают по кирпичным формам, после чего ожидают набора критической прочности – для окончания процесса необходимо 5-7 суток.


Особенности приготовления и использования керамзитобетон для стяжки

Помимо формовки блоков, керамзитобетон широко применяется в качестве стяжки для любого типа пола. При этом в рамках изготовления продукции и её последующего применения есть ряд специфических особенностей.

Процедура смешивания ингредиентов в стандартных пропорциях для бетонных блоков и стяжки совпадают. Однако предпочтительнее выбирать в качестве крупнозернистого заполнителя не керамзит овальной/круглой формы с фракцией 5-10 мм, а кубическую его вариацию, имеющую модуль крупности 10-20 миллиметров. Это обеспечит хорошее уплотнение компонентов после заливки материала на горизонтальные поверхности.

Если стяжка из керамзитобетона формируется на открытом грунте, а не фундаментном основании/капитальном перекрытии, то обязательной является компоновка промежуточных «подушечных» слоёв, стабилизирующих продукцию. Основные этапы такой процедуры:

  1. Рытье котлована с выравниванием стен и утрамбовкой дна.
  2. Засыпка 15-20-ти сантиметровым слоем первой песочной «подушки».
  3. Засыпка 10-15-ти сантиметровым слоем второй щебневой подушки на основе гравия фракций 10-20 миллиметров.
  4. Формирование 5-ти сантиметровой «подбетонки» на основе пескоцементной смеси М100.
  5. Укладка гидроизоляции в виде геотекстиля с эффектом амортизации.
  6. Укладка теплоизоляции в виде вспененного утеплителя.
  7. Защита предыдущих 2 слоёв плотной полиэтиленовой плёнкой.
  8. Установка армирующей структуры на распорках, возвышающих её над верхним покрытием изоляционных слоев на 2 сантиметра.

После замешивания пластичной массы и добавления керамзита, желательно отслеживать вязкость смеси. Поскольку керамзитобетон образует наливной пол, то его консистенцию делают быть жиже, чем у материала под блоки. Вливайте дополнительно воду до образования подобия густого «фасолевого супа». Если в процессе заливки смесь будет контактировать с классическим окаменевшим бетоном, то необходимо заранее изолировать места соединения многослойной полиэтиленовой пленкой или иным типом гидроизоляции.

Керамзитобетон не требует дополнительной специфической обработки после укладки. Его не нужно штыковать и трамбовать, допустимо только разравнивание правилом. Спустя 48 часов материал частично застывает и образует бугристую поверхность. Она покрывается поверх слоем пескоцементного раствора в соотношении 1 к 3 (цемент к песку). Толщина финального покрытия – 2-3 сантиметра. При необходимости, финишная поверхность из ПЦР поддается процедуру железнения, покрывается обмазочной гидроизоляцией или пропитками.

Заключение

Легкий бетон на основе керамзита широко применяются в частном строительстве преимущественно для возведения стен малоэтажных конструкций и формирования стяжек. В рамках комплексной процедуры изготовления смесей следует соблюдать пропорции, придерживаться условий выкладки и постобработки материала, дополнительно покрывать поверхность защитными пропитками при эксплуатации вне отапливаемых помещений.


Как делают керамзитобетон: пропорции компонентов

Керамзитобетон, несмотря на то, что он во многом уступает как в плотности, так и в прочности, обычному бетону, все же широко используется в современном строительстве. Его популярность связана, в первую очередь, с такими показателями как относительно невысокая стоимость, маленькая теплопроводность, небольшой удельный вес.

Так же нельзя не сказать о том, что соблюдая определенные пропорции, керамзитобетон с легкостью можно приготовить на строительном участке самостоятельно, не прибегая к посторонней помощи.

Особенности применения керамзитобетона

На сегодняшний день, керамзитобетон широко используется в строительстве, в том числе и в строительстве частных домов. Но в тоже время, в силу своих особенностей, у него есть некоторые ограничения в применении.

Для того, чтобы ответить на вопрос – где можно применять керамзитобетон, а где нельзя, достаточно учесть его особенности:

Низкая теплопроводность. Благодаря ей, керамзитобетон идеально подходит для устройства стен дома, перекрытий и чернового пола. В некоторых случаях, он используется для устройства перемычек.

Сочетается практически с любыми утеплителем для стен.Небольшой удельный вес керамзитобетона, позволяет использовать его в тех местах, где большие нагрузки не допустимы.Влагопоглощение. Это скорее отрицательная сторона керамзитобетона. Из-за того, что он очень хорошо впитывает воду, его применение ограничено в открытых для осадков местах.

Обобщая все особенности, можно сказать, что использование керамзитобетона, в первую очередь, ограничено местами, куда не достают атмосферные осадки. Если попадание осадков неизбежно, то необходима хорошая гидроизоляция этого материала.

Учитывая его легкость, он прекрасно подходит для перекрытий и перемычек (с правильным армированием), где нет экстремальных нагрузок, а низкая теплопроводность позволит стенам из керамзитобетона удерживать тепло в доме в холодные времена.

Внимание! Ни в коем случае не используйте керамзитобетон, вместо обычного бетона, для устройства любого типа фундаментаниже уровня грунта, даже если больших нагрузок от стен дома не предвидится. Такой фундамент, даже с хорошей гидроизоляцией, надежным не назовешь.

Ну а что касается плюсов и минусов керамзитобетонакак строительного материала, так это тема отдельной статьи.

Марка керамзитобетона и пропорции компонентов

Основным отличием керамзитобетона от обычного бетона только в заполнителе, вместо щебня или гравия используется керамзит. В остальном – состав бетона и пропорции мало чем отличаются.

Керамзитобетон состоит из воды, цемента, песка и керамзита. Иногда целесообразны различные добавки, чаще всего добавляют пластификатор, для придания бетону пластичности, во время работы с ним.

От того, в каких пропорциях смешиваются эти материалы, полностью зависит его конечная прочность и марка.

На плотность керамзитобетона также влияет фракция керамзита. Керамзит большой фракции используется для марок с небольшой плотностью и, как правило, используется в основном как теплоизолятор. Керамзит мелкой фракции (также бывает дробленый керамзит – самый мелкий), используется для несущих и самонесущих конструкций, так же из него делают керамзитобетонные блоки марки М50, М75, М100 различных размеров, как для несущих стен, так и для перегородок.

Чем меньше фракция керамзита, тем плотнее и тяжелее будет конечный бетон, и в тоже время значительно уменьшаться его теплоизолирующие свойства. Поэтому нередко применяют керамзит смешанной фракции, таким образом, получая золотую середину – и не очень тяжелый и с хорошей теплоизоляцией керамзитобетон.

Часто используемые пропорции, для приготовления керамзитобетона из цемента М400, в строительстве частных домов:

ЦементПесокКерамзитВодаПластификатор1 ведро3-4 ведра4-5 ведер1,5 ведра(примерно)по инструкциик пластификатору

Пропорция добавляемого керамзита зависит от его фракции, чем меньше фракция, тем больше керамзита можно добавить и, соответственно, плотнее бетон получится в итоге.

В качестве пластификатора очень часто используют жидкое мыло. Его пропорции таковы: на ведро цемента добавляют 2-3 крышечки 5 литровой пластиковой бутылки. Если мерять стаканчиками, то примерно 50 – 100 грамм.

Вода добавляется «по вкусу». Керамзитобетон должен быть текучим и вязким одновременно. Беря его совковой лопатой, на лопате должна оставаться «горка», если «горка» растекается, то бетон слишком жидкий.

Как я уже неоднократно говорил, вода может присутствовать как в песке, так и в самом керамзите, поэтому сказать точно, сколько воды необходимо на ведро цемента М400, никто сказать не сможет, определяется опытным путем.

Внимание! Если переборщить с водой, то весь керамзит, в процессе устройства керамзитобетона, будет «всплывать», а песчано-цементная смесь – оседать на дно, тем самым образую неоднородную массу.

Советы по приготовлению керамзитобетона:

    Для приготовления керамзитобетона используйте «мытый» песок, он улучшит его усадку и увеличит конечную прочность, по сравнению с природным.Чтобы приготовить качественный бетон, необходимо использовать бетономешалку. Вручную, хоть и возможно, но очень трудно его хорошо вымесить.Используя бетономешалку, необходимо соблюдать очередность подачи ведер с материалом: сначала вода, затем цемент, песок, и только когда все это хорошо перемешается образуя однородную массу, добавляют керамзит.Замешивая керамзитобетон в ванной с помощью лопат, очередность не так важна, но все равно, пока хорошо не перемешается цементно-песчаная смесь с водой, керамзит добавлять не следует.Не забывайте использовать арматуру, которая значительно увеличит значение прочности на разрыв керамзитобетона. Допускается применение стеклопластиковой арматуры.

Керамзитобетон– один из видов легких бетонов, широко применяемый при строительстве жилых и гражданских объектов. Керамзитобетон изготавливают из доступных, недорогих и экологически чистых компонентов.

Достоинства керамзитобетона

Керамзитобетон обладает рядом достоинств:

    небольшой вес;высокая прочность;низкая тепло и звуко-проницаемость;экологическая чистота – из бетона нет выделений вредных для человека веществ;устойчив к воздействиям температуры и влажности;химически и биологически стоек.

Оборудование и материалы для приготовления керамзитобетона

В том случае, если вам потребуется самостоятельно приготовить керамзитобетон, нужны будут следующие материалы и инструменты:

    Электрическая бетономешалка, объемом не менее 0,2 м3;Емкость, например корыто, для готового бетона;Цемент, марка не менее 400;Керамзит с диаметром зерен 5 – 10 мм;Песок средней крупности, мытый;Пластификатор, например, мыло или порошок.

Пропорции керамзитобетона

Для приготовления керамзитобетона с высокими эксплуатационными свойствами, необходимо тщательно соблюдать пропорции компонентов, входящих в его состав. Средние цифры пропорции компонентов керамзитобетона следующие: цемент – 1 часть, керамзит – 8 частей, песок – 3 части. В такую смесь добавляем воду – 0,25 – 0,3 м3 на 1 м3 готового бетона и пластификатор – 50 – 60 мл на 0,2 м3 готового продукта.

Для приготовления бетона с более высокой прочностью необходимо применить керамзит большей фракции и увеличить количество цемента.

Приготовление керамзитобетона

Применяются два способа приготовления керамзитобетона: сухой и мокрый.

Сухой способ. Сухие компоненты засыпают в бетономешалку, тщательно смешивают и заливают водой, затем добавляют пластификатор.

Влажный способ. Готовят цементный раствор из цемента, песка и воды, затем в него добавляют керамзит.

При правильно выбранном соотношении компонентов бетона, его консистенция напоминает густую сметану. В случае, если бетон жидкий, необходимо некоторое время подождать, затем приступить к укладке готового бетона.

Правильно приготовленный керамзитобетон позволит полностью использовать все достоинства составляющих его компонентов.

Керамзитовый гравий получил широкое распространение в строительстве благодаря надежности сформированных из него конструкций. Строительные формы и конструкции способны простоять десятки лет без потери физических и эстетических характеристик. Композиция цементного раствора и керамзита относится к легкой группе бетонов.

Состав керамзитобетона содержит крупный заполнитель керамзит, мелкий заполнитель песок и цемент в качестве вяжущего компонента. Кроме цемента, для связки могут использовать строительный гипс. Рассмотрим подробно, что собой представляет керамзитобетон, пропорции для смесей различной плотности, область применения и характеристики строительного материала.

Свойства и характеристики материала

Визуально керамзитобетон имеет пористую структуру, размер пор зависит от режима обжига основного заполнителя. Различают три степени пористости бетона: крупнопористый, поризованный и плотный. На эксплуатационные характеристики конструкций и построек оказывает значительное влияние однородность структуры бетона.

Нормативная прочность керамзитобетона определяется пропорцией керамзитового гравия мелкой и крупной фракций. Применение керамзитобетона как основного элемента строительных форм требует дополнительного армирования, с целью повышения прочности конструкций установку бетонных элементов сопровождают крепежом арматуры. Основная роль керамзитобетона – формирование ограждающего теплоизоляционного слоя в многослойных конструкциях.

Прочность и физические характеристики керамзитобетона зависят от соотношения компонентов. Следует учитывать, что пропорции керамзитобетона для пола и пропорции смеси для изготовления строительных блоков различны.

Керамзитобетон: пропорции и состав раствора

В качестве перекрытий при возведении зданий долгое время использовали железобетонные плиты,сегодня эта технология не актуальна. Железобетонные перекрытия обладают существенным недостатком – низкой теплоизоляцией. Материалом, способным успешно выдерживать нагрузки и при этом обеспечивать комфортные условия пребывания в помещении, является керамзитобетон, который применяется в виде стяжки.

Выполняя укладку стяжки, нужно обращать внимание на тип поверхности, от которого зависит ее состав. Оптимальные пропорции керамзитобетона для стяжки: высота 30 мм на 1м2 требует 40 кг смеси пескобетонаМ300 и 35 кг керамзитового гравия.

Керамзитобетон: пропорции для стяжки в зависимости от расчетного значения плотности на 1м3

Значение плотностиКерамзит, плотность насыпнаяЦементПесокВодакг/м3кгм3кгкгл1000700720-250-1401500700-0,8430420-1600700-0,72400640-1600600-0,68430680-1700700-0,62380830-1700600-0,56410880-

Для приготовления бетонной смеси в подходящую емкость загружают керамзит, после чего заливают водой (небольшое количество).

После растворения пористой структуры гранул в емкость загружаются связующие компоненты – цемент и пескобетон. Все перемешивается строительным миксером до густой консистенции. Смешивание раствора прекращается после того, как керамзит приобретает цвет цемента.

Достоинства и недостатки стяжки из керамзитобетона

Зачастую керамзитобетонная стяжкаприменяется при необходимости повышения уровня пола в помещении. Сформированная поверхность обладает высокой прочностью, устойчива к воздействию влаги, не пропускает воздух. Преимущества стяжки из керамзитобетона:

    затраты на нее зависят от площади и толщины покрытия;доступная технология монтажа и продолжительный срок эксплуатации;возможность корректирования плоскости, устранение перепадов и неровностей;абсолютная совместимость со всеми видами напольных покрытий;высокая степень влагостойкости и огнестойкости, звукоизоляция;стойкость к биологическому и химическому воздействию;в таком процессе, как приготовление керамзитобетона, пропорции регулируют плотность;экологическая чистота.

Стяжка из керамзитобетона обладает недостатками:

    укладка сопровождается значительным подъемом уровня пола;после высыхания требуется шлифовка поверхности.

Доступность технологии производства блоков

При возведении небольшой жилой или хозяйственной постройки на даче или приусадебном участке хозяева часто отдают предпочтение строительным блокам из керамзитобетона.

Они также используются для строительства домов, возводимых в областях с низкими несущими способностями грунта. Причина выбора заключается в высоких эксплуатационных качествах материала и доступной технологии производства блоков. Их можно изготавливать самостоятельно на приусадебном участке без применения технологического оборудования.

Формирование блоков из керамзитобетона

Керамзитобетонные блокибывают двух видов: пустотелые и полнотелые.

Вне зависимости от формы блоков основой является керамзитовый гравий. Блоки, форма которых не имеет пустот, применяются для укладки фундаментов и облицовки наружных стен. Пустотелые блоки широко используются как звукоизоляционный и теплоизоляционный ограждающий слой внутренних стен здания.

За счет применения пористых блоков повышаются несущие характеристики фундамента и стен здания. Однако главное преимущество использования керамзитобетона в строительстве определяется экономичностью возводимых конструкций. За счет пористости структуры достигается снижение расходов сырья и малый вес конструкционных элементов.

Керамзитобетон: состав и пропорции смеси для формовки блоков

Керамзитобетонные блоки в своем составе содержат керамзит, цемент, песок мелкой фракции и иные добавки.

Иными словами, смесь содержит связующие компоненты и керамзит. В качестве добавок, повышающих физические свойства строительных блоков, можно использовать смолу древесную омыленную (СДО) для повышения устойчивости к низким температурам. Чтобы повысить степень связывания, добавляют порошок технического лингносульфоната (ЛСТП).

Подготовка раствора

Связующей основой смеси для формирования фактурного слоя является шлакоцемент (ШПЦ) или цемент марки М400 (портландцемент). Следует учитывать, что марка цемента не может быть меньше М400. Далее добавляется керамзит и песок мелкой фракции.

Изготавливаем керамзитобетон своими руками, пропорции смеси: 1 (цемент), 8 (керамзитовый гравий)и 3 (песок).

Этот состав даст оптимальные характеристики будущего строительного материала. Чтобы изготовить керамзитобетон, пропорции на 1м3 должны быть такими: 230-250 литров воды. Для придания пластичности бетону можно воспользоваться народным методом: в процессе смешивания компонентов добавить чайную ложку стирального порошка.

Смешивание всех компонентов должно выполняться в бетономешалке, последовательность действий следующая: в барабан загружаются и смешиваются сыпучие компоненты, далее постепенно добавляется вода до получения однородной массы, напоминающей по консистенции пластилин.

Формовка блоков и завершающий этап

На месте для формовки блоков устанавливают поддон, на котором размещают опалубку. В процессе высыхания блоков недопустимо прямое попадание на них влаги и прямых солнечных лучей, с этой целью устанавливается навес.

Перед закладкой раствора внутренние стенки форм обильно обмазываются машинным маслом, а основа посыпается песком. Существуют стандартные размеры блоков,изготовленных из керамзитобетона: 190×190×140, а также 390×190×140 мм. Стандартных габаритов следует придерживаться, но для небольшого дачного строительства размеры можно менять на свое усмотрение.

После завершения всех подготовительных этапов формы наполняются раствором.

Смесь утрамбовывается для устранения пустот до появления цементного молока. Поверхности блоков выравниваются мастерком. Формы разбираются по истечении суток с момента закладки раствора, сами блоки при этом не сдвигаются до полного затвердевания.

Период высыхания длится до 25-28 суток в зависимости от климатических факторов. Процесс высыхания не должен стимулироваться искусственно и проходить в короткий срок, быстрая потеря влаги может стать причиной растрескивания и утраты прочности блоков.

Произведенные в домашних условиях блоки из керамзитобетона, при условии соблюдения всех указанных правил, не уступают блокам, произведенным в условиях промышленного технологического участка.

Источники:

  • postroj-sam.ru
  • keramzitt.ru
  • fb.ru

Как приготовить керамзитобетон, пропорции замеса керамзитобетона в домашних условиях

Керамзитобетон – это цементный раствор, применяемый для заливки стяжки. При соблюдении определённой технологической схемы и необходимых пропорций такая задача, как приготовить керамзитобетон самостоятельно в домашних условиях, вполне доступна для выполнения.

Так как в качестве заполнителя в керамзитобетоне вместо тяжёлого щебня используются вспученные глиняные гранулы, пол из него получается более тёплым. Это довольно хрупкий строительный материал и для полноценного выравнивания массивных конструкций не пригоден. Главное его предназначение – это создание лёгкого звуко- и теплоизоляционного слоя, не создающего особой нагрузки на основание.

Сегодня керамзитобетон довольно широко используется в строительстве, в том числе и в частном, однако, существуют некоторые ограничения в его применении.

Особенности и характерные свойства керамзитобетона

Для того, чтобы ответить на вопрос – где можно применять керамзитобетон, а где нельзя, достаточно учесть его особенности:

  1. Благодаря низкой теплопроводности керамзитобетон отлично подходит для возведения стен домов, перекрытий, создания чернового пола, иногда он используется в качестве материала для перемычек.
  2. Невысокий удельный вес позволяет использовать керамзит там, где недопустимы сильные нагрузки.
  3. Влагопоглощение является отрицательным качеством керамзитобетона. Он неприменим в открытых местах для осадков, так как слишком хорошо впитывает жидкости.

Использование керамзитобетона в качестве строительного материала ограничено местами, недоступными для атмосферных осадков. Иначе необходима хорошо продуманная гидроизоляция.

Керамзитобетон отлично подходит (с грамотно организованным армированием) для создания перекрытий и перемычек в местах без экстремальных нагрузок, а низкий предел теплопроводности помогает стенам из керамзитобетона сохранять тепло в доме в холодное время года.

Главным отличием керамзитобетона от бетона обычного является только состав заполнителя, во всём остальном – их состав бетона и пропорции почти не отличаются.

Керамзитобетон состоит из воды, песка, цемента и керамзита. Для придания ему каких-либо определённых качеств иногда добавляются определённые добавки, чаще всего это бывает пластификатор для придания ему пластичности.

Влияние соотношения частей керамзитобетона на его свойства

Прочность и марка готового продукта напрямую зависят от пропорций исходных материалов в смеси.

Плотность керамзитобетона также зависит от фракций керамзита. Керамзит больших фракций применяется для марок бетона небольшой плотности и используется, чаще всего, как теплоизолятор. Мелкие фракции керамзита (в том числе самый мелкий дроблёный керамзит), используют конструкций несущего и самонесущего типа и создания керамзитобетонных блоков марок М50, М75, М100 самых разных размеров. Такие блоки успешно применяются для возведения и несущих стен, и перегородок.

Чем мельче фракции, тем плотнее и тяжелее получится конечный продукт, и значительно уменьшатся его теплоизолирующие качества. Чтобы не лишать его полезных теплоизоляционных свойств, часто для приготовления керамзитобетона используется керамзит смешанных фракций, что даёт возможность получения золотой середины – не слишком тяжёлый керамзитобетон с хорошей теплоизоляцией.

Часто в качестве пластификатора используется жидкое мыло в таких пропорциях: на одно ведро цемента от 50 до 100 грамм мыла.

Воду добавляют по необходимости получения нужного состояния смеси. Готовый керамзитобетон должен получиться вязким и текучим. Если взять его совковой лопатой, он не должен растекаться. Хорошо вымешенный керамзитобетон горкой остаётся на лопате.

Оптимальное приготовление керамзитобетона

Чтобы получить керамзитобетон с оптимальными качествами, лучше всего придерживаться следующих советов:

  1. В приготовлении лучше рациональнее использовать промытый песок, который улучшает усадку и увеличивает прочность конечного продукта.
  2. Для приготовления качественного керамзитобетона, необходимо использование бетономешалки. Вручную возможно, но чрезвычайно трудно хорошо его вымесить.
  3. При использовании бетономешалки, чётко соблюдать очерёдность загрузки материалов: сначала воду, затем цемент, песок, и только после хорошего перемешивания и образования однородной массы, добавлять керамзит.
  4. При ручном замешивании керамзитобетона с помощью лопаты, не так важна очерёдность, но керамзит, всё-таки добавлять в цементно-песчаную смесь лучше, когда удастся её хорошо замешать.
  5. Не стоит забывать об использовании арматуры, она значительно увеличивает прочность керамзитобетона. Применение стеклопластиковой арматуры допустимо.

Подробное видео отражает весь процесс приготовления керамзитобетона

Бетонный завод Прайд – это надежный партнер, который оказывает услуги комплексного снабжения строительными материалами «под ключ». С полным перечнем продукции вы можете ознакомиться на странице: https://pride-beton.ru/catalog/beton/beton-tovarnyy/

Назад в блог

Легкий заполнитель из вспененной глины LWA

Легкий изолирующий прочный заполнитель.

Благодаря своей пористой внутренней структуре керамзит Laterlite Expanded Clay легок (примерно от 320 кг / м³), обладает теплоизоляцией (коэффициент теплопроводности lambda l от 0,09 Вт / мК) и звукопоглощающим материалом. Керамическая «клинкерованная» внешняя оболочка, окружающая гранулы керамзита, делает их очень твердыми и устойчивыми к сжатию (до 12 Н / мм).

Чрезвычайно стабильный и долговечный

Керамзитовая глина Laterlite не гниет, не поражается паразитами (грибами, грызунами, насекомыми и т. Д.)), устойчив к кислотам, щелочам, растворителям и циклам замораживания-оттаивания.

Легкие заполнители из вспененной глины стабильны по размерам, не деформируются и сохраняют свои свойства неизменными с течением времени.

Это один из самых прочных строительных материалов: для всех практических целей эти агрегаты прослужат вечно.

Негорючие и огнестойкие

Керамзит

Laterlite состоит из 100% минеральных негорючих заполнителей (класс огнестойкости А1), не содержит органических соединений и производных, огнестойкий и безопасный, в том числе при наличии огня.Он обычно используется в огнеупорных материалах.

Натуральный материал для устойчивого строительства

Натуральное сырье, используемое в Laterlite Expanded Clay, его производственный процесс с уважением к окружающей среде и полное отсутствие вредных выбросов (даже при наличии огня), делают его идеальным для экологичного строительства, что подтверждено сертификатом ANAB-ICEA, итальянским Институт аккредитации.

Универсальность

Керамзит

Laterlite широко используется в строительстве, как сам по себе, так и в смеси со связующими веществами (цемент, известь, смолы и т. Д.).).

Он широко используется в качестве компонента бетона, блоков и сборных элементов, в сельском хозяйстве и садоводстве, а также в инженерно-геологических и инфраструктурных работах.

Высокая пропускная способность

Из-за своей зернистой природы, которая состоит из плотной сети межкристаллитных пустот с высокой дренажной способностью, заполнители Laterlite Expanded Clay могут использоваться для создания легких дренажных слоев высокой прочности.

Маркировка CE

Laterlite Expanded Clay производится и испытывается в соответствии с международными эталонными стандартами и имеет маркировку CE для обозначения соответствия стандартам EN 13055-1, EN 14063-1 и EN 13055-2.

Laterlite Expanded Clay — чрезвычайно универсальный материал, который можно использовать как отдельно, так и в сочетании с различными типами связующих, когда это необходимо.

Узнайте больше на странице, посвященной методам нанесения.

В мешках на поддонах, в биг-бегах или навалом, или даже в силосных грузовиках, оборудованных для перекачки на месте (доступны только в определенных регионах), легкий керамзитовый заполнитель Laterlite может быть доставлен наиболее подходящим способом для нужд сайт или пользователь.

Дополнительную информацию можно найти на странице форм доставки и в документации по продукту.

Гранулированный керамзит латерита поставляется в полиэтиленовых мешках по 50 литров (20 пакетов / м 3 ) на поддонах в следующих количествах:

— 2-3: 60 пакетов на поддоне (3.0 м 3 )

— 3-8: 75 пакетов на поддоне (3,75 м 3 )

— 8-20: 75 пакетов на поддоне (3,75 м 3 )

Размер зерна 3-8 и 8-20 также доступен по запросу на поддонах, каждый вместимостью 35 мешков.

Легкий наполнитель из вспененной глины — обзор

7.4.4.1 Технические характеристики

При вторичной переработке алюминия образуется шлак и окалина , которые обычно классифицируются как опасные отходы, могут происходить через керамические изделия.Свойства побочного продукта алюминиевого шлака обсуждаются в главе 6.

Несмотря на его потенциально опасный характер, высокое содержание глинозема является привлекательным аспектом, способствующим его переработке. В основном изучаются две области повторного использования (Yoshimura et al., 2008): (i) огнеупоры и (ii) композиты (алюминиево-глиноземные композиты).

Легкие керамзитовые заполнители были произведены из природной пластичной глины и отходов переработки алюминиевого лома (ASRW), которые были получены в результате извлечения металлического алюминия из черного шлака с использованием обычного металлургического процесса (Bajare et al., 2012). ASRW содержит нитрид алюминия (AlN — в среднем 5 мас.%), Хлорид алюминия (AlCl 3 — в среднем 3 мас.%), Хлориды калия и натрия (всего 5 мас.%) И сульфит железа (FeSO 3 — на в среднем 1 мас.%). Его средний химический состав приведен в таблице 7.25, а элементный анализ — в таблице 7.26.

Таблица 7.25. Средний химический состав отходов переработки алюминиевого лома (мас.%) (Bajare et al., 2012)

21
LOI, 1000 ° C Al 2 O 3 SiO 2 CaO SO 3 TiO 2 Na 2 O K 2 O MgO Fe 2 O 3
63,19 7,92 2,57 0,36 0,53 3,84 3,81 4,43 4,54 & gt; 2,6

Таблица 7.26. Элементный анализ отходов переработки алюминиевого лома (мас.%) (Bajare et al., 2012)

9 летучих элементов. сульфит и хлориды будут выделять газы при обжиге, а отходы переработки алюминиевого лома могут действовать как порообразователь. Керамические заполнители были изготовлены из смесей углеродистой глины и ASRW в различных пропорциях (ASRW от 9 до 37.5 мас.%). Подготовленные агрегаты сушили 3 ч при 105 ° C, а затем прокаливали 5 мин при различных температурах от 1150 ° C до 1270 ° C. Скорость нагрева поддерживалась постоянной (15 ° C / мин). Затем были оценены физические и микроструктурные свойства спеченных агрегатов.

Кажущаяся плотность агрегатов колебалась от 0,4 до 0,6 г / см 3 . Структура пор показана на рис. 7.7 и состоит из макропор со средним диаметром 1 мм и микропор (размер менее 0,2 мкм).

Фиг.7.7. Пористая структура агрегатов, полученных из смеси глины и отходов переработки молотого и алюминиевого лома (показаны мас.%) И обожженных при различных (заданных) температурах (Bajare et al., 2012).

Согласно Pereira et al. (2000a), солевой шлак, образующийся при плавке вторичного алюминия, можно использовать в огнеупорных кирпичах. Соблюдались типичные условия промышленной обработки. Добавление шлака улучшает физические и механические характеристики керамического материала из-за его флюсования.Допускаются более высокие уровни включения (около 10% масс.). Те же авторы протестировали включение богатого алюминием солевого шлака в бокситовые огнеупоры (Pereira et al., 2000b). Сделан вывод о возможности включения промытых шлаков солей алюминия в бокситовые огнеупоры. В общем, физические свойства обожженного материала имеют тенденцию улучшаться с увеличением содержания шлака (например, более высокой прочности на изгиб). Этот эффект можно объяснить флюсовыми характеристиками шлака. С функциональной точки зрения допустимы значительные уровни включения (18 мас.%).

Процессы анодирования и порошкового покрытия поверхности требуют больших затрат воды не только для каждой последующей партии химикатов, но и для надлежащей промывки промежуточных деталей. Как прямое следствие, образуется огромное количество сточных вод, которые после надлежащей очистки приводят к чистой воде и большому количеству твердых отходов, называемых алюминиевым шламом (BREF, 2006; Magalhães et al., 2005).

Производство глиняного кирпича и керамики могло бы стать интересной альтернативой захоронению осадка.Marques et al. (2012) стремились разработать термостойкий кирпич за счет переработки алюминиевого шлама в производстве кирпича. Они использовали производственный цикл кирпичного завода и провели полномасштабные испытания кирпичной кладки, произведя 10 тонн настоящего кирпича. В заключение, добавление анодирующего шлама улучшает тепловые характеристики кирпича на 26% без увеличения стоимости производства кирпича, что приводит к значительному повышению теплового комфорта зданий. Остальные физико-механические свойства (водопоглощение и прочность на сжатие) кирпича по-прежнему имеют приемлемые значения (Marques et al., 2012).

Цель Khezri et al. (2010) заключалась в том, чтобы найти применение для использования осадка на установках анодирования алюминия для предотвращения загрязнения окружающей среды и получения экономической выгоды для заводов. Для этого были изготовлены кирпичи с различным сочетанием шлама, глины и песка, которые прошли испытания с использованием имеющихся стандартов. Результат показал, что кирпичи, содержащие 40 мас.% Шлама, обладают лучшими и ближайшими стандартизованными параметрами качества по сравнению с обычным внутренним кирпичом. Эти кирпичи имеют меньший вес, чем кирпичи, при той же массе и более низкой цене, а также предотвращают распространение осадка в окружающей среде.

Ozturk (2014) изучил использование шлама анодирования, который производится в больших объемах на одной из алюминиевых компаний в Турции (таблица 7.27). Целью исследования было производство муллитовой керамики из богатого алюминием шлама, содержащего 15–30 мас.% Твердого вещества (90 мас.% Твердого вещества составляет бемит (AlOOH), а остальное — тенардит (Na 2 SO 4). ) и барит (BaSO 4 )).

Таблица 7.27. Химический состав богатого алюминием анодирующего шлама (мас.%, XRF) (Ozturk, 2014)

Al Si Ca Mg Fe Na K S Cu Pb Zn
34.4 4,4 1,32 2,44 3,60 1,69 2,31 4,23 0,07 0,99 0,14 0,6
Алюминиевый шлам Al 2 O 3 SiO 2 Fe O 3 CaO SO 3 Na 2 O K 2 O MgO BaO
90.9 0,78 0,31 2,06 20,2 2,95 0,03 0,97 1,20

Муллит представляет собой стабильную кристаллическую алюмосиликатную фазу 9011 9011 9011 908 в алюмосиликатной фазе 2 SiO 2 и способствует высокой прочности, сопротивлению ползучести, химической инертности и термической стабильности керамических материалов (Martins et al., 2004).

Ozturk (2014) применил процесс промывки, фильтрации и сушки анодированного шлама для удаления натрия перед производством муллитовой керамики.Цикл удаления натрия повторяли до полного удаления натрия из ила. Затем порошок без натрия прокаливают при 1400 ° C в течение 1 ч при скорости нагрева 5 ° C / мин для получения порошка с фазой альфа-оксида алюминия (α-Al 2 O 3 ). Полученный порошок α-Al 2 O 3 был смешан (42 мас.%) С каолином, диатомитом и глиной в пропорциях 15, 28 и 15 мас.% Соответственно. Смесь прессовали и спекали при 1450–1550 ° C в течение 1–5 ч (код образца M1).Результаты сравнивают с другой смесью, приготовленной с использованием коммерческого порошка Alcoa α-Al 2 O 3 (код образца M2). В результате работы было обнаружено, что при соответствующей обработке и смешивании с природными минеральными добавками анодирующий шлам может быть использован в производстве керамических материалов на основе муллита (таблица 7.28) (Ozturk, 2014).

Таблица 7.28. Физико-механические свойства спеченных образцов М1 и М2

1 час 2,47 9016 80 90ibe195 9 и др. (2004a, b, 2006), Ribeiro и Labrincha (2008) и Labrincha et al. (2006) провели подробные исследования использования шламов анодирования алюминием в производстве огнеупорной и электроизоляционной керамики. Огнеупорные керамические материалы на основе муллита и кордиерита получали из составов, содержащих 42 и 25 мас.% Шлама соответственно.Каолин, шариковая глина, диатомит и тальк завершили составы. Цилиндрические образцы, обработанные методом одноосного сухого прессования, спекались при различных температурах. Были оценены свойства материалов после обжига (усадка при обжиге, водопоглощение, прочность на изгиб, коэффициент теплового расширения, огнеупорность и микроструктура на сканирующем электронном микроскопе) и продемонстрировано, что оптимальные свойства были получены при 1650 ° C для муллита и 1350 ° C для тел кордиерита (Ribeiro и Лабринча, 2008). Последние могут использоваться в качестве огнеупорных кирпичей при температуре до 1300 ° C.

Составы, полностью состоящие из ила, были также произведены и испытаны, выявив образование α-оксида алюминия и β-оксида алюминия (NaAl 11 O 37 ) на образцах, спеченных при 1450 ° C или выше (Ribeiro et al., 2004a , б). Их электроизоляционные характеристики описаны в отдельных работах (Labrincha et al, 2006; Ribeiro et al., 2004a, b). Составы на основе муллита (содержащие 42 мас.% Шлама) демонстрируют электрическую проводимость примерно на четыре порядка выше, чем составы на основе оксида алюминия (100% шлама).Последние обладают изоляционными характеристиками, сравнимыми с образцами глинозема чистотой 90%. На рис. 7.8 показаны тела, обработанные в ходе этих работ.

Рис. 7.8. Тела на основе алюминиевого шлама, обработанные экструзией и шликерным литьем (Ribeiro et al., 2004a).

Тот же самый шлам был также исследован в составе неорганических пигментов (Leite et al., 2009; Hajjaji et al., 2009), в некоторых случаях в сочетании с другими отходами (например, шламы при волочении проволоки Fe и шламы хромоникелевых покрытий. , резка мрамора / полировка шламов / мелочи).Составы, полностью основанные на отходах, образуют стабильные структуры при более низких температурах, чем коммерческие (химически чистые реагенты) пигменты, и могут быть получены различные цвета, как показано на рис. 7.9 (Hajjaji et al., 2012; Costa et al., 2007).

Рис. 7.9. Отличительные пигменты, полученные из отходов (Hajjaji et al., 2012).

(PDF) Конструкционный бетон с использованием керамзитового заполнителя: обзор

Конструкционный бетон с использованием керамзитового заполнителя: обзор

Индийский журнал науки и технологий

Vol 11 (16) | Апрель 2018 | www.indjst.org

10

8. Ссылки

1. Пайам С., Ли Дж. К., Махмудк Х. М., Мохаммад А. Н..

Сравнение свойств свежего и затвердевшего бетона

с нормальным весом и легким заполнителем. Журнал

Строительная техника. 2018; 15: 252–60.

2. Коринальдези В., Морикони Г. Использование синтетических волокон в самоуплотняющемся легком заполнителе

Бетоны. Журнал

строительная техника. 2015; 4: 247–54.

3. Стандартные технические условия ASTM C330-05 для легких заполнителей

для конструкционного бетона. ASTM International,

West Conshohocken, PA. 2005.

4. Маркус Б., Харальд Дж., Хильде Т.К. Влияние добавок на свойства

легких заполнителей, изготовленных из глины.

Цементно-бетонные композиты. 2014. 53. С. 233–238.

Crossref.

5. ASTM C330 / 330M, Стандартные спецификации для легких заполнителей

для конструкционного бетона, ASTM International,

West Conshohocken, PA, US.2014.

6. Бонаби С.Б., Джалал Кахани Хабушан Дж.К., Кахани Р., Аббас Х.Р.

Изготовление металлической композитной пены с использованием керамических

пористых сфер. Легкий керамзитовый заполнитель методом литья

. Материалы и дизайн. 2014; 64: 310–15. Crossref.

7. Суранени П., Фу Т., Азад В.Дж., Искор О. Б., Вайс Дж. Пуццолановость

однородно измельченных легких заполнителей. Цемент и

Бетонные композиты. 2018; 1 (5): 214–8. Crossref.

8.Сергей AM, Анна Ю. З., Галина СС. Технология производства

водостойких пористых заполнителей на основе силиката щелочного металла и не вздувающейся глины

для бетона общего назначения. Цемент

и бетонные композиты. 2015; 111: 540–4.

9. Пиоро Л.С., Пиоро Иллинойс. Производство керамзитовых агрегатов

для легкого бетона из несамовозбухающих глин.

Цементно-бетонные композиты. 2004; 26: 6392–43.

Crossref.

10.Гита С., Рамамурти К. Свойства спеченного низкокалорийного зольного заполнителя

с глинистыми связующими. Строительство

и Строительные материалы. 2011; 25: 2002–13. Crossref.

11. Керамзит. 2018 12 января. Доступно по номеру:

https://en.wikipedia.org/wiki/Expanded_clay_aggre-

gate.

12. Тот MN, Csaky IB. Роль группы стеатита в процессе вздутия живота

. Ziegel Industries. 1989; 5: 246–50.

13.Мигель С.С., Педро Д.С. Экспериментальная оценка цементных растворов

с материалом с фазовым переходом, введенным через легкий керамзитовый заполнитель

. Строительство и

Строительство. Материалы. 2014; 63: 89–96. Crossref.

14. Александра Б., Геогрей П., Ле А.Д., Дузан О., Амар Б.,

Фредерик Р., Жерри Л. Гигротермические свойства блоков

на основе экоагрегатов: экспериментальное и численное исследование

. Строительство и строительство.Материалы. 2016;

125: 279–89. Crossref.

15. Александр М.Г., Миндесс С. Заполнители в бетоне.

Тейлор и Фрэнсис, 270 Мэдисон авеню, Нью-Йорк. 2005.

с.1–448.

16. Cui HZ, Lo TY, Memon SA, Xu W. Влияние легких заполнителей

на механические свойства и хрупкость бетона на легких заполнителях

. Констр. Строить. Матер. 2012;

35: 149–58. Crossref.

17. Чжан М.Х., Гьорв Э., Микроструктура межфазной зоны

между легким заполнителем и цементным тестом.Цемент

и бетонные исследования. 1990; 20 (4): 610–8. Crossref.

18. Arizon O, Kilinc K, Karasu B, Kaya G, Arslan G, Tuncan A,

Tuncan M, Kivrak S, Korkut M, Kivrak S. A Предварительные

исследования свойств легкого керамзита

агрегат. Журнал Австралийского керамического общества. 2008;

44 (1): 23–30.

19. Real S, Gomes MG, Rodrigues AM, Bogas JA. Вклад

конструкционного бетона из легкого заполнителя в снижение эффекта тепловых мостов в зданиях.Строительство

и Строительные материалы. 2016; 121: 460–70. Crossref.

20. Губертова Б., Хела Р. Прочность легкого вспененного бетона на глиняном заполнителе

. Разработка процедур. 2013;

65: 2–6. Crossref.

21. Chiou K, Wang CC, Lin Y. Легкий агрегат

получен из осадка сточных вод и сожженной золы. Управление отходами.

2006; 26 (12): 1453–61. Crossref. PMid: 16431096.

22. Легкий заполнитель для бетона, раствора и раствора

— Часть 1: Легкие заполнители для бетона, раствора.

2002 Май. Доступно по адресу: https://shop.bsigroup.com/Prod

uctDetail /? Pid = 0000000000301187942002.

23. Свами Р.Н., Ламберт Г.Х. Микроструктура агрегатов Lytag TM

. Международный журнал цементных композитов

и легких бетонов. 1981; 3 (4): 273–85. Crossref.

24. Уильям Д.А., Грегор Дж. Г., Клаус П. Термомеханическое испытание на месте

геополимерных бетонов из гладкой золы, изготовленных из кварца

и керамзитовых заполнителей.Цемент и бетон

исследования. 2016; 80: 33–43. Crossref.

25. Богас Дж. А., Брито Дж. Д., Кабасо Дж. Долгосрочное поведение бетона

, изготовленного из переработанного легкого керамзитобетона. Строительные и строительные материалы.

2014; 65: 470–9. Crossref.

26. Аслама М., Шааг П., Ализаде Н.М., Джумаата М.З.

Производство высокопрочного легкого заполнителя кон-

крит с использованием смешанных крупнозернистых легких заполнителей.Журнал

строительной техники. 2017; 13: 53–62.

27. Сергей А.М., Александр ГЦ, Галина С.С., Роман В.Д. Некоторые аспекты

разработки и применения силикатного вспененного заполнителя

в легких бетонных конструкциях.

Инжиниринг процедур. 2016; 153: 599–603. Crossref.

Высокопрочный легкий бетон, керамзитобетон,

В статье «Конструкционный бетон с использованием заполнителя из вспененной глины: обзор », опубликованной в Indian Journal of Science and Technology, Vol.11 (16), д-р Р. Виджаялакшми и д-р С. Раманагопал из Департамента гражданского строительства инженерного колледжа SSN, Ченнаи высказали мнение, что керамзитовый заполнитель (ECA) используется во многих различных отраслях промышленности из-за его технических характеристик и многочисленных преимуществ. по сравнению со многими другими видами промышленного сырья.

Одним из материалов с наибольшей прочностью на сжатие среди легких заполнителей является керамзит. Это дает компании значительные позиции в строительной отрасли.20% можно сэкономить на арматуре, в то время как до 50% можно сэкономить на расходах на отопление-охлаждение в зданиях, содержащих керамзитовый заполнитель (ECA).

Учитывая его хорошие изоляционные свойства, ЭХА был затем включен в смесь для усиления свойств бетона. Согласно отчету Green Business Center of India, сотовая структура ECA обладает высокой стойкостью к раздавливанию, хорошей огнестойкостью и отличными тепло- и звукоизоляционными свойствами.

С точки зрения структурного применения, смеси на основе легкого заполнителя (LWAC) обладают преимуществами легкости и улучшенных тепло- и звукоизоляционных свойств. LWAC — это тип бетона, в котором используются легкие заполнители (LWA), и он соответствует критериям, изложенным в ASTM C 3303. Конструкционный легкий бетон вместо обычного бетона может улучшить конструктивную эффективность зданий.

Легкий бетон показывает лучшие тепловые характеристики, чем обычный бетон, и его применение может значительно снизить потребление энергии в зданиях.Применение конструкционного бетона из легкого заполнителя в зданиях, расположенных в европейских странах, может снизить потребление тепловой энергии на 15% по сравнению с бетоном с нормальным весом.

Почему керамзитовый наполнитель (ECA) предпочтительнее других наполнителей

Агрегат из вспененной глины (ECA) обладает высокой устойчивостью к кислотным и щелочным веществам с pH около 7, что делает его нейтральным после химической реакции с бетоном.

Заполнитель из вспененной глины (ECA)

обладает легкостью, прочностью, неразложимостью, изоляционными свойствами, химической стойкостью, нейтральностью pH и благодаря своей структурной стабильности считается лучшим легким заполнителем для бетона для кровли, полов, строительства мостов и многого другого. .Его плотность меньше или равна 460 кг / м3.

Агрегат вспученной глины (ECA) — это экологически чистый, натуральный, неразрушимый, негорючий материал, он очень устойчив к атакам насекомых, мошек и термитов. Легкий бетон можно разделить на две группы:

.
  • Ячеистый бетон: Обладает очень легким весом и низкой теплопроводностью. Для достижения определенного уровня прочности требуется процесс автоматического глина, а для этого требуется специальная производственная установка, которая, в свою очередь, потребляет много энергии.
  • Бетон из вспененного глиняного заполнителя (ECA): он имеет более высокую прочность, но более высокую плотность и очень низкую теплопроводность.

Что такое LECA | Использование Лека | керамзит галька


Что такое LECA — легкий наполнитель из вспененной глины или что такое заполнитель из вспученной глины?

LECA — это аббревиатура от Легкий керамзитовый заполнитель.

Легкий керамзитовый заполнитель — LECA или керамзитовый заполнитель — ECA® получают путем обжига природной горной глины при температуре около 1200 ° C (2190 ° F) во вращающейся печи.Образовавшиеся газы расширяют глину с эффектом попкорна за счет тысяч крошечных пузырьков, образующихся при нагревании, создавая сотовую структуру, возникающую в результате соединения пустот внутри агрегата. Керамзитовый наполнитель — ECA® имеет приблизительно круглую форму — сферическую из-за кругового движения в печи и доступен в различных размерах и плотностях как в кругах, так и в дробленых формах размером 0-30 мм для универсальные приложения .

Основные свойства керамзитового заполнителя — ECA® начинается с легкости, 100% инертности, долговечности, стерильности, теплоизоляции за счет низкого коэффициента теплопроводности (всего 0,097 Вт / мК), звукоизоляционных характеристик или звукоизоляционных свойств, обеспечивающих высокий акустический уровень. изоляция, влагонепроницаемость, несжимаемость при постоянном давлении и гравитационных нагрузках, не разлагается в суровых условиях, огнестойкость по ЕВРОКЛАССУ A-1, pH около 7, устойчивость к замерзанию и плавлению, легкость перемещения и транспортировки, легкая засыпка и отделка , снижение статической нагрузки конструкции и боковой сейсмической нагрузки, являясь идеальной сладкой беспочвенной средой для гидропоники, аквапоники, городских деревьев, ландшафтного дизайна, садоводства, сельского хозяйства, вертикальных садов, растений в качестве дренажного материала, корневой зоны и материала для мульчирования, субстрата для растений и как материал для дренажа и фильтрации.

Как использовать керамзитовый керамзит или заполнители из керамзитовой глины LECA или ECA®

Типичные области применения LECA или ECA® — заполнители из вспененной глины — это бетонные блоки, конструкционные и неструктурные, бетонные плиты, тепло- и звукоизоляция, растворы и штукатурки, геотехнические заполнители, легкий бетон — конструкционный и неструктурный, водоподготовка, гидропоника, аквапоника и гидрокультура.

LECA или ECA® — наполнители из вспученной глины — предпочтительная среда, используемая во всем мире для субстрата для выращивания растений.

LECA или ECA® — наполнители из вспученной глины — это универсальный материал, который используется во все большем количестве применений. Он широко используется для производства легкого бетона, блоков и сборных или литых конструктивных элементов (панелей, перегородок, кирпича и легкой плитки) в строительной отрасли. LECA или ECA® — наполнитель из вспененной глины , используемый в конструкционной засыпке фундаментов, подпорных стен, опор мостов и т. Д. Он может снизить давление на грунт на 75% по сравнению с обычными материалами и повысить стабильность грунта при одновременном уменьшении осадки и деформации грунта.LECA может осушать поверхностные и грунтовые воды для контроля давления грунтовых вод. Затирки LECA можно использовать для полов (отделка) и кровли с тепло- и звукоизоляцией.

LECA или ECA® — Агрегаты из вспученной глины также используются на водоочистных сооружениях для фильтрации и очистки городских сточных вод и питьевой воды, а также в других процессах фильтрации, в том числе для промышленных сточных вод и рыбоводных хозяйств.

LECA или ECA® — наполнители из вспененной глины находят применение в сельском хозяйстве и ландшафтном дизайне.Это помогает изменить механику почвы. Он используется в качестве беспочвенной среды для выращивания в системах гидропоники, так как смешивается с другими питательными средами, такими как почва и торф. Он может улучшить дренаж, удерживать воду в периоды засухи, изолировать корни во время морозов и обеспечивать корни повышенным уровнем кислорода, способствуя очень энергичному росту. LECA можно смешивать с тяжелой почвой для улучшения ее аэрации и дренажа.

Продукт также называют Leca Haydite или экс-глина. В Европе LECA открылась в Дании, Германии, Голландии (Нидерланды), Великобритании и на Ближнем Востоке.В мире есть несколько производителей и поставщиков легкого керамзитового заполнителя (LECA) и керамзитового заполнителя (ECA®).

Обычно ЭХА используется в бетонных блоках, бетонных плитах, геотехнических заполнителях, легком бетоне, очистке воды, гидропонике, аквапонике и гидрокультуре. ECA® или LECA — это универсальный материал, который находит все большее применение. В строительной отрасли он широко используется при производстве легкого бетона, блоков и сборных железобетонных изделий или литых конструктивных элементов (панелей, перегородок, кирпича и легкой плитки).

ECA® используется в конструкционной засыпке фундаментов, подпорных стен, опор мостов. ECA® может дренировать поверхностные и грунтовые воды для контроля давления грунтовых вод. Затирку LECA можно использовать для полов (отделка) и кровли с тепло- и звукоизоляцией.

ECA® или LECA также используется в водоочистных сооружениях для фильтрации и очистки городских сточных вод и питьевой воды, а также в других процессах фильтрации, в том числе для промышленных сточных вод и рыбоводных хозяйств.ECA® находит применение в сельском хозяйстве и ландшафте. Это может изменить механику почвы. Он используется в качестве питательной среды в системах гидропоники и смешивается с другими питательными средами, такими как почва и торф, для улучшения дренажа, удержания воды в периоды засухи, изоляции корней во время заморозков и обеспечения корней повышенным уровнем кислорода, способствующим очень энергичному росту.

ECA® можно смешивать с тяжелой почвой для улучшения ее аэрации и дренажа. ECA® используется для ландшафтного дизайна, нефтехимии — нефти и газа, теплоизоляции крыш, звуко- или звукоизоляции, дорог и мостов, плавучих мостов на водных объектах, плавучей солнечной электростанции или панели, предотвращения оползней, гидроизоляции, спортивных площадок на открытом воздухе, железных дорог Проекты железных дорог и метро, ​​высокопрочный конструкционный бетон, сборные железобетонные блоки, поверхностные или сточные воды, а также эффективная очистка и водосбережение.

Rivashaa Eco Design Solutions Private Limited уже создала для себя нишу по качественному продукту из легкого керамзитового заполнителя (LECA) и керамзитового заполнителя (ECA®), вовремя поставляя и направляя клиентов по эффективному использованию керамзитового заполнителя ( ECA®) или легкий керамзитовый заполнитель (LECA) для достижения наилучших результатов. Керамзитовый наполнитель является предпочтительным легким заполнителем, используемым вместо обычного древесного угля, кокосового торфа, диатомовой земли, ростков, лаварока, минеральной ваты, перлита, пемзы, рисовой шелухи, песка, вермикулита и древесного волокна, строительства, керамики, легких высокопрочных конструкционных материалов. Бетон, Дизайнерский бетон, Акустические панели, Облицовочный камень, Облицовочные панели, Покрытия, Краски, Производство сборных и сборных конструкций, Тепло- и звукоизоляция бетона и растворов, Ландшафтный дизайн, Сельское хозяйство, Садоводство, Строительные блоки и плитка, Штукатурка, PCC, Очистка сточных вод , Нефтехимия, Изоляция подстилок для нефти и газа, Геотехнические применения, включая легкую засыпку, затонувшую засыпку и строительство дорог / насыпей.Разнообразное применение керамзитового заполнителя в геотехнической области включает строительство насыпей / насыпей, осветленных насыпей, мостов и пандусов для выравнивания, насыпей на полигонах, насыпей на потенциально неустойчивых склонах, защитных конструкций (подпорных стен, опор и набережных), фундаментов зданий. , Заполнение подземных сооружений, заглубленные резервуары и трубы, заполнение подземных полостей, управление водными ресурсами, включая инфильтрационные резервуары, дренажные и зеленые крыши, строительство дорог, ландшафтный дизайн, посадочные площадки и крыши для защиты от камнепадов, легкий конструкционный и неструктурный бетон и нравиться.

ECA® — это благо для мира строительства, инфраструктуры и архитектуры. Применение керамзитового наполнителя или ECA® затрагивает весь спектр строительства и инфраструктуры, включая дороги и мосты, нефть и газ, гражданское строительство, компоненты и продукты с коэффициентом передачи звука и звука.

ECA® сегодня является предпочтительным агрегатом для всех корпораций, консультантов по проектам EPC, специалистов по закупкам, подрядчиков и строителей, производителей комплектного оборудования, инженеров на стройплощадках, архитекторов, производственных предприятий, инженерных и строительных компаний, а также демонстрирует преимущества Индии перед мировым сообществом. аудитории, при этом знакомя Индию с мировыми требованиями во всех областях.

преимуществ керамзитовых заполнителей | by Rivashaa Eco Design Solution

Легкий керамзит (LECA) или керамзит (exclay) получают путем нагревания глины во вращающейся печи при высокой температуре около 1200 ℃. Высокая температура создает сотовую структуру, поэтому LECA обычно имеет округлую форму, напоминающую картофель. Возможно изготовление нескольких размеров и плотностей. Он обладает рядом ценных свойств, таких как легкость, теплоизоляция, звукоизоляция, неразложимость, водопоглощение, огнестойкость и т. Д.Общие области применения включают блоки из керамзитового заполнителя , бетонные плиты , легкий бетон, аквапонику, гидрокультуру и т.д. статической нагрузки до 30%.

Очень полезно во время землетрясения. Это главным образом потому, что он менее эластичен и менее разрушителен, поэтому может выдерживать такие бедствия, как землетрясение.Они также могут наносить вертикальный раствор в швы, что, в свою очередь, сводит к минимуму опасность обломков.

Обеспечивает звукоизоляцию.

Пригодится в большом количестве операций. Это включает в себя такие действия, как резка, прибивание гвоздей, расширение гребня и закрепление (безупречно, без трещин).

Они помогают предотвратить гниение труб и проводов, поскольку они химически нейтральны.

Его материал более пористый и менее толстый.

Они оптимизируют строительство несущих конструкций, а также помогают снизить стоимость их строительства.

Свойство теплоизоляции означает высокую степень оптимизации нагрева и охлаждения. Это помогает снизить затраты на изоляцию.

Это помогает снизить затраты на обслуживание и транспортировку.

Снижает потери строительного материала, а также затраты на раствор и рабочую силу.

Rivashaa Eco Design помогает с заполнителями керамзита , европейского стандарта EN 13055–2, изготовленными по индивидуальным спецификациям. Они легкие по весу, обладают высокой прочностью на сжатие.Он обеспечивает хорошее водопоглощение и дренаж. Кроме того, он также защищен от насекомых, не токсичен и экологичен. Он имеет микропористую структуру с низким коэффициентом теплового расширения и отличными фильтрующими материалами.

Влияние летучей золы, донной золы и легкого керамзитобетона на бетон

Разработка новых методов укрепления бетона разрабатывается уже несколько десятилетий. Развивающиеся страны, такие как Индия, используют обширные армированные строительные материалы, такие как летучая зола, зольный остаток и другие ингредиенты при строительстве RCC.В строительной отрасли большое внимание уделяется использованию летучей золы и зольного остатка в качестве заменителя цемента и мелкого заполнителя. Кроме того, для облегчения веса бетона был введен легкий керамзит вместо крупного заполнителя. В данной статье представлены результаты работ, выполненных в режиме реального времени для формирования легкого бетона, состоящего из летучей золы, зольного остатка и легкого керамзитового заполнителя в качестве минеральных добавок. Экспериментальные исследования бетонной смеси М 20 проводят путем замены цемента летучей золой, мелкого заполнителя золой и крупного заполнителя легким керамзитом из расчета 5%, 10%, 15%, 20%, 25 %, 30% и 35% в каждой смеси, их прочность на сжатие и прочность на разрыв бетона обсуждались в течение 7, 28 и 56 дней, а прочность на изгиб обсуждалась в течение 7, 28 и 56 дней в зависимости от оптимальной дозировки. замены бетона по прочности на сжатие и раздельному разрыву.

1. Введение

Бетон с высокими эксплуатационными характеристиками указывает на исключительную форму бетона, наделенную удивительной производительностью и прочностью, которые не требуют периодической оценки на регулярной основе с помощью традиционных материалов и стандартных методов смешивания, укладки и отверждения [1] . Обычный портландцемент (OPC) занял незавидную и непобедимую позицию в качестве важного материала в производстве бетона и тщательно выполняет свои задуманные обязательства в качестве необычного связующего для соединения всех собранных материалов.Для достижения этой цели остро необходимо сжигание гигантской меры топлива и гниение известняка [2]. Некоторые марки обычного портландцемента (OPC) доступны по индивидуальному заказу, чтобы соответствовать классификации конкретного национального кода. В этом отношении Бюро индийских стандартов (BIS) прекрасно справляется с задачей классификации трех отдельных классов OPC, например, 33, 43 и 53, которые хронически широко использовались в строительной отрасли [3]. Прочность, стойкость и различные характеристики бетона зависят от свойств его ингредиентов, пропорции смеси, стратегии уплотнения и различных мер контроля при укладке, уплотнении и отверждении [4].Бетон, содержащий отходы, может способствовать управляемому качеству строительства и способствовать развитию области гражданского строительства за счет использования промышленных отходов, минимизации использования природных ресурсов и производства более эффективных материалов [5]. В портландцементном бетоне используется летучая зола, когда характеристики потери при возгорании (LOI) находятся в пределах 6%. Летучая зола содержит кристаллические и аморфные компоненты вместе с несгоревшим углеродом. Он охватывает различные размеры несгоревшего углерода, который может достигать 17% [6].Летучая зола часто упоминается как прудовая зола, и в течение длительного времени вода может стекать. Обе методики позволяют сбрасывать летучую золу на свалки в открытом грунте. Химический состав летучей золы по-прежнему изменяется в зависимости от типа угля, используемого для сжигания, условий горения и производительности откачки устройства контроля загрязнения воздуха [7]. Для воздействия летучей золы и замены всего вытоптанного песчаника на бетонные и мраморные разбрасыватели использовались сборные бетонные блокирующие квадраты [8].Принимая во внимание мощность бетонных зданий, современная бетонная методология устанавливает экстраординарные меры по снижению температуры на вершине и перепадам температур путем использования материалов с минимальным уровнем выделения тепла, чтобы избежать или снова снизить тепловое расщепление, что приведет к предотвращению теплового расщепления. разложение бетона [9]. Производство бетона осуществляется при чрезвычайно высоких и незаметно низких температурах бетона, чтобы понять удобоукладываемость и качество сжатия [10].Статистическая модель и кинетические свойства изгиба, разрыва при растяжении, а также модуль гибкости по устойчивости к сжатию проистекают из неоправданного коэффициента корреляции [11]. Известно, что бетон, созданный из мельчайших общих и превосходных пустот, обогащен блестящими знаниями в области исключения материалов [12]. В Индии энергетическое подразделение, сосредоточенное на угольных тепловых электростанциях, производит колоссальное количество летучей золы, оцениваемое примерно в 11 крор тонн ежегодно.Потребление летучей золы оценивается примерно в 30% для обеспечения различных инженерных свойств [13]. При зажигании угля для подачи энергии в котел выделяется около 80% несгоревшего материала или золы, которая уносится с дымовыми газами и улавливается и утилизируется в виде летучей золы. Остаточные 20% золы помогают высушить базовую золу [14]. Когда пылевидный уголь сжигается в котле с сухим днищем, около 80-90% несгоревшего материала или золы уносится с дымовыми газами, улавливается и восстанавливается в виде летучей золы.Остаточные 10–20% золы предназначены для сушки шлаков, песка, материала, который собирается в заполненных водой контейнерах у основания печи [15]. Зольный шлак в бетоне создается методом фракционного, почти агрегатного и тотального замещения мелкозернистых заполнителей в бетоне [16]. С другой стороны, из легкого бетона неудобно относить корпус к уникальной категории материалов. Однако у LWC (легкого бетона) четкие края, и падение общих расходов, вызванное более низкими статическими нагрузками, постоянно перекрывается повышенными производственными затратами [17].Фактически, легкий бетон стал приятным фаворитом по сравнению со стандартным бетоном с точки зрения множества непревзойденных характеристик. Снижение собственного веса обычно приводит к сокращению производственных затрат [18]. Самоуплотняющийся бетон на заполнителях с нормальным весом (SCNC) должен стать фаворитом при разработке. Рост затрат на строительство SCLC положительно согласуется с ростом расходов на SCNC [19]. Собственный вес бетона из легкого заполнителя оценивается примерно на 15% ~ 30% легче, чем у стандартного бетона, что в достаточной степени соответствует механическим характеристикам, которые требуются для дорожной опоры при указанной степени плотности [20].Растущее использование легкого бетона (LWC) привело к необходимости производства искусственного легкого бетона в целом, что может быть выполнено с помощью методологии сборки холодного склеивания. Производство искусственных легких заполнителей методом холодного склеивания требует гораздо меньших затрат энергии по сравнению со спеканием [21]. Легкий бетон, изготовленный из натуральных или искусственных легких заполнителей, доступен во многих частях мира. Его можно использовать в составе бетона с широким разнообразием удельного веса и подходящего качества для различных применений [22].Бетон из легкого заполнителя повышает его эффективность, предотвращая близлежащие повреждения, вызванные баллистической нагрузкой. Более низкий модуль упругости и более высокий предел деформации при растяжении обеспечивают легкий бетон, противоположный стандартному бетону, с превосходной ударопрочностью [23]. Строители все чаще рекомендуют легкий бетонный материал для достижения приемлемого улучшения из-за его высоких прочностных и термических свойств [24]. Сила адгезии достигается за счет прочности связующего и сцепления агрегатов, которые постоянно сосредоточены вокруг угловатости, ровности и протяженности [25].Легкий керамзитовый заполнитель (LECA), как правило, включает крошечные, легкие, вздутые частицы обожженной глины. Сотни и тысячи крошечных заполненных воздухом углублений успешно наделяют LECA своей безупречной прочностью и теплоизоляционными качествами. Считается, что среднее водопоглощение всего LECA (0–25 мм) связано с 18 процентами объема в состоянии насыщения в течение 3 дней. Обычный портландцемент (OPC) частично заменяется летучей золой, мелкий заполнитель заменяется зольным остатком, а крупный заполнитель заменяется легким керамзитом (LECA) по весу 5%, 10%, 15%, 20%, 25 %, 30% и 35% по отдельности.Прочность на сжатие, прочность на разрыв и прочность на изгиб успешно оцениваются с помощью определенных входных значений при одновременном исследовании.

2. Экспериментальная программа

Целью работы является оценка прочности на сжатие (CS), прочности на разрыв (STS) и прочности на изгиб (FS) бетона. В этой бетонной смеси обычный портландцемент () заменяется летучей золой, мелкий заполнитель заменяется зольным остатком, а крупный заполнитель заменяется легким керамзитом (LECA) массой 5%, 10%, 15%. , 20%, 25%, 30% и 35% соответственно.Эти материалы следует добавлять для увеличения прочности цемента. В экспериментальном исследовании бетонный куб или цилиндр используется для анализа свойств бетона со всеми материалами. Каждый вес (5%, 10%, 15%, 20%, 25%, 30% или 35%) материала проводил испытание в течение 7 дней, 28 дней и 56 дней. Параметрами, участвующими в оценке характеристик бетона, являются прочность на сжатие (CS), прочность на разрыв (STS) и прочность на изгиб (FS), которые достигаются в ходе экспериментов в реальном времени.Затем определение прочности на изгиб обсуждалось в течение 7, 28 и 56 дней в зависимости от нагрузки для оптимальной дозировки замены по прочности на сжатие и разделенной прочности бетона на растяжение.

2.1. Используемые материалы

В этом разделе перечислены названия материалов, использованных в данном исследовании, и их характеристики. Ресурсы: обычный портландцемент, летучая зола, зольный остаток, мелкий заполнитель, крупный заполнитель и легкий керамзитовый заполнитель (LECA).

2.1.1. Обычный портландцемент

Обычный портландцемент — это основная форма цемента, где 95% клинкера и 5% гипса, который добавляется в качестве добавки для увеличения времени схватывания цемента до 30 минут или около того.Гипс контролирует время начального схватывания цемента. Если гипс не добавлен, цемент затвердеет, как только вода будет добавлена ​​в цемент. Различные сорта (33, 43,53) OPC были классифицированы Бюро индийских стандартов (BIS). Его производят в больших количествах по сравнению с другими типами цемента, и он превосходно подходит для использования в общем бетонном строительстве, где отсутствует воздействие сульфатов в почве или грунтовых водах. В этом исследовании цемент () имеет удельный вес 3.15, а также время начального и окончательного схватывания цемента 50 и 450 минут.

2.1.2. Летучая зола

Самый распространенный тип угольных печей в электроэнергетике, около 80% несгоревшего материала или золы уносится с дымовыми газами, улавливается и восстанавливается в виде летучей золы. Летучая зола была собрана на тепловой электростанции Тотукуди, Тамил Наду, Индия. Растущая нехватка сырья и насущная необходимость защиты окружающей среды от загрязнения подчеркнули важность разработки новых строительных материалов на основе промышленных отходов, образующихся на угольных ТЭЦ, которые создают неуправляемые проблемы утилизации из-за их потенциального загрязнения окружающей среды. .Поскольку стоимость утилизации летучей золы продолжает расти, стратегии утилизации летучей золы имеют решающее значение с экологической и экономической точек зрения. В качестве исходных материалов используются две новые области переработки угольной летучей золы, как показано на Рисунке 1 (а).

2.1.3. Нижняя зола

Оставшиеся 20% несгоревшего материала собираются на дне камеры сгорания в бункере, заполненном водой, и удаляются с помощью водяных струй высокого давления в отстойник для обезвоживания и восстанавливаются в виде зольного остатка. как показано на рисунке 1 (b).Зольный остаток угля был получен с тепловой электростанции Thoothukudi, Тамил Наду, Индия. Летучая зола была получена непосредственно из нижней части электрофильтра в мешок из-за ее порошкообразной и пыльной природы, в то время как зола угольного остатка транспортируется со дна котла в зольную емкость в виде жидкой суспензии, где была собрана проба. Зола более легкая и хрупкая, это темно-серый материал с размером зерна, аналогичным песчанику.

2.1.4. Мелкозернистый заполнитель

В соответствии с индийскими стандартами природный песок представляет собой форму кремнезема () с максимальным размером частиц 4.75 мм и использовался как мелкий заполнитель. Минимальный размер частиц мелкого заполнителя составляет 0,075 мм. Он образуется при разложении песчаников в результате различных атмосферных воздействий. Мелкозернистый заполнитель предотвращает усадку раствора и бетона. Удельный вес и модуль крупности крупного заполнителя составляли 2,67 и 2,3.

Мелкий заполнитель — это инертный или химически неактивный материал, большая часть которого проходит через сито 4,75 мм и содержит не более 5 процентов более крупного материала. Его можно классифицировать следующим образом: (а) природный песок: мелкий заполнитель, который является результатом естественного разрушения горных пород и отложился ручьями или ледниками; (б) щебневый песок: мелкий заполнитель, полученный при дроблении твердого камня; (в) ) щебень из гравийного песка: мелкий заполнитель, полученный путем измельчения природного гравия.

Уменьшает пористость конечной массы и значительно увеличивает ее прочность. Обычно в качестве мелкого заполнителя используется натуральный речной песок. Однако там, где природный песок экономически недоступен, в качестве мелкого заполнителя можно использовать мелкий щебень.

2.1.5. Грубый заполнитель

Грубый заполнитель состоит из природных материалов, таких как гравий, или является результатом дробления материнской породы, включая природную породу, шлаки, вспученные глины и сланцы (легкие заполнители) и другие одобренные инертные материалы с аналогичными характеристиками. с твердыми, прочными и прочными частицами, соответствующими особым требованиям этого раздела.

В соответствии с индийскими стандартами измельченный угловой заполнитель проходит через сито IS 20 мм и полностью удерживает сито IS 10 мм. Удельный вес и модуль крупности крупнозернистого заполнителя составляли 2,60 и 5,95.

2.1.6. Легкий наполнитель из вспененной глины (LECA)

LECA показан на Рисунке 1 (c). он имеет сильную стойкость к щелочным и кислотным веществам, а pH около 7 делает его нейтральным в химической реакции с бетоном. Легкость, изоляция, долговечность, неразложимость, структурная стабильность и химическая нейтральность собраны в LECA как лучшем легком заполнителе для полов и кровли.Размер заполнителя составляет 10 мм, а максимальная плотность не превышает 480 кг / м. 3 . LECA состоит из мелких, прочных, легких и теплоизолирующих частиц обожженной глины. LECA, который является экологически чистым и полностью натуральным продуктом, не поддается разрушению, негорючи и невосприимчив к воздействию сухой, влажной гнили и насекомых. Легкий бетон обычно подразделяется на два типа: газобетон (или пенобетон) и бетон на легких заполнителях.Газобетон имеет очень легкий вес и низкую теплопроводность. Тем не менее, процесс автоклавирования необходим для получения определенного уровня прочности, что требует специального производственного оборудования и потребляет очень много энергии. Напротив, бетон из легких заполнителей, который производится без процесса автоклавирования, имеет более высокую прочность, но показывает более высокую плотность и более низкую теплопроводность бетона.

2.1.7. Conplast Admixture SP430 (G)

Conplast SP430 (G) используется там, где требуется высокая степень удобоукладываемости и ее удержания, когда вероятны задержки в транспортировке или укладке, или когда высокие температуры окружающей среды вызывают быстрое снижение осадки.Это облегчает производство бетона высокого качества. Conplast SP430 (G) соответствует тому факту, что он был специально разработан для обеспечения высокого снижения воды до 25% без потери удобоукладываемости или для производства высококачественного бетона с пониженной проницаемостью. Когезия улучшается за счет диспергирования частиц цемента, что сводит к минимуму сегрегацию и улучшает качество поверхности. Оптимальная дозировка лучше всего определяется испытаниями бетонной смеси на месте, что позволяет измерить эффекты удобоукладываемости, увеличения прочности или уменьшения цемента.Этот тип ингредиентов добавляется в бетон для придания ему определенных улучшенных качеств или для изменения различных физических свойств в его свежем и затвердевшем состоянии. Оптимальная дозировка цемента 0,6–1,5 л / 100 кг. Добавление добавки может улучшить бетон в отношении его прочности, твердости, удобоукладываемости, водостойкости и так далее.

2.1.8. Структурные характеристики балки

Структурные характеристики балки — это диаметр верхней арматуры 8 мм, диаметр нижней арматуры 12 мм и хомуты 6 мм (рис. 2).Общая длина балки, используемой для отклонения, составляет 1 метр. Эта спецификация используется в бетонной конструкции, и весь процесс выполняется в спецификации бетона.


2.1.9. Конструкционный легкий бетон

Бетон изготавливается из легкого грубого заполнителя. Легкие заполнители обычно требуют смачивания перед использованием для достижения высокой степени насыщения. Основное использование конструкционного легкого бетона — уменьшить статическую нагрузку на бетонную конструкцию.В обычном бетоне различная градация заполнителей влияет на необходимое количество воды. Добавление некоторых мелких заполнителей приводит к увеличению необходимого количества воды. Это увеличение воды снижает прочность бетона, если одновременно не увеличивается количество цемента. Количество крупного заполнителя и его максимальный размер зависят от требуемой удобоукладываемости бетонной смеси. Также в легком бетоне этот результат существует среди градации, требуемого количества воды и полученной прочности бетона, но есть и другие факторы, на которые следует обратить внимание.В большинстве легких заполнителей по мере увеличения размера заполнителя прочность и объемная плотность заполнителя уменьшаются. Использование легкого заполнителя очень большого размера с меньшей прочностью приводит к снижению прочности легкого бетона; поэтому максимальный размер легкого заполнителя должен быть ограничен максимум 25 мм.

3. Методология

Пропорция бетонной смеси для марки M 20 была получена на основе рекомендаций согласно индийским стандартным спецификациям (IS: 456-2000 и IS: 10262-1982).В данном исследовании экспериментальное исследование бетонной смеси M 20 проводится путем замены цемента летучей золой, мелкого заполнителя на зольный остаток и крупного заполнителя легким керамзитом (LECA) из расчета 5%, 10%, 15%, 20%, 25%, 30% и 35% соответственно. Эти материалы следует добавлять для увеличения прочности цемента. В экспериментальном исследовании бетонный куб или цилиндр используется для анализа свойств OPC со всеми материалами. Их прочность на сжатие и прочность на разрыв бетона обсуждались в течение 7 дней, 28 дней, 56 дней, а прочность на изгиб балки обсуждалась в течение 7, 28 и 56 дней в зависимости от оптимальной дозировки замены по прочности на сжатие и разделенному растяжению. прочность бетона.Как правило, летучая зола и зольный остаток имеют аналогичные физические и химические свойства по сравнению с обычным портландцементом (OPC) и мелким заполнителем, и нет большого количества отклонений для замены друг друга. В этом сценарии легкий керамзитовый заполнитель (LECA) был заменен на крупнозернистый заполнитель на основе его объема, поскольку плотность каждого материала не такая же, как у другого материала, и невозможно заменить его на основе его массы. Для повышения удобоукладываемости бетона добавлен суперпластификатор.

Соотношение бетонной смеси марки М 20 составило 1: 1,42: 3,3. Контролируемый бетон марки M 20 был изготовлен с 0% заменой летучей золы, зольного остатка и легкого керамзитового заполнителя (LECA) в каждой смеси, а их прочность на сжатие и прочность на разрыв бетона обсуждались для 7, 28, и 56 дней, а прочность бетона на изгиб обсуждалась в течение 7, 28 и 56 дней. В связи с этим замена цемента на зольную пыль, мелкого заполнителя на зольный остаток и крупнозернистого заполнителя на легкий керамзитовый заполнитель (LECA) из расчета 5%, 10%, 15%, 20%, 25%, 30% и Было проведено 35% в каждой смеси, и их прочность на сжатие и прочность на разрыв бетона обсуждались в течение 7 дней, 28, дней, 56 дней, а прочность на изгиб балки в течение 7, 28 и 56 дней зависит от оптимальной дозировки замены при сжатии. прочность и разделенная прочность бетона на растяжение.

Водопоглощение легкого заполнителя со слишком большим количеством пор намного больше, чем у обычных заполнителей (речных заполнителей). Определение степени водопоглощения в агрегатах такого типа затруднено из-за различного количества поглощенной воды. Агрегат LECA производит вращающуюся печь, и из-за его гладкой поверхности водопоглощение заполнителя LECA почти равно или несколько больше, чем у обычного заполнителя; поэтому создание легкой бетонной смеси с заполнителем LECA так же сложно, как и с обычным заполнителем.Для определения количества каждого ингредиента в легкой бетонной смеси (наряду с количеством абсорбированной воды в легких заполнителях, особенно со слишком большими порами с шероховатой и угловатой поверхностью, путем приготовления различных смесей) можно использовать общие методы проектирования: обычная бетонная смесь.

4. Результаты и обсуждение

Из таблицы 1 видно, что для контрольных образцов прочность бетона увеличивается с возрастом. При замене 5% цемента летучей золой, мелкого заполнителя золой и крупного заполнителя LECA прочность на сжатие бетона такая же, как у контрольного бетона.Прочность на разрыв при растяжении немного снижается в раннем возрасте и достигает той же прочности, что и у контрольного бетона, через 56 дней.

Состав Условия спекания Прочность на изгиб (МПа) Плотность (г / см 3 ) Пористость (%) Водопоглощение (%) ) Плотность (%)
M1 1450 ° C — 1 ч 53 2.02 26,1 12,88 63,9
1500 ° C — 1 час 54 2,27 13,1 5,76 71,8
71,8
0,72 0,29 78,2
1550 ° C — 3 ч 81 2,49 0,71 0,29 78,8
78,8
2.49 0,72 0,29 78,8
M2 1450 ° C — 1 час 72 2,15 0,81 0,81 70,3 70,3 2,13 1,02 1,02 68,7
1550 ° C — 1 ч 75 2,11 1,69 1,69 66,8 66,8 72 2.11 1,75 1,75 66,8
1550 ° C — 5 часов 72 2,10 6,36 2,36 66,5
554 910 910 918 4,14 2,12 12178 9184

Замена в процентах Сухой вес образца (куб) в кг / м 3 Прочность на сжатие бетона (Н / мм 2 ) Сухой вес образца (цилиндр) в кг Разделенная прочность на разрыв бетона (Н / мм 2 )
7 дней 28 дней 56 дней 7 дней 28 дней 56 дней

0 17,96 26,93 26,95 14,35 1,60 2,54 2,57
5 9,18101844 9,18104 9104 9,18104 9104 9,18 2,59
10 8,89 17,17 25,73 25,76 13,85 1,5 2,32 2,33
15 16,06 24,09 24,11 13,60 1,44 2,17 2,18
20 8,41 13,41 8,41 13,41
25 8,31 11,32 16,96 16,97 13,15 1,35 2,05 2,06
84 10,19 15,26 15,23 12,72 1,31 1,96 1,98
35 8,13 9,73 8,13 9,73 9,73 9,73 9,73 1,92

Также наблюдается, что при увеличении замены материала прочность на сжатие и прочность на разрыв при растяжении уменьшаются.Сухой вес образцов куба и цилиндра уменьшается по мере увеличения количества замен материалов.

4.1. Анализ прочности в зависимости от возраста бетона

В таблице 1 прочность бетона на сжатие и прочность на разрыв бетона при разделении оцениваются с помощью различных процентных соотношений смешивания, применяемых для образования кубического образца сухой массы и цилиндрического образца сухой массы, соответственно, по отношению к различным дней.

Для бетона марки M 20 учитывается следующее предложенное процентное смешивание для различных образцов сухой массы, примененных к кубической форме, для определения прочности на сжатие по отношению к 7, 28 и 56 дням, таким образом, чтобы образец сухой массы применяли к цилиндрической формы по отношению к вышеупомянутым дням для определения прочности на разрыв.Для обоих анализов на упрочнение используется бетон марки М 20 . Из Таблицы 1 заявленные результаты показывают, что процент смешивания увеличивается с уменьшением веса образца, но с точки зрения прочности увеличение процента смешивания, безусловно, снизит достигаемую прочность как на сжатие, так и на разрыв при разделении, или, с другой стороны, когда смешивание пропорция не участвует в этом (т. е. когда она равна «нулю»), тогда вес образца высок по сравнению с тем, что пропорция смешиваемого образца высока.В обоих случаях для анализа прочности продление дней, безусловно, будет соответствовать прогнозируемой прочности этих анализов, как четко указано в таблице 1.

На рисунке 3 показан анализ прочности на сжатие куба, который проводится в трех этапах последовательных дней 7, 28 и 56. основанный на различных предложениях смешивания. Достигнутые результаты показывают, что процесс, выполненный для последовательных 56-дневных результатов испытаний, показывает лучшую прочность на сжатие при несмешивании, тогда как постепенное увеличение процента смешивания, безусловно, снизит прочность на сжатие образцов во все дни испытаний.В случае веса увеличение процента смешивания снизит вес.


(a) Испытание на сжатие на кубе
(b) Прочность на сжатие
(a) Испытание на сжатие на кубе
(b) Прочность на сжатие

На рис. дней. Более того, в этом анализе прочности на разрыв при раздельном растяжении увеличение процента смешивания, безусловно, уменьшит вес, а также снизит факторы упрочнения.


(a) Прочность на разрыв при разделении на цилиндре
(b) Прочность на разрыв при разделении
(a) Прочность на разрыв при разделении на цилиндре
(b) Прочность на разрыв при разделении

Из двух вышеупомянутых форм (кубической и формы цилиндра) прогнозируемые результаты анализа прочности на сжатие и анализа прочности на разрыв при растяжении практически аналогичны. Давайте посмотрим на экспоненциальное поведение и его уравнение регрессии для прочности на сжатие и прочности на разрыв.

Экспоненциальный график, основанный на процентном соотношении смешивания для прочности на сжатие. На рис. 5 моделируется экспоненциальная кривая на основе регрессии для анализа прочности на сжатие для различных процентных соотношений смешивания. На Рисунке 5 последовательные испытания образцов в течение 28 и 56 дней дали почти одинаковые значения, тогда как экспоненциальное уравнение прочности на сжатие в Таблице 2 колеблется от 0 до 35 Н / мм 2 во всех четырех оценочных уравнениях, вызывая увеличение процента смешивания, которое будет снизить все четыре параметра сухой массы на 7, 28 и 56 дней.В четырех случаях, кроме сухого веса, производительность снижается, тогда как в случае увеличения сухого веса процент смешивания, безусловно, снижает вес.

5

249 На Фигуре 6 график показывает экспоненциальное изменение сухой массы и для различных последовательных дней, таких как 7, 28 и 56. В этой сухой массе, имеющей предел прочности на разрыв почти, обозначает процент смешивания; в дополнение к этому, экспоненциальная кривая, основанная на всех других последовательных днях, уменьшается, и они почти похожи друг на друга, имея диапазон (0–15) Н / мм

2 .


Таблица 2 включает данные о сухом весе и образце для последовательных дней, таких как 7, 28 и 56 дней, начиная с сухого веса в прочности на сжатие, которая начинается с более низких значений регрессии и продолжает увеличиваться в течение 7, 28 и 56 дней. , тогда как в случае разделения прочности на разрыв значение регрессии сухого веса больше, чем значение регрессии прочности на сжатие.В случае анализа по дням значения регрессии увеличиваются с увеличением количества дней в модели регрессионного анализа прочности на растяжение.

4.2. Анализ прочности на изгиб

Одним из показателей прочности бетона на растяжение является прочность на изгиб. Это расчет неармированной бетонной балки или плиты на устойчивость к разрушению при изгибе (рис. 7). Разработчики дорожных покрытий используют теорию, основанную на прочности на изгиб; поэтому может потребоваться разработка лабораторной смеси, основанная на испытании на прочность на изгиб.В Таблице 3 использованы процентные значения замены цемента летучей золой, мелкого заполнителя золой и крупного заполнителя легким керамзитом (LECA) с коэффициентами 0% и 5%.


Характеристики Экспоненциальная регрессия для прочности на сжатие Экспоненциальная регрессия для разделенной прочности на растяжение

7
28 дней
56 дней

9126

процент замены цемента летучей золой, мелкого заполнителя золой и крупного заполнителя легким керамзитом (LECA) в размере 5% лучше, чем 0%. Сухой вес образца снижается до 5%, а прочность балки на изгиб в течение 7 дней составляет 1.67% больше 0%, а через 28 дней это 1,52% больше 0%, а через 56 дней 1,46% больше 0%.

В таблице 4 испытательная нагрузка прикладывается от 0 до 86,32 кН с различными интервалами, и мы попытались найти прогиб M 20 в левой, средней и правой части балки. Прогибы на всех уровнях постепенно увеличиваются при увеличении приложенной нагрузки. Среднее отклонение в левой части балки составляет около 1,71 мм, в то время как в среднем отклонении оно составляет около 2,961 мм, а в правой части отклонение составляет около 1.810 мм.


Тип образца Сухой вес образца в кг Предел прочности при изгибе балки (Н / мм 2 )
7 дней 28 дней 56 дней

Control 56.25 16,65 24,7 25,83
Замена 5% 55,13 17,58 26,03 27,13

4,5166

Нагрузка (кН) Отклонение (мм)
(0% замена летучей золы, золы и LECA)
Левый Средний Правый

0 0 0
3,92 0,21 0,252 0,194
7.84 0,284 0,324 0,284
11,77 0,42 0,54 0,5
15,69 0,587 0,69 0,69 0,584 0174 9017 4 0,785
23,54 1,031 1,234 1,016
27,46 1,202 1,512 1.198
31,39 1,382 1,962 1,391
35,32 1,594 2,264 1,624
4 9104 1,624
4 9104 9104 9108 9104 9104 9104 9104 9104 9104 9104 1,972 2,936 1,986
47,03 2,052 3,142 2,034
51,01 2.21 3,364 2,198
54,94 2,352 3,724 2,346
58,86 2,41 4,1250
4,12500 9108 9165
66,71 2,625 4,96 2,618
70,63 2,715 5,146 2,708
74.56 2,86 5,476 2,846
78,48 3,14 5,742 3,008
82,41 3,46 82,41 3,46
3,46
3,46 4,07

В таблице 5 испытательная нагрузка приложена к M 20 от 0 до 86,32 кН с различными интервалами, а прогибы были измерены в левой, средней и правой части балки. .Прогибы на всех уровнях постепенно увеличиваются при увеличении приложенной нагрузки. Среднее отклонение в левой части балки составляет примерно 1,782 мм, в то время как в средней части отклонение составляет примерно 2,960 мм, а в правой части отклонение составляет примерно 1,78 мм. Из Таблицы 5 доказано, что прогиб 5% замены прочности на изгиб выше, чем 0% замены.

9244 2,265 621018418 9107 9103 9107 9104 9018 9104 9103 9104 9104 9104 9104 9104 9104 9104 9104 9018 9104 9104 910 8 910 9104

Нагрузка (кН) Прогиб (мм)
(5% замена летучей золы, зольного остатка и LECA)
Левый Средний Правый

0 0 018 0 0,205 0,25 0,207
7,84 0,29 0,321 0,285
11,77 0,45 0,518444 0,535
19,62 0,81 1,02 0,793
23,54 1,037 1,231 1,037
27.46 1,198 1,507 1,20
31,39 1,375 1,96 1,379
35,32 1,584
35,32 1,584
1,58 1,816
43,16 2,05 2,937 2,02
47,03 2,07 3,14 2,05
51.01 2,15 3,361 2,17
54,94 2,38 3,72 2,38
58,86 2..46
2..46
2,56 4,587 2,54
66,71 2,61 4,95 2,615
70,63 2,69 5,11043 74,76 2,69 5,11043 7412656 2,84 5,472 2,838
78,48 3,11 5,74 3,115
82,41 3,48 9103,41 3,4
4,05

На рисунке 8, M 20 класс 0% и 5% замена летучей золы, шлака и LECA проанализированы для проверки их прочности на изгиб.На графике четко указано, что при увеличении нагрузки прогиб также увеличивается на 0% и 5% среди (23), а средние значения прогиба аналогичны как 0%, так и 5%, но 0% они немного выше 5%. , тогда как на этом графике есть сумма всех уровней прогиба в 1 единице. Например, здесь тот факт, что рассматриваемая длина балки составляет 1 метр для экспериментального исследования путем приложения «» единицы нагрузки, вызовет величину отклонения в обоих случаях (0% и 5%) в отношении увеличения нагрузка, чтобы обязательно увеличить прогиб.


5. Заключение

В статье достигается максимально возможная прочность бетона LECA, при этом отмечены передовые технологии производства легкого бетона. Результаты показывают, что замена 5% цемента летучей золой, мелкого заполнителя золой и крупного заполнителя легким керамзитом (LECA) показала хорошие показатели прочности на сжатие, прочности на разрыв и прочности балки на изгиб. 56 дней по сравнению с 28 днями силы.При этом прочность 28 суток также примерно равна нормальному обычному бетону; то есть замена на 0% и уменьшение сухого веса образца.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *