Skip to content

Асфальтобетонной смеси: Асфальтобетон — Википедия – ГОСТ 9128-2013 Смеси асфальтобетонные, полимерасфальтобетонные, асфальтобетон, полимерасфальтобетон для автомобильных дорог и аэродромов. Технические условия

Щебеночно-мастичный асфальтобетон: технология производства и укладки

Среди разновидностей асфальтовых покрытий выделяется щебеночно-мастичный асфальтобетон, его отличает повышенные показатели упругости, водостойкости и сдвигоустойчивости. Использованные при изготовлении материала стабилизирующие компоненты делают покрытие шероховатым и стойким к расслаиванию.

Материал был разработан в 60-х годах XX века в Германии и быстро распространился по всему миру. За границей представлено более десятка видов ЩМА, в нашей стране только три — представлены ЩМА 10, 15 и 20.

Щебеночно мастичные асфальтобетонные смеси

Особенности

Щебеночно-мастичный асфальтобетон долговечное покрытие, которое используют по всему миру. Основа материала – каркас из щебня высокого качества, он позволит повысить стойкость к деформации готового покрытия.

Объем битумного раствора больше, чем у конкурентов. Он заполняет все доступное пространство, что снижает пористость массы. По итогу получается покрытие устойчивое к внешним воздействиям и сроком эксплуатации в несколько раз больше других видов асфальтобетона.

Основные отличия от других асфальтобетонных смесей:

  • Содержание щебня больше на 20-30%, чем в обычном растворе;
  • Повышенное количество битума в массе;
  • Форма и размер щебня строго контролируются;
  • Добавление стабилизирующих добавок.

Особенности данного вида дорог

Жесткие требования к размеру частиц щебня связаны с — наличием большого объема пустот, которые заполняются мастикой из битума и возведением каркаса. Частицы щебня взаимодействуют между собой, а это способствует повышению показателей сдвигоустойчивости.

Покрытие из ЩМА обладает высокими показателями износостойкости даже при использовании шипованных шин, и предохраняет дорогу от возникновения колеи.

Состав асфальтобетона ЩМА

Состав щебеночно-мастичного асфальтобетона строго регулируется ГОСТ 31015-2002 «Смеси асфальтобетонные и асфальтобетон щебеночно-мастичные».

При изготовлении используются следующие компоненты:

  • Щебень;
  • Битумный раствор;
  • Очищенный песок;
  • Специальные добавки для стабилизации раствора;
  • Минеральный порошок по госту16557-78.

Состав асфальтобетона ЩМА

Важно! Если при изготовлении битум можно заменить полимерно-битумных вяжущим, в этом случае стабилизирующие добавки можно не использовать.

Для используемого сырья обязательно предъявляются несколько условий:

  • Для ЩМА берется щебень твердых пород с однородными зернами кубовидной формы;
  • Песок только очищенной, мелкой или средней фракции;

Важно! В растворе щебеночно-мастичного асфальта количество щебня от массы 70-80%, битумного вяжущего 5,5 – 7,5%.

Смеси ЩМА используются для прокладки городских дорог и скоростных автомагистралей, так же рекомендуется их применять на аэродроме, для укладки взлетных полос и сета для посадки.

Производители предлагают три варианта щебеночно-мастичных смесей асфальтобетона, главное отличие – размер щебня:

  • ЩМА 10;
  • ЩМА 15;
  • ЩМА 20.

Добавки, используемые при изготовлении ЩМА

Так как в составе щебеночно-мастичной асфальтобетонной смеси находится повышенный объем щебня и нефтяного битума, требуется использование специальных добавок, которые стабилизуют массу и оградят ее от расслаивания.

Использование стабилизирующих добавок позволит сохранить однородность массы, насытить раствор требуемыми качествами и удержать горячий раствор на поверхности основы из щебня.

Добавки в данном асфальтобетоне

Преимущества, которые дает применение добавок:

  • Увеличение толщины битумной пленки;
  • Гарантирует однородность массы;
  • Устойчивость к расслаиванию.

Тип компонентов для стабилизации имеет большое значение при изготовлении и транспортировке. Они отличаются друг от друга, но главное, что все добавки повышают качества асфальта.

Стабилизирующие добавки в виде гранул и волокон выпускаются из следующих материалов:

  • резина;
  • полимеры;
  • акрил;
  • асбест;
  • целлюлоза;

Так же применяют добавки из различных минеральных компонентов и термопластичных полимеров.

Производители большее предпочтение отдают именно добавкам на основе целлюлозы. Компоненты находятся в доступной ценовой категории и способны необходимое время удерживать битумный раствор на щебневой основе, что в свою очередь гарантирует защиту от расслаивания массы.

Используемые волокна обязательно должны быть очищены от примесей, иметь однородную структуру и быть одной длины.

Свойства добавки на основе целлюлозы:

  • Влажность -8%;
  • Термостойкость при температуре 220 градусов – 7%;
  • Содержание волокон длиной 0,1-2,0 мм – 80%.

Добавки в виде волокон имеют несколько отрицательных качеств — они впитывают воду их окружающей среды, в том числе воздуха, поэтому необходимо внимательно отнестись к герметичности упаковки. Так же волокно плохо распределяются по смеси, а это в свою очередь увеличивает время на замешивание.

Нанесение ЩМА

Преимущества щебеночно-мастичного асфальтобетона

Асфальтобетон на основе щебеночно-мастичной массы широко применяется во многих странах для любых нужд. Он обладает целым рядом достоинств, которые выгодно отличают его от других типов асфальтных покрытий.

Основные плюсы материала:

  • Водонепроницаемость покрытия;
  • Низкая стираемость покрытия;
  • Не возникает колея;
  • Высокие показатели морозоустойчивости;
  • Хорошие показатели усталостной стойкости;
  • Устойчивость к механическим воздействиям;
    Механическое воздействие на ЩМА
  • Сдвигоустойчивость готового асфальта;
  • Долговечность – в два раза дольше обычного асфальта;
  • Покрытие имеет шероховатую поверхность, оно обеспечивает лучшее сцепление автомобиля с дорогой;
  • Устойчивость к появлению трещин;
  • Низкие показатели шума при движении автотранспортного средства;
  • Устойчивость к климатическому воздействию.

Щебеночно-мастичный асфальтобетон это улучшенный вид асфальтобетона, его технические качества способствуют комфортному и безопасному движению по дороге.

Новый асфальт на дороге

Технология производства

Изготовление раствора щебеночно-мастичного асфальта предполагает смешивание предварительно нагретых щебня и песка в специальном смесителе с постепенным добавлением других компонентов:

  • Минеральный порошок;
  • Нефтяной битум или ПВБ;
  • Добавки для стабилизации раствора (гранулы или волокна).

Температура готовки массы ШМА выше на 25 – 35 градусов больше обычных растворов. Повышенная температура требуется, потому что в отличии от обычного асфальта, смесь ложится более тонким слоем.

Важно! Заранее определитесь с видом связующей добавки.

Производство и важность пропорций

Этапы приготовления раствора ЩМА:

  • Собрать и подготовить необходимый щебень и песок – сырье должно быть определенной фракции, очищено от посторонних примесей, просеяно, хорошо просушено и дозировано.
  • Отмерить нужное количество холодной добавки для стабилизации массы и минерального порошка;
  • Подготовить битум – постепенно разогреть в специальной емкости и добавить модифицирующие компоненты, тщательно вымешать раствор.
  • Отдельно смешать все сухие компоненты;
  • Залить сухие элементы с горячим раствором нефтяного битума, постепенно вливая и тщательно размешивая до однородной структуры.

Полученная масса выгружается в специально оборудованные самосвалы – кузов с подогревом и защитный тент, и перевозится к месту асфальтоукладочных работ. Раствор используется в течение нескольких часов.

По технологии укладки щебеночно-мастичного асфальтобетона разрешается его применение как в мелких ручных работах при заделывании трещин и неровностей, так и полной укладки полотна дороги.

Укладка щебеночно-мастичного асфальтобетона

Согласно технологии укладки асфальта на щебеночно-песчанную смесь работы по починке или укладки дороги проводятся только в сухую теплую погоду:

  • В весенний период температура от +5 градусов;
  • В осеннее время года – минимум +10 градусов.

Примерный расход раствора от 50 – 150 кг/м 2, показатель средней толщины щебеночного основания под асфальт зависит от типа щебеночно-мастичного асфальтобетона:

  • Для ЩМА 10 – толщина составляет 2-4 см,
  • Для ЩМА 15 – толщина слоя — 3-5 см,
  • Для ЩМА 20 – толщина слоя равна 4-6 см.

Укладка щебеночно-мастичного асфальтобетона на пешеходную дорожку

Процесс укладки щебеночно-мастичной смеси асфальтобетона

  • Подготовка основания – поверхность очищают от старого покрытия (при необходимости), выравнивают, устраняют неровности, тщательно зачищают металлическими щетками. Затем при помощи сжатого воздуха сдувают пыль, грязь и мелкие частицы.
  • Грунтовка поверхности – очищенное основание предварительно грунтуют жидким битумным раствором, это обеспечит оптимальный уровень сцепления ЩМА с поверхностью.
  • Укладка смеси – несколько асфальтоукладчиков ставятся рядом с уступом, расстояние между техникой не более 30 см. машины должны быть оснащены системой горизонтального уровня с поперечным уклоном. Горячая смесь поступает непрерывно и равномерно распределяется по всей ширине дороги.
  • Уплотнение массы – после укладки асфальта необходимо уплотнить массу с помощью катков, вес которых не меньше 8 – 10 тонн. Валы в обязательном порядке регулярно смазываются для облегчения работы, избежание прилипания и повреждения поверхности. Для этого используют либо эмульсию на основе керосина, либо обычный мыльный раствор.
    Процесс укладки ЩМА
  • На готовом полотне не допускается дефекты, если они есть, то их необходимо сразу же устранить. Устранение происходит ручным методом – работники добавляют горячий раствор в проблемное место и трамбуют небольшими самоходными катками.

Важно! ЩМА укладывается тонким слоем, при этом сохраняет все свои технологические свойства.

Возможные проблемы и причины их возникновения

При несоблюдении правил укладки, перевоза материал или его утрамбовывания могут возникнуть различные проблемы. Самые распространенные из них:

  • Раствор битума проявляется на поверхности готового покрытия – это проблема возникает при превышении установленной нормы объема битума в самом растворе ЩМА или при проведении предварительно грунтования основания.
    Возможные проблемы после укладки
  • Появление сети мелких трещин на дорожном полотне – при уплотни асфальтобетона, смесь имела слишком низкую температуру.
  • Возникновение широких трещин на асфальте – этот недостаток указывает на проблемы с укладчиком: плохой прогрев плит.
  • Плохие показатели сдвигоустойчивости покрытия – этот недостаток проявляется, если на начальном этапе работ была использована геосетка с размером ячейки меньше или больше требуемой нормы.

Щебеночно-мастичный асфальтобетон по праву занимает лидирующие позиции при строительных работах по укладке дорожного покрытия. Его главные свойства – износостойкость, долговечность и безопасность, за счет шершавой поверхности, позволяют использовать материал для покрытия высоконагруженных мест — скоростных магистралей, аэропортов, морских портов.

Обзор технологий приготовления тёплых асфальтобетонных смесей



Применение технологии теплой асфальтобетонной смеси (ТАС)– это возможность для асфальтовой промышленности улучшить качество своей продукции и производительность труда, эффективность строительства и защиту окружающей среды. Более низкая температура производства снижает старение битума на стадии производства, что повышает стойкость смеси к термическому и усталостному растрескиванию. Данная статья представляет собой обзор различных технологий, используемых в производстве ТАС, описывает их преимущества и недостатки, а также подчеркивает необходимость дальнейших исследований в этой области.

Ключевые слова: теплая асфальтобетонная смесь, асфальтобетон, технология теплой асфальтобетонной смеси, парниковый газ.

1- Введение

Асфальтовая промышленность способствует увеличению выбросов CO2 в связи с потребностью в энергии на этапе производства. В настоящее время горячая асфальтобетонная смесь (ГАС) является доминирующим типом среди производимых асфальтобетонных смесей. Производство ГАС проходит в несколько этапов, включая сушку и нагрев агрегата, нагрев вяжущего и смешивание всех компонентов. Конечная температура перемешивания асфальтобетонной смеси обычно составляет около 165°С [1]. При таких повышенных температурах потребляется значительное количество энергии, а в атмосферу выбрасывается большое количество парниковых газов и загрязняющих веществ.

ТАС — это технический термин, используемый для описания асфальтобетонных смесей, производимых при температурах ниже традиционных ГАС обычно на 10–40°C [1].

Преимущества технологий ТАС заключаются в их экономичности и экологичности. Снижение температуры производства асфальта гарантирует экономические и экологические выгоды. Чем ниже температура смешивания, тем ниже выбросы парниковых газов и расход топлива. Многие исследования продемонстрировали преимущества технологий ТАС. К ним относятся снижение выбросов CO2 и расхода топлива, увеличение срока службы дорожного покрытия вследствие уменьшения времени отвердения вяжущего на этапе производства, возможность включения высокого содержания восстановленного асфальтобетона (ВА), улучшение условий труда на асфальтовых заводах и увеличение времени на транспортировку, укладку и уплотнение асфальтобетонных смесей. Технологии ТАС могут снизить выбросы парниковых газов примерно на 33 % по сравнению с ГАС и потребление энергии на этапе производства примерно на 18 % [2,3].

В настоящее время существует три ведущих технологии, которые могут быть реализованы для производства ТАС: использование химических добавок, органических добавок и методов вспенивания [4,5]. Каждая из названных технологий, несмотря на ряд недостатков, имеет много преимуществ как с точки зрения технологии производства, так и с точки зрения технологических и эксплуатационных характеристик. Выбор подходящей технологии связан с экономическим аспектом и рядом факторов (в том числе с классификацией дорог, климатических зон, экологическими и транспортными факторами), которые влияют на качество дорожного покрытия в течение эксплуатационного периода.

2- Цель изадачи

Определение различных технологий, используемых при приготовлении теплых асфальтобетонных смесей, и их различных характеристик, что облегчает производителю выбор подходящей технологии для условий реализуемого проекта.

3- Технология производства ТАС сиспользованием химических добавок

Один из вариантов технологии производства ТАС связан с использованием химических добавок. Химические добавки — это продукты, которые не зависят от пенообразования или уменьшения вязкости для снижения температуры смешивания и уплотнения. Вместо этого они обычно включают комбинацию эмульгирующих агентов, поверхностно-активных веществ, полимеров и добавок для улучшения покрытия, обрабатываемости смеси и уплотнения, а также стимуляторы адгезии (антискользящие агенты). Химические добавки часто используются в США, Франции и Норвегии. Снижение температуры смешивания колеблется в зависимости от типа добавки: например, от 15 до 30°С при применении REVIX и от 50 до 75 °С — при Evotherm ET [7].

Инновационная технология Evotherm® была разработана в США компанией MeadWestvaco Asphalt Innovations (г. Чарльтон, Южная Каролина). Смесь приготавливают на битумной эмульсии с добавками, предложенными компанией, которые предназначены для улучшения смачиваемости и сцепления битума с каменным материалом, а также для удобоукладываемости смеси. Количество добавок составляет около 0,5 % от массы битумной эмульсии. Концентрация битума в эмульсии — около 70 %. Для смешения каменного заполнителя с эмульсией может быть использован обычный смеситель. Вода, содержащаяся в эмульсии, при смешении с нагретым каменным материалом испаряется. Смесь приготавливают при температуре 80–105°C, а уплотняют при температуре 60–80°C. В связи с этим компания MeadWestvaco сообщает о возможном сокращении затрат топлива на 55 % и снижении количества CO2 и SO2 на 45 %, оксидов азота — на 60 % [7].

Согласно научному докладу, опубликованному Национальным центром исследований асфальта США (NCAT Report 06–02) в 2006 году [3], добавление Evotherm® значительно уменьшило способность асфальтобетонных смесей к колееобразованию по сравнению с контрольными смесями без добавки, полученными при той же температуре, как показано на рисунке 1. Колеи увеличивались с уменьшением температуры смешивания и уплотнения, и это, как полагают, связано с уменьшением старения вяжущего. Однако смеси, содержащие Evotherm®, были менее чувствительны (с точки зрения колееобразование) к пониженным температурам производства, чем контрольные смеси. Улучшенная производительность Evotherm® в некоторых случаях значительно коррелировала с улучшенным уплотнением.

Рис. 1. Глубины колеи для агрегата известняка [3]

4- Технология производства ТАС сиспользованием органических добавок

Технологии с использованием органических добавок предусматривает применение в смеси воска. Когда температура поднимается выше температуры плавления восков, обычно происходит снижение вязкости. По мере охлаждения смеси эти добавки затвердевают и образуют микроскопически мелкие и равномерно распределенные частицы, которые увеличивают жесткость вяжущего точно так же, как и армированные волокном материалы. Тип воска должен быть тщательно выбран, чтобы избежать возможных проблем с температурой. Другими словами: если температура плавления воска ниже температуры эксплуатации, это может привести к осложнениям. Правильный выбор воска сводит к минимуму охрупчивание вяжущего при низких температурах. Таким образом, воски должны быть прочными и твердыми при рабочей температуре. Температура, при которой воск плавится, находится в прямой зависимости от длины углеродной цепи (C45 или более) [6]. Количество добавляемого воска обычно составляет 2–4 % от общей массы. Снижение температуры, обычно достигаемое добавлением этих восков, составляет 20–30°С [3]. В настоящее время существуют три основные технологии, которые различаются по типу воска, используемого для уменьшения вязкости: воск Фишера-Тропша, амид жирной кислоты и воск Монтана.

Воск Фишера-Тропша представляет собой метод синтеза углеводородов и других алифатических соединений из газов (CO/h3). Эта добавка представляет собой чистый углеводород без функциональных групп и характеризуется высокой химической стабильностью и устойчивостью к старению. Хотя воск плавится при температуре около 100°С в чистом виде, при смешивании с битумом его температура плавления понижается до 80–85°С, что позволяет уплотнять асфальтобетонную смесь при температуре менее 100°С [6].

Другой технологический процесс с брендовой добавкой Sasobit® был предложен компанией Sasol Wax (бывшая компания Schümann Sasol из Южной Африки). Sasobit называют средством для увеличения текучести битума. Парафиновый воск Sasobit характеризуется преобладающей длиной углеводородных цепей в диапазоне от 40 до 115 атомов углерода. Для сравнения: у содержащихся в битумах парафинов длина этих цепей — 22–45 атомов углерода. Поэтому Sasobit, в отличие от содержащихся в битумах парафинов, имеет высокую температуру плавления — 102 °C. Sasobit поставляется в виде гранул или порошка. При температуре выше 120 °C он полностью растворяется в битуме, а при температуре же ниже 102 °C образует в битуме кристаллообразную сетчатую структуру. Добавка Sasobit в количестве от 1 до 3 % по массе битума снижает его вязкость, что позволяет понизить температуру приготовления смеси на 18–50°C, а также улучшает уплотняемость смеси [6].

G. Zhao в 2012 году [3,6] исследовал образцы горячего и теплого асфальтобетона при температуре смешения соответственно 175°C и 145°C. Исследователь обнаружил, что разница в процентном содержании пустот в горячей и теплой смесях невелика, а добавка Sasobit может снизить температуру уплотнения смеси примерно на 30°C, о чем свидетельствуют данные таблицы 1.

Таблица 1

Характеристики образцов [3,6]

Тип смеси

Температура уплотнения (℃)

Теоретическая максимальная плотность (g/cm3)

Объемная плотность (g/cm3)

Процент пустоты (%)

Горячая смесь

165

2,500

2,399

4,04

Sasobit — теплая смесь

135

2,500

2,398

4,08

К другому виду органических добавок принадлежат амидные воски, которые представляют собой синтетические амиды жирных кислот с различными торговыми названиями. Они производятся синтетически, вызывая реакцию аминов с жирными кислотами. Эти воски плавятся при температуре 140–145°С, тогда как затвердевание происходит при 135–145°С. В течение нескольких лет аналогичные продукты были модификаторами вязкости в асфальте и использовались в кровельном асфальте с конца 1970-х до начала 1980-х годов. По мере того как амиды жирных кислот охлаждаются, они образуют кристаллиты в битуме, тем самым повышая стабильность асфальта и сопротивление деформации [6].

Воск Монтана (Воск Montan) — это лигнитовый воск, который добывается из специального воскового лигнита. В химическом отношении воск Монтана состоит в основном из сложных эфиров жирных кислот. Это комбинация сложных эфиров карбоновых кислот с длинноцепочечными цепями, свободных длинноцепочечных органических кислот, длинноцепочечных спиртов, кетонов, углеводородов и смол. Поскольку температура плавления этого воска в чистом виде составляет приблизительно 75°С, его часто смешивают с материалами с более высокой температурой плавления, такими как амидные воски. Воск Montan можно подавать непосредственно в смеситель, что требует дополнительного времени перемешивания [6].

Следует отметить, что органические добавки имеют свои преимущества и недостатки. С одной стороны, они снижают вязкость асфальтового вяжущего при высоких температурах и, таким образом, снижают старение и температуры смешивания и уплотнения, а также увеличивают стойкость колееобразования при промежуточных температурах для асфальтового вяжущего. С другой стороны, органические добавки могут увеличить вероятность усталости и низкотемпературного растрескивания при средних и низких температурах. Поэтому важно оптимизировать характеристики вяжущих с модифицированными органическими добавками в диапазонах высоких, низких и промежуточных температур путем тщательного выбора типа и источника вяжущего и содержания органических добавок.

5- Технология производства ТАС сиспользованием методов вспенивания

Эта технология в основном предусматривает добавление небольших количеств воды, либо впрыскиваемой в горячее вяжущего, либо непосредственно в смесительную камеру [8]. Когда вода смешивается с горячим битумом, высокие температуры вызывают ее испарение и захват пара. В результате образуется большой объем пены, который временно увеличивает объем вяжущего и снижает его вязкость. Этот эффект значительно улучшает покрытие и обрабатываемость смеси, но его продолжительность ограничена. Это означает, что смесь должна быть уложена и уплотнена вскоре после производства [8]. Процессы пенообразования могут происходить либо с водосодержащими продуктами (водосодержащие технологии), либо на водной основе (водные технологии).

Водосодержащие технологии для обеспечения процесса вспенивания используют цеолит Aspha-min®. Продукт состоит из алюмосиликатов щелочных металлов (кальция, натрия, калия) и подвергся гидротермической кристаллизации. Кристаллизация — это примерно 20 % воды [8]. Структура цеолитов имеет большие воздушные пустоты, в которых могут быть размещены катионы и даже молекулы или катионные группы (такие как вода). Их способность терять и поглощать воду, не повреждая кристаллическую структуру, является основной характеристикой этого силикатного каркаса [5,8].

Компания Eurova рекомендует добавлять гранулы цеолита в количестве 0,3 % по массе асфальтобетонной смеси. Компания Eurova утверждает, что рекомендуемого количества добавки (цеолита) достаточно для снижения температуры смешивания и укладки на 30°C [5].

К 2006 г. в США Aspha-min был применен в асфальтобетонных смесях на четырех объектах. Оптимальное содержание битума определяли по обычной методике (в отсутствие цеолита). Смеси приготовляли при температуре приблизительно на 30–35°C ниже обычной для горячего асфальтобетона. Уплотняемость смеси после добавления цеолита улучшилась –остаточная пористость снижалась примерно на 0,8 % [5]. По результатам испытаний на лабораторном гамбургском стенде устойчивость к образованию колеи снизилась, что можно объяснить уменьшением старения вяжущего вследствие понижения температуры приготовления смеси.

Собственно водные технологии используют воду более прямым способом. Это означает, что вода, необходимая для получения эффекта пенообразования, впрыскивается непосредственно в поток горячего вяжущего, обычно с помощью специальных форсунок. Поскольку вода быстро испаряется, это производит большой объем пены, которая медленно разрушается. Эта категория добавок может быть разделена на типы продуктов, используемых для приготовления смеси [8]:

Double Barrel Green, Ultrafoam GX, LT Asphalt: хотя оборудование для впрыска воды в поток горячего вяжущего отличается (поскольку каждая компания производит свое оборудование), основной принцип остается тем же. Несколько форсунок используются для впрыскивания холодной воды с целью микроскопического вспенивания вяжущего;

WAM Foam — это двухкомпонентная система вяжущих (также известная как двухфазный метод), которая предполагает разновременную подачу мягкого и твердого вспененного вяжущего в период смешивания в процессе производства. Мягкий битум сначала смешивают с заполнителем, чтобы предварительно покрыть его, затем к смеси добавляют твердый битум, который был вспенен предыдущим впрыском холодной воды в количестве от 2 % до 5 % от массы твердого вяжущего [8]. Эта комбинация мягкого вяжущего и вспенивания твердого вяжущего вместе с вспениванием твердого битума снижает вязкость смеси для обеспечения необходимой обрабатываемости, как показано на рис. 2.

Рис. 2. Технология WAM-Foam [8]

Следует отметить, что пока доля производства теплых смесей в Европе не превышает 1 % [8] от всего производства асфальтобетонных смесей, а время наблюдений за поведением таких смесей в период эксплуатации еще недостаточно для определенных суждений о перспективах их применения. Остается целый ряд невыясненных вопросов, связанных с процедурой проектирования состава и расчетными характеристиками для проектирования дорожной одежды; устойчивостью к образованию колеи; водо- и морозостойкостью. Для их решения требуется проведение дополнительных исследований с целью изучения и анализа прошлого опыта, а также более точного выбора существующих добавок, необходимых для улучшения эксплуатационных и транспортных характеристик этой многообещающей технологии.

6- Выводы изаключение

  1. Можно предложить следующую классификацию преимуществ ТАС:

− экологические выгоды — снижение выбросов и выхлопных газов на заводах по производству асфальтобетона;

− экономические выгоды — снижение энергопотребления и финансовых затрат;

− технические выгоды — повышение работоспособности смеси и эффективности уплотнения, увеличение расстояний между перевозками смеси и ускорение движения транспорта благодаря сокращению времени ее охлаждения;

− производственные выгоды — наибольшая свобода выбора места расположения завода с возможностью размещения его в городских районах.

  1. Результаты предыдущих исследований различных технологий производства ТАС показали, что рабочие характеристики смесей ТАС могут быть, по меньшей мере, эквивалентны ГАС. Это возможно благодаря часто лучшей работоспособности и, следовательно, лучшему уплотнению, которое может быть достигнуто с их использованием.
  2. Однако, несмотря на то, что более низкие температуры являются многообещающими, они все-таки недостаточно изучены. По этой причине требуются более глубокие исследования в отношении конструкции смеси, долгосрочной производительности, экономической эффективности и эксплуатации дорожного покрытия.
  3. Технология ТАС должна найти свое отражение в ГОСТ, национальных и местных стандартах. Это будет стимулировать промышленность и предоставит обществу инновационные решения для ТАС.

Литература:

1. Capitão S. D., Picado-Santos L. G., Martinho F. Review on the use of warm-mix asphalt // Constr. Build. Mater. — 2012. — № 36. — С. 1016–1024.

2. Vidal R., Moliner E., Martínez G., Rubio M. C. Life cycle assessment of hot mix asphalt and zeolite-based warm mix asphalt with reclaimed asphalt pavement // Conserv. Recycl. — 2013. — № 74. — С. 101–114.

3. EAPA. The Use of Warm Mix Asphalt // European Asphalt Pavement Association. — Brussels, Belgium, 2010:, 2010. — С. 67.

4. Almeida-Costa A., Benta A. Economic and environmental impact study of warm mix asphalt compared to hot mix asphalt // J. Cleaner Prod. — 2016. — № 112. — С. 2308–2317.

5. Королев И. В. Дорожный теплый асфальтобетон. — Киев: Вища школа, 1975. — 165 с.

6. Zhao G., Guo P. Workability of Sasobit Warm Mixture Asphalt // International Conference on Future Energy, Environment, and Materials. — 2012. — № 16. — С. 1230–1236.

7. Hurley G. C., Prowell B. D. Evaluation of Evotherm® for Use in Warm Mix Asphalt // National Center for Asphalt Technology (NCAT). — 2006:, 2006. — С. 49.

8. Радовский Б. С. Технология нового асфальтобетона в США // Устройство асфальтобетонного покрытия — Дорожная техника. — 2008. — № 19. — С. 24–28.

Основные термины (генерируются автоматически): смесь, добавок, температура, воск, Технология производства, снижение температуры смешивания, этап производства, дорожное покрытие, вод, асфальтовая промышленность.

ОДМ 218.3.096-2017 Методические рекомендации по объемному проектированию асфальтобетонных смесей по методологии Маршалла / 218 3 096 2017

Искать все виды документовДокументы неопределённого видаISOАвиационные правилаАльбомАпелляционное определениеАТКАТК-РЭАТПЭАТРВИВМРВМУВНВНиРВНКРВНМДВНПВНПБВНТМ/МЧМ СССРВНТПВНТП/МПСВНЭВОМВПНРМВППБВРДВРДСВременное положениеВременное руководствоВременные методические рекомендацииВременные нормативыВременные рекомендацииВременные указанияВременный порядокВрТЕРВрТЕРрВрТЭСНВрТЭСНрВСНВСН АСВСН ВКВСН-АПКВСПВСТПВТУВТУ МММПВТУ НКММПВУП СНЭВУППВУТПВыпускГКИНПГКИНП (ОНТА)ГНГОСТГОСТ CEN/TRГОСТ CISPRГОСТ ENГОСТ EN ISOГОСТ EN/TSГОСТ IECГОСТ IEC/PASГОСТ IEC/TRГОСТ IEC/TSГОСТ ISOГОСТ ISO GuideГОСТ ISO/DISГОСТ ISO/HL7ГОСТ ISO/IECГОСТ ISO/IEC GuideГОСТ ISO/TRГОСТ ISO/TSГОСТ OIML RГОСТ ЕНГОСТ ИСОГОСТ ИСО/МЭКГОСТ ИСО/ТОГОСТ ИСО/ТСГОСТ МЭКГОСТ РГОСТ Р ЕНГОСТ Р ЕН ИСОГОСТ Р ИСОГОСТ Р ИСО/HL7ГОСТ Р ИСО/АСТМГОСТ Р ИСО/МЭКГОСТ Р ИСО/МЭК МФСГОСТ Р ИСО/МЭК ТОГОСТ Р ИСО/ТОГОСТ Р ИСО/ТСГОСТ Р ИСО/ТУГОСТ Р МЭКГОСТ Р МЭК/ТОГОСТ Р МЭК/ТСГОСТ ЭД1ГСНГСНрГСССДГЭСНГЭСНмГЭСНмрГЭСНмтГЭСНпГЭСНПиТЕРГЭСНПиТЕРрГЭСНрГЭСНсДИДиОРДирективное письмоДоговорДополнение к ВСНДополнение к РНиПДСЕКЕНВиРЕНВиР-ПЕНиРЕСДЗемЕТКСЖНМЗаключениеЗаконЗаконопроектЗональный типовой проектИИБТВИДИКИМИНИнструктивное письмоИнструкцияИнструкция НСАМИнформационно-методическое письмоИнформационно-технический сборникИнформационное письмоИнформацияИОТИРИСОИСО/TRИТНИТОсИТПИТСИЭСНИЭСНиЕР Республика КарелияККарта трудового процессаКарта-нарядКаталогКаталог-справочникККТКОКодексКОТКПОКСИКТКТПММ-МВИМВИМВНМВРМГСНМДМДКМДСМеждународные стандартыМетодикаМетодика НСАММетодические рекомендацииМетодические рекомендации к СПМетодические указанияМетодический документМетодическое пособиеМетодическое руководствоМИМИ БГЕИМИ УЯВИМИГКМММНМОДНМонтажные чертежиМос МУМосМРМосСанПинМППБМРМРДСМРОМРРМРТУМСанПиНМСНМСПМТМУМУ ОТ РММУКМЭКННАС ГАНБ ЖТНВННГЭАНДНДПНиТУНКНормыНормы времениНПНПБНПРМНРНРБНСПНТПНТП АПКНТП ЭППНТПДНТПСНТСНЦКРНЦСОДМОДНОЕРЖОЕРЖкрОЕРЖмОЕРЖмрОЕРЖпОЕРЖрОКОМТРМОНОНДОНКОНТПОПВОПКП АЭСОПНРМСОРДОСГиСППиНОСНОСН-АПКОСПОССПЖОССЦЖОСТОСТ 1ОСТ 2ОСТ 34ОСТ 4ОСТ 5ОСТ ВКСОСТ КЗ СНКОСТ НКЗагОСТ НКЛесОСТ НКМОСТ НКММПОСТ НКППОСТ НКПП и НКВТОСТ НКСМОСТ НКТПОСТ5ОСТНОСЭМЖОТРОТТПП ССФЖТПБПБПРВПБЭ НППБЯПВ НППВКМПВСРПГВУПереченьПиН АЭПисьмоПМГПНАЭПНД ФПНД Ф СБПНД Ф ТПНСТПОПоложениеПорядокПособиеПособие в развитие СНиППособие к ВНТППособие к ВСНПособие к МГСНПособие к МРПособие к РДПособие к РТМПособие к СНПособие к СНиППособие к СППособие к СТОПособие по применению СППостановлениеПОТ РПОЭСНрППБППБ-АСППБ-СППБВППБОППРПРПР РСКПР СМНПравилаПрактическое пособие к СППРБ АСПрейскурантПриказПротоколПСРр Калининградской областиПТБПТЭ

Тематическая подборка Щебеночно-мастичные асфальтобетонные смеси в дорожном строительстве

На главную | База 1 | База 2 | База 3
Поиск по реквизитамПоиск по номеру документаПоиск по названию документаПоиск по тексту документа
Искать все виды документовДокументы неопределённого видаISOАвиационные правилаАльбомАпелляционное определениеАТКАТК-РЭАТПЭАТРВИВМРВМУВНВНиРВНКРВНМДВНПВНПБВНТМ/МЧМ СССРВНТПВНТП/МПСВНЭВОМВПНРМВППБВРДВРДСВременное положениеВременное руководствоВременные методические рекомендацииВременные нормативыВременные рекомендацииВременные указанияВременный порядокВрТЕРВрТЕРрВрТЭСНВрТЭСНрВСНВСН АСВСН ВКВСН-АПКВСПВСТПВТУВТУ МММПВТУ НКММПВУП СНЭВУППВУТПВыпускГКИНПГКИНП (ОНТА)ГНГОСТГОСТ CEN/TRГОСТ CISPRГОСТ ENГОСТ EN ISOГОСТ EN/TSГОСТ IECГОСТ IEC/PASГОСТ IEC/TRГОСТ IEC/TSГОСТ ISOГОСТ ISO GuideГОСТ ISO/DISГОСТ ISO/HL7ГОСТ ISO/IECГОСТ ISO/IEC GuideГОСТ ISO/TRГОСТ ISO/TSГОСТ OIML RГОСТ ЕНГОСТ ИСОГОСТ ИСО/МЭКГОСТ ИСО/ТОГОСТ ИСО/ТСГОСТ МЭКГОСТ РГОСТ Р ЕНГОСТ Р ЕН ИСОГОСТ Р ИСОГОСТ Р ИСО/HL7ГОСТ Р ИСО/АСТМГОСТ Р ИСО/МЭКГОСТ Р ИСО/МЭК МФСГОСТ Р ИСО/МЭК ТОГОСТ Р ИСО/ТОГОСТ Р ИСО/ТСГОСТ Р ИСО/ТУГОСТ Р МЭКГОСТ Р МЭК/ТОГОСТ Р МЭК/ТСГОСТ ЭД1ГСНГСНрГСССДГЭСНГЭСНмГЭСНмрГЭСНмтГЭСНпГЭСНПиТЕРГЭСНПиТЕРрГЭСНрГЭСНсДИДиОРДирективное письмоДоговорДополнение к ВСНДополнение к РНиПДСЕКЕНВиРЕНВиР-ПЕНиРЕСДЗемЕТКСЖНМЗаключениеЗаконЗаконопроектЗональный типовой проектИИБТВИДИКИМИНИнструктивное письмоИнструкцияИнструкция НСАМИнформационно-методическое письмоИнформационно-технический сборникИнформационное письмоИнформацияИОТИРИСОИСО/TRИТНИТОсИТПИТСИЭСНИЭСНиЕР Республика КарелияККарта трудового процессаКарта-нарядКаталогКаталог-справочникККТКОКодексКОТКПОКСИКТКТПММ-МВИМВИМВНМВРМГСНМДМДКМДСМеждународные стандартыМетодикаМетодика НСАММетодические рекомендацииМетодические рекомендации к СПМетодические указанияМетодический документМетодическое пособиеМетодическое руководствоМИМИ БГЕИМИ УЯВИМИГКМММНМОДНМонтажные чертежиМос МУМосМРМосСанПинМППБМРМРДСМРОМРРМРТУМСанПиНМСНМСПМТМУМУ ОТ РММУКМЭКННАС ГАНБ ЖТНВННГЭАНДНДПНиТУНКНормыНормы времениНПНПБНПРМНРНРБНСПНТПНТП АПКНТП ЭППНТПДНТПСНТСНЦКРНЦСОДМОДНОЕРЖОЕРЖкрОЕРЖмОЕРЖмрОЕРЖпОЕРЖрОКОМТРМОНОНДОНКОНТПОПВОПКП АЭСОПНРМСОРДОСГиСППиНОСНОСН-АПКОСПОССПЖОССЦЖОСТОСТ 1ОСТ 2ОСТ 34ОСТ 4ОСТ 5ОСТ ВКСОСТ КЗ СНКОСТ НКЗагОСТ НКЛесОСТ НКМОСТ НКММПОСТ НКППОСТ НКПП и НКВТОСТ НКСМОСТ НКТПОСТ5ОСТНОСЭМЖОТРОТТПП ССФЖТПБПБПРВПБЭ НППБЯПВ НППВКМПВСРПГВУПереченьПиН АЭПисьмоПМГПНАЭПНД ФПНД Ф СБПНД Ф ТПНСТПОПоложениеПорядокПособиеПособие в развитие СНиППособие к ВНТППособие к ВСНПособие к МГСНПособие к МРПособие к РДПособие к РТМПособие к СНПособие к СНиППособие к СППособие к СТОПособие по применению СППостановлениеПОТ РПОЭСНрППБППБ-АСППБ-СППБВППБОППРПРПР РСКПР СМНПравилаПрактическое пособие к СППРБ АСПрейскурантПриказПротоколПСРр Калининградской областиПТБПТЭПУГПУЭПЦСНПЭУРР ГазпромР НОПРИЗР НОСТРОЙР НОСТРОЙ/НОПР РСКР СМНР-НП СРО ССКРазъяснениеРаспоряжениеРАФРБРГРДРД БГЕИРД БТРД ГМРД НИИКраностроенияРД РОСЭКРД РСКРД РТМРД СМАРД СМНРД ЭОРД-АПКРДИРДМРДМУРДПРДСРДТПРегламентРекомендацииРекомендацияРешениеРешение коллегииРКРМРМГРМДРМКРНДРНиПРПРРТОП ТЭРС ГАРСНРСТ РСФСРРСТ РСФСР ЭД1РТРТМРТПРУРуководствоРУЭСТОП ГАРЭГА РФРЭСНрСАСанитарные нормыСанитарные правилаСанПиНСборникСборник НТД к СНиПСборники ПВРСборники РСН МОСборники РСН ПНРСборники РСН ССРСборники ценСБЦПСДАСДАЭСДОССерияСЗКСНСН-РФСНиПСНиРСНККСНОРСНПСОСоглашениеСПСП АССП АЭССправочникСправочное пособие к ВСНСправочное пособие к СНиПСправочное пособие к СПСправочное пособие к ТЕРСправочное пособие к ТЕРрСРПССНССЦСТ ССФЖТСТ СЭВСТ ЦКБАСТ-НП СРОСТАСТКСТМСТНСТН ЦЭСТОСТО 030 НОСТРОЙСТО АСЧМСТО БДПСТО ВНИИСТСТО ГазпромСТО Газпром РДСТО ГГИСТО ГУ ГГИСТО ДД ХМАОСТО ДОКТОР БЕТОНСТО МАДИСТО МВИСТО МИСТО НААГСТО НАКССТО НКССТО НОПСТО НОСТРОЙСТО НОСТРОЙ/НОПСТО РЖДСТО РосГеоСТО РОСТЕХЭКСПЕРТИЗАСТО САСТО СМКСТО ФЦССТО ЦКТИСТО-ГК «Трансстрой»СТО-НСОПБСТПСТП ВНИИГСТП НИИЭССтП РМПСУПСССУРСУСНСЦНПРТВТЕТелеграммаТелетайпограммаТематическая подборкаТЕРТЕР Алтайский крайТЕР Белгородская областьТЕР Калининградской областиТЕР Карачаево-Черкесская РеспубликаТЕР Краснодарского краяТЕР Мурманская областьТЕР Новосибирской областиТЕР Орловской областиТЕР Республика ДагестанТЕР Республика КарелияТЕР Ростовской областиТЕР Самарской областиТЕР Смоленской обл.ТЕР Ямало-Ненецкий автономный округТЕР Ярославской областиТЕРмТЕРм Алтайский крайТЕРм Белгородская областьТЕРм Воронежской областиТЕРм Калининградской областиТЕРм Карачаево-Черкесская РеспубликаТЕРм Мурманская областьТЕРм Республика ДагестанТЕРм Республика КарелияТЕРм Ямало-Ненецкий автономный округТЕРмрТЕРмр Алтайский крайТЕРмр Белгородская областьТЕРмр Карачаево-Черкесская РеспубликаТЕРмр Краснодарского краяТЕРмр Республика ДагестанТЕРмр Республика КарелияТЕРмр Ямало-Ненецкий автономный округТЕРпТЕРп Алтайский крайТЕРп Белгородская областьТЕРп Калининградской областиТЕРп Карачаево-Черкесская РеспубликаТЕРп Краснодарского краяТЕРп Республика КарелияТЕРп Ямало-Ненецкий автономный округТЕРп Ярославской областиТЕРрТЕРр Алтайский крайТЕРр Белгородская областьТЕРр Калининградской областиТЕРр Карачаево-Черкесская РеспубликаТЕРр Краснодарского краяТЕРр Новосибирской областиТЕРр Омской областиТЕРр Орловской областиТЕРр Республика ДагестанТЕРр Республика КарелияТЕРр Ростовской областиТЕРр Рязанской областиТЕРр Самарской областиТЕРр Смоленской областиТЕРр Удмуртской РеспубликиТЕРр Ульяновской областиТЕРр Ямало-Ненецкий автономный округТЕРррТЕРрр Ямало-Ненецкий автономный округТЕРс Ямало-Ненецкий автономный округТЕРтр Ямало-Ненецкий автономный округТехнический каталогТехнический регламентТехнический регламент Таможенного союзаТехнический циркулярТехнологическая инструкцияТехнологическая картаТехнологические картыТехнологический регламентТИТИ РТИ РОТиповая инструкцияТиповая технологическая инструкцияТиповое положениеТиповой проектТиповые конструкцииТиповые материалы для проектированияТиповые проектные решенияТКТКБЯТМД Санкт-ПетербургТНПБТОИТОИ-РДТПТПРТРТР АВОКТР ЕАЭСТР ТСТРДТСНТСН МУТСН ПМСТСН РКТСН ЭКТСН ЭОТСНэ и ТЕРэТССЦТССЦ Алтайский крайТССЦ Белгородская областьТССЦ Воронежской областиТССЦ Карачаево-Черкесская РеспубликаТССЦ Ямало-Ненецкий автономный округТССЦпгТССЦпг Белгородская областьТСЦТСЦ Белгородская областьТСЦ Краснодарского краяТСЦ Орловской областиТСЦ Республика ДагестанТСЦ Республика КарелияТСЦ Ростовской областиТСЦ Ульяновской областиТСЦмТСЦО Ямало-Ненецкий автономный округТСЦп Калининградской областиТСЦПГ Ямало-Ненецкий автономный округТСЦэ Калининградской областиТСЭМТСЭМ Алтайский крайТСЭМ Белгородская областьТСЭМ Карачаево-Черкесская РеспубликаТСЭМ Ямало-Ненецкий автономный округТТТТКТТПТУТУ-газТУКТЭСНиЕР Воронежской областиТЭСНиЕРм Воронежской областиТЭСНиЕРрТЭСНиТЕРэУУ-СТУказУказаниеУказанияУКНУНУОУРврУРкрУРррУРСНУСНУТП БГЕИФАПФедеральный законФедеральный стандарт оценкиФЕРФЕРмФЕРмрФЕРпФЕРрФормаФорма ИГАСНФРФСНФССЦФССЦпгФСЭМФТС ЖТЦВЦенникЦИРВЦиркулярЦПИШифрЭксплуатационный циркулярЭРД
Показать все найденныеПоказать действующиеПоказать частично действующиеПоказать не действующиеПоказать проектыПоказать документы с неизвестным статусом
Упорядочить по номеру документаУпорядочить по дате введения

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *