Skip to content

Паронепроницаемые материалы: Изоляционные и паронепроницаемые материалы

Содержание

Пароизоляционные материалы

Применение современных материалов в строительстве и отделке позволяет возвести комфортные для проживания и красивые здания относительно недорого. Строгое соблюдение технологии «слоеного пирога», которая предусматривает использование пароизоляции, утеплителя, гидроизоляции и основы, делает возможным создание теплых и долговечных домов, дач, гаражей и других строений. Гидроизоляция защищает сооружения от влаги, поступающей извне, утеплитель поддерживает комфортную температуру внутри помещений, а пароизоляция обеспечивает сохранность утеплителя от разрушения, не позволяя скапливаться в нем конденсату. Пароизоляционный слой — материалы с различными характеристиками паропронецаемости — от практически полностью паронепроницаемых (армированные полиэтиленовые плёнки) до паропроницаемых с изменяющимися свойствами (нетканые «дышащие» мембраны).

Чтобы разобраться в том, какие бывают пароизоляционные материалы и какой необходимо выбрать в каждом конкретном случае строительства, нужно знать характеристики, преимущества и недостатки каждого материала.

Полиэтиленовые плёнки

Для придания прочности полиэтилену, который применяется в строительстве, его армируют специальной сеткой. Промышленностью производятся перфорированные и неперфорированные полиэтиленовые плёнки, отличающиеся по степени пароизоляции. Перфорированные, в основном, используются в качестве гидроизоляции, так как перфорация увеличивает показатель паропроницаемости до Sd =1…3 м. У неперфорированных плёнок Sd =40…80 м, однако он все же не полностью соответствует значениям, необходимым для качественной пароизоляции. Применение полиэтиленовых плёнок в обязательном порядке требует обустройства качественной вентиляции в помещениях, чтобы не создавался «парниковый эффект».

Новые модификации неперфорированных полиэтиленовых плёнок покрывают отражающим слоем алюминия, что усиливает их паронепроницаемость. Такие материалы применяют в помещениях с повышенной степенью влажности: банях, ванных комнатах, саунах, кухнях.

Основным достоинством полиэтиленовых плёнок является дешевизна, к недостаткам относят невысокую прочность и недостаточную степень пароизоляции, а также необходимость монтажа дополнительной вентиляции.

Читайте также: Пароизоляция полиэтиленовой пленкой

Полипропиленовые плёнки

Этот вид пароизоляционных материалов обладает более высокой степенью прочности по сравнению с полиэтиленовыми плёнками, что является несомненным преимуществом при использовании, но их стоимость несколько выше.

Технология производства полипропиленовых материалов предусматривает накатку на плёнку слоя вискозы с целлюлозой, который впитывает и удерживает значительные объемы влаги, обеспечивая отличную защиту от скапливания конденсата в слое утеплителя. Полипропиленовые плёнки засчет дополнительного слоя имеют Sd =50…100 м. Монтаж таких парозащитных структур должен выполняться обязательно глянцевым слоем к утеплителю, а шероховатой поверхностью внутрь помещения. Между слоем утеплителя и плёнкой необходимо оставить вентиляционный зазор.

Нетканые «дышащие» мембраны

Последнее поколение парозащитных материалов — диффузионные мембраны, так называемые «дышащие плёнки». Благодаря особой микроструктуре нетканого полотна из синтетических волокон, мембраны пропускают воздух, но удерживают влагу, обеспечивая отсутствие «парникового эффекта» при высокой степени парозащиты. Монтаж диффузионных мембран осуществляется без создания вентиляционных зазоров между утеплителем и парозащитной плёнкой.

Плёнки «Ондутис»

Плёнки «Ондутис» соответствуют всем требованиям, предъявляемым к материалам, используемым в процессе монтажа скатных кровель, стен и перекрытий. Различные модификации этого универсального материала могут быть использованы как пароизоляционные, гидроизоляционные или влаго-ветрозащитные плёнки.

Влаго-ветрозащитные плёнки

Ондутис А100 и А120 прокладывают с внешней стороны зданий под наружной облицовкой или под кровлей. Они обеспечивают надежную влаго-ветрозащиту, сохранность утеплителя и высокую степень теплосбережения внутри помещений.

Супердиффузионные мембраны

Ондутис SA115 и SA130 отличаются высокой степенью паропроницаемости в сочетании с превосходными показателями защиты от воздуха и воды, что гарантирует отличную гидрозащиту сооружений и сохранение тепла внутри помещений. Материал представляет собой трехслойную структуру из полимерных волокон, монтаж которой производится с обеспечением вентиляционного зазора между плёнкой и наружным покрытием.

Гидро-пароизоляционные плёнки

Ондутис RS — гидроизоляционная плёнка с армированным покрытием. Ондутис D— подкровельная гидроизоляционная плёнка с антиконденсатным покрытием и дополнительным ультрафиолетовым стабилизатором, что обеспечивает возможность применения данных материалов в качестве временной кровли до 2 месяцев. Рекомендуется к применению в утеплённых и неутеплённых скатных кровлях с металлическим внешним покрытием.

Пароизоляционные плёнки

Ондутис B — трехслойная полимерная структура, обеспечивающая защиту от возникновения конденсата внутри помещений, который образуется по причине большого различия температур во внутренних помещениях и снаружи зданий в холодное время года. Плёнка сохраняет утеплитель сухим, снижают теплопотери и обеспечивают комфортный микроклимат в помещениях.

При выборе гидроизоляционных, влаго-ветрозащитных и парозащитных плёнок основное внимание уделите сфере применения материалов и их правильному монтажу. Только верное подобранные материалы обеспечат необходимый уровень защиты от внешних и внутренних воздействий на конструкцию здания, что обеспечит уют в помещениях и долговечность строению.

Пароизоляционные материалы FOLDER

Назначение: Паронепроницаемые материалы FOLDER Minima H 98‚ FOLDER Alum H 90‚ FOLDER Steam Regulator предназначены для пароизоляции теплоизоляционных материалов и строительных конструкций.

Паронепроницаемые материалы Фолдер FOLDER Minima H 98 и FOLDER Alum H 90

Назначение: Паронепроницаемые материалы FOLDER Minima H 98 и FOLDER Alum H 90 предназначены для пароизоляции теплоизоляционных материалов. Низкое содержание водяного пара внутри теплоизоляции существенно уменьшает ее теплопроводность и тем самым сокращает потери тепла в кровельных конструкциях. Это позволяет сократить затраты на отопление помещения.
Повышение теплопроводности теплоизоляции в зависимости от повышения влажности
% Увлажнения1%2‚5%5%
Повышение
теплопроводности
32%55%100%


Технические характеристики

ВидПлотностьДиффузия водяного пара Прочность на разрыв
продольный /поперечный
Размер рулонаПлощадь рулона
FOLDER Minima H 9898 г./м²Sd < 30м650н/5см / 550н/5см1‚5м/50м75 м²
FOLDER Alum H 9090 г./м²Sd < 30м250н/5см / 230н/5см1‚5м/50м75 м²

Область применения: FOLDER Minima H 98 и FOLDER Alum H90 можно комбинировать с любыми видами теплоизоляционных материалов и материалами на основе полистирола. Можно использовать как для вентилируемых‚ так и для невентилируемых кровельных конструкций‚ для наклонных и плоских кровель.

Антиконденсатный регулятор пара FOLDER Steam Regulator

Назначение: Антиконденсатный регулятор пара FOLDER Steam Regulator применяется для пароизоляции строительных конструкций. Преимуществом данного пароизоляционного материала среди остальных аналогичных материалов является паропроницаемость и одновременно поддержание необходимого уровня пароизоляции. Контролируемое пропускание пара обеспечивается за счет высокотехнологичного функционального слоя‚ а за счет антиконденсатного слоя предотвращается избыточное образование влаги внутри помещения‚ возникающее по причине естественной циркуляции водяного пара под воздействием теплого воздуха. Тем самым‚ антиконденсатный регулятор пара предотвращает порчу отделочных материалов помещения и препятствует образованию плесени.

Технические характеристики

МатериалПлотностьДиффузия водяного параПаропрони-цаемость
за 24 часа при t +23°C
Прочность на разрыв
продольный /поперечный
Размер рулона Площадь рулона
FOLDER Steam Regulator110 г./м²Sd < 3м5 г./м²195н/5см / 150н/5см1‚5м/50м75 м²
Область применения: FOLDER Steam Regulator можно комбинировать с любыми видами теплоизоляционных материалов и материалами на основе полистирола.

Можно использовать как для вентилируемых‚ так и для невентилируемых кровельных конструкций‚ для наклонных и плоских кровель.

 

Гидроизоляция и пароизоляция

Защиту конструктивных элементов зданий/сооружений от воздействия влаги всегда рассматривают комплексно, исходя из того, что водные растворы в виде жидкостей или паров могут проникать в структуру строительных материалов, как снаружи ограждающих конструкций, так и изнутри помещений. Причем воздействие паров влаги, образуемых в помещениях в результате человеческой деятельности столь же губительно для бетонов, кирпича, дерева, металла, как и влияние влаги осадков, капиллярной влаги и гидростатического подпора. Однако основной проблемой защиты ограждающих конструкций остается неприемлемость полной закупорки влаги в структуре материала — стены, пол, перекрытия, фундамент и крыша должны «дышать», выделяя избыточную влагу, но не в помещения, а в атмосферу. Поэтому наряду с гидроизоляцией конструктивных элементов зданий осуществляется пароизоляция внутренних поверхностей, полностью блокирующих миграцию молекул воды из/в помещения. Здесь следует отметить, что практически все битумные гидроизоляционные материалы, большая часть битумно-полимерных материалов и ряд полимерных пленок и мембран являются паропроницаемыми и могут использоваться исключительно для решения вопросов гидроизоляции.

Степень проницаемости материала в общем определяется определенной структурой внутренних связей и синтетические полимеры в этом отношении более прогнозируемые и эффективные в контексте пароизоляции. Сходные с полимерными паронепроницаемыми пленками и мембранами материалы на основе битумов удается получить только при высокой степени модификации битума, хотя все равно по паронепроницаемости добиться показателей, характерных синтетическим материалам не удается. Помимо паронепроницаемых неперфорированных пленок и мембран для решения вопросов пароизоляции сегодня используются односторонние «дышащие» мембраны, работающие в одном направлении, как гидроизолятор, а в другим — как водо и паронепроницаемая пленка. А также полимерные мастики на основе силиконов, создающие полностью паронепроницаемый барьер со стороны помещений. Нужно сказать, что паронепроницаемые пленки, «дышащие» мембраны и полимерные мастики достаточно дороги и в основном завозятся к нам из европейских стран.

Металлобаза Буденновская — Folder

Супердиффузионные мембраны Folder

Назначение: Подкровельные гидроизоляционные мембраны Folder Light, Folder Classic, Folder Strong предназначены для гидроизоляции подкровельных пространств и утепленных стен. Конструктивные особенности и высокие технологии, применяемые при изготовлении мембран Folder, позволяют укладывать их непосредственно на теплоизоляцию или настил без зазора, экономя затраты и время на монтаж.

Материал Плотность Паропрони-цаемость
за 24 часа при t +23 °C
Водоупорность.
Высота водяного столба
UV
стабильность
Размер рулона Площадь
Folder Light 100 г/м2 2000 г/м2 1700 мм 4 месяца 1‚5 м/50 м 75 м2
FOLDER Classic 110 г/м2 2000 г/м2 2000 мм 4 месяца 1‚5 м/50 м 75 м2
FOLDER Strong 135 г/м2 2000 г/м2 >2000 мм 4 месяца 1‚5 м/50 м 75 м2

Область применения: Мембраны Folder Light, Folder Classic, Folder Strong рекомендуются для любых типов кровельных покрытий.

Данные материалы также можно применять при внешнем утеплении вертикальных стен объекта как гидроизоляционную ветрозащиту.

Ветроизоляция Folder Comfort 90

Назначение: Folder Comfort 90 применяется в зданиях всех типов, в том числе и в деревянных каркасных домах для защиты утеплителя и внутренних элементов стен от конденсата и ветра. Укладывается с внешней стороны утеплителя под наружной облицовкой стены. С наружной стороны имеет гладкую водоотталкивающую поверхность. Внутренняя сторона – с шероховатой антиконденсатной структурой, которая предназначена для удерживания капель конденсата и последующего их ;испарения в воздушном потоке. Защищает от проникновения конденсата в конструкцию и утеплитель из внешней среды, обеспечивая выветривание водяных паров из утеплителя.

  • Возможна непосредственная укладка на теплоизоляцию
  • Предназначен для ветрозащиты и гидроизоляции стен и фасадов
  • Легкий и прочный материал
Материал: Нетканый материал
Плотность: 90 г/м²
Паропроницаемость: 1400 г/м² / 24 ч.
Прочность на разрыв:
Продольный / поперечный
180 Н/5 см / 120 Н/5 см
Стабильность против атмосферных воздействий 3 месяца
Размеры рулона 1‚5х50 м = 75 м²

Гидро-ветроизоляция Folder Facade

Назначение: Folder Facade предназначен для защиты утеплителя и внутренних конструкций с внешней стороны от влаги‚ конденсата и проникновения холодного воздуха. Folder Facade монтируется под наружной облицовкой в вентилируемых каркасных стенах‚ в деревянных‚ кирпичных и бетонных стенах с наружным утеплением‚ а также в вентилируемых фасадах.

Материал: Нетканый материал
Плотность: 95 г/м²
Паропроницаемость: 200 г/м² / 24 ч.
Прочность на разрыв:
Продольный / поперечный
190 Н/5 см / 145 Н/5 см
Стабильность против атмосферных воздействий 3 месяца
Размеры рулона 1‚5х50 м = 75 м²

Кровельный пирог под разные виды кровель: устройство, состав

Пробовали ли вы когда-нибудь настоящий курник? Такой, чтобы с тремя сортами мяса, с рассыпчатым рисом, тушеными в сметане грибами, разделенный на слои тончайшими блинчиками и тающий во рту? Каждый слой имеет свою «перчинку», консистенцию, вкус, аромат, а вместе они создают безупречную комбинацию – кто пробовал, тот уже никогда не забудет!

Именно с таким шедевром русской кухни можно сравнить конструкцию крыши. Она не может быть однородной и монолитной – слишком много функций она выполняет, и слишком много требований к ней предъявляется. Быть одновременно и водонепроницаемым, и теплоизолирующим, и эффектно выглядящим, и несущим на себе огромную снеговую и ветровую нагрузку, не способен ни один материал. А вот несколько материалов, объединенных воедино – легко!

Таким образом, под кровельным «пирогом» понимается комбинация слоев, каждый из которых выполняет свою уникальную функцию – обеспечивает конструкционную прочность, пароизоляцию, вентиляцию, утепление и так далее.

Структура кровельного пирога для большинства типов крыш

Состав кровельного «пирога» в каждом конкретном случае определяется профессионалом-проектировщиком. Типов крыш – бесчисленное множество, и каждый из них характеризуется собственным набором слоев и порядком их следования. Например, в состав озелененных крыш входят противокорневая мембрана и дренажный слой, способный запасать воду для питания растений, на эксплуатируемых крышах могут находиться слои асфальта и гравия, а на инверсионных крышах порядок расположения материалов принципиально отличается от такового на любых других типах крыш.

Однако есть некоторые общие соображения, которые применимы к подавляющему большинству крыш.

  • Главным компонентом кровельного «пирога», несущим основную конструкционную нагрузку, является стропильная система. Она равномерно распределяет вес крыши по периметру стен, передавая его на фундамент. В зависимости от вида крыши, в состав стропильной системы могут входить стропила, мауэрлаты, ригели, лежни, подкосы и прочие элементы. Для плоских крыш основным несущим элементом являются железобетонные плиты или листы профнастила.
  • Многие материалы, входящие в состав кровельного «пирога», теряют свои свойства при наличии воды – утеплители хуже сохраняют тепло, деревянные элементы стропильной системы начинают гнить. Чтобы защитить конструкцию от паров воды, поднимающихся из внутренних помещений, используют паронепроницаемые материалы, образующие пароизоляционный слой. Он располагается под стропилами внутри дома. Внутренняя обшивка закрывает его от посторонних глаз и является базой для финишной отделки потолка. Особенно важную роль пароизоляционный слой играет в составе мансардных крыш, там, где непосредственно под кровлей расположены жилые отапливаемые помещения.
  • Теплоизоляционный слой обеспечивает комфортную температуру во внутренних помещениях дома. Теплоизоляция кровли может осуществляться с помощью самых разнообразных материалов минеральной или органической природы. Это и минеральная вата, и вспененный (EPS) или экструдированный (XPS) полистирол, и современные полиуретаны (PUR) и полиизоцианураты (PIR). Чаще всего утеплители выпускают в форме плит, реже встречаются маты, рулоны, иногда используют и более экзотические технологии, вроде задувной теплоизоляции.
  • Вентиляционный зазор формируется с помощью реек обрешетки и контробрешетки. С окружающей средой он контактирует в районе карнизного свеса и наверху, у конька. Циркуляция воздуха помогает просушить внутренние слои кровельного «пирога» в случае, если в них все-таки попала влага. Кроме того, правильное функционирование вентзазоров предотвращает образование сосулек и наледи на кровле.
  • Водоизоляционный слой расположен непосредственно под финишным кровельным покрытием и защищает уязвимые слои конструкции от возможных протечек воды сверху. Обычно для создания этого слоя используют диффузионные мембраны и различные перфорированные пленки. В идеале, подкровельные водоизоляционные материалы должны быть непроницаемыми для влаги, но проницаемыми для водяного пара. Этим условиям идеально отвечают диффузионные мембраны и, в меньшей степени, различные перфорированные пленки. Пар, случайно проникший из помещения из-за дефекта пароизоляции, получает шанс покинуть кровельную конструкцию, а не остаться навсегда внутри нее.
  • Кровельное покрытие. Это, собственно, то, что мы видим, глядя на крышу дома – керамическая или минеральная черепица, листы металла, соединенные по фальцевой технологии, битумная или металлочерепица, шифер, сланец или деревянная дранка. Задача этого слоя – обеспечение визуального «вау-эффекта», защита крыши от механических повреждений и проникновения воды.

Кровельное покрытие плоской крыши традиционно называется гидроизоляционным слоем или гидроизоляционным ковром. Иногда так же называют и водоизоляционный слой в составе скатных крыш, что вызывает терминологическую путаницу. Для финишного покрытия плоских крыш используют рулонные материалы на основе битума, полимерные мембраны, разнообразные мастики.

«Пирог» для утепленной крыши

Утепленная крыша требует наличия всех рассмотренных слоев:

  • Внутренняя облицовка со стороны помещения;
  • Контрбрус, фиксирующий пароизоляционный материал;
  • Собственно, пароизоляционный материал;
  • Утеплитель, находящийся между стропилами;
  • Водоизоляционный слой, зафиксированный на внешней поверхности стропильных ног;
  • Контробрешётка и обрешётка, формирующие вентиляционный зазор;
  • Кровельное покрытие.

Крыша дома с «холодным чердаком»

Холодное чердачное помещение

Понятие «холодный чердак» подразумевает наличие под кровлей нежилого и неотапливаемого помещения. Отсутствие людей сводит к минимуму содержание в воздухе водяного пара, а значит, пароизоляционным слоем можно пренебречь. Отсутствие отопления говорит о том, что необходимости беречь тепло в этом случае также нет, а значит, нет надобности и в утеплителях. В итоге, кровельный «пирог» приобретает предельно простой вид – поверх стропил раскатывается водоизоляционная пленка, с помощью деревянных брусков обрешетки формируется вентиляционный зазор и укладывается кровельное покрытие. Наличие вентзазора особенно важно, если в качестве финишного материала выбрана металлочерепица. Если произойдет протечка, то контакт внутренней стороны листа с намокшей пленкой быстро приведет к коррозии. Если же имеется вентиляционный зазор, то он поможет быстро и без последствий вывести влагу наружу.

«Мягкая» «холодная» крыша

«Мягкой» кровлей иногда называют крышу, покрытую битумной черепицей. Если вы планируете использовать именно этот кровельный материал, то стоит учесть, что состав «пирога» немного изменится. Основное отличие – необходимость монтажа сплошного настила. Он выполняется из водо- и атмосферостойких материалов – качественной фанеры или ОСП. Толщина этого слоя зависит от шага стропил и снеговой нагрузки в регионе строительства. Поверх настила располагают подкладочный ковер, он сглаживает дефекты основания и защищает настил от гниения при случайном проникновении воды под кровельное покрытие. Ну и, наконец, по поверхности подкладочного ковра укладывают битумную черепицу. При соблюдении всех правил монтажа, она образует качественное герметичное покрытие.

Пирог кровли под мягкую черепицу

Еще одно отличие такой кровли – водоизоляционный слой является опциональным. Его стоит предусмотреть, если в будущем вы планируете утеплять кровлю или же в случае, когда вентиляция кровли осуществляется через коньковый аэратор.

Плоская кровля

Наплавляемая кровля Икопал

Плоская кровля – редкая гостья в среде частного домостроения, она чаще всего украшает собой коммерческие и промышленные здания.

Плоские кровли могут быть:

  • Неэксплуатируемыми;
  • Эксплуатируемыми.

Неэксплуатируемая кровля не предполагает передвижения по ней людей и техники, а эксплуатируемая, соответственно, наоборот – для этого и предназначена. Некоторые типы эксплуатируемых крыш способны выдерживать только пешеходную нагрузку, а некоторые – легко справляются с автомобильной. Самый яркий пример – крыши стилобатов, на них могут располагаться как проезжие зоны, так и места для отдыха, спортивные и детские площадки, озелененные уголки.

В любом случае, в ее составе также можно выделить основные, уже знакомые нам, слои – несущую конструкцию, пароизоляцию, утеплитель и гидроизоляционный слой.

«Пирог» плоской неэксплуатируемой кровли

В качестве несущей конструкции могут использоваться:

  • Сборные или монолитные железобетонные плиты;
  • Профлист;
  • Сэндвич-панели.

Важный слой плоской кровли, которого нет в составе скатной крыши – разуклонка. Он имеет переменную толщину и служит для организации водоотведения. Иногда сами несущие конструкции располагают с требуемым уклоном (1-2%), но чаще всего уклон формируют с помощью цементно-песчаной стяжки, керамзита, гравия и даже теплоизоляционных плит особой клиновидной формы.

Устройство плоской неэксплуатируемой кровли из битумно-полимерных материалов Икопал

На плоских крышах не используют в качестве финишного покрытия штучные и листовые материалы – в этом случае невозможно обеспечить герметичность! Применяют только материалы, позволяющие организовать сплошной гидроизоляционный ковер – рулонные либо обмазочные. Ключевое свойство такого ковра – эластичность, достаточная для компенсации температурных и механических деформаций основания кровли.

«Пирог» плоской эксплуатируемой кровли

Его состав зависит от того, как именно будет эксплуатироваться кровля. Будут ли на ней присутствовать люди постоянно или изредка? В каком количестве? Будет ли на ней размещаться какое-то оборудование? Какого веса?

Основные слои и их расположение совпадают с рассмотренными в начале статьи, так как это обусловлено строгими законами строительной физики.

Структура пирога плоской эксплуатируемой кровли из битумно-полимерных материалов Икопал

Однако есть и интересные частные случаи, которые будут рассмотрены ниже.

Инверсионная кровля

Инверсионной называют особый вид плоской эксплуатируемой кровли, отличающейся нетипичным расположением слоев – утеплитель в ее составе расположен выше гидроизоляционного слоя, который фиксируется непосредственно на плите перекрытия. Жесткий плитный теплоизоляционный материал защищает гидроизоляцию от повреждения и служит основой для следующих слоев эксплуатируемой кровли. Поверх него может располагаться дренирующий слой гравия и субстрат для выращивания зеленых растений, или же брусчатка или даже асфальтовое покрытие.

Устройство инверсионной кровли из битумно-полимерных материалов Икопал

Балластная кровля

Балластная кровля – это еще один необычный тип плоской кровли, в котором гидроизоляционный слой никак не фиксируется на основании, а лишь прижимается каким-либо балластным материалом – гравием, тротуарной плиткой, террасной доской, субстратом для озеленения. Главное достоинство этой технологии – упрощение монтажа, ведь приклеивание или наплавление гидроизоляционных материалов – самая трудоемкая и ответственная часть работ на плоской кровле.

Структура пирога балластной кровли из кровельных материалов Икопал

Возвращаясь к кулинарным ассоциациям, следует отметить, что доверять процесс создания кровельного «пирога» стоит только профессиональным «поварам», которые не положат внутрь ничего сомнительного и не добавят к шампиньонам варенья или взбитых сливок. Выбирайте лучшие материалы, обращайтесь к лучшим специалистам!

Внутренняя отделка стен из газобетонных блоков

Отделка: процесс работ

Газобетон, хотя и имеет бетонную основу, является весьма пористым материалом. Размер пористой ячейки составляет порядка 1 мм. Благодаря этому в доме, построенном из такого строительного материала, создается вполне здоровый «дышащий» микроклимат – практически такой же, как в доме из деревянного бруса.

Газобетон обладает высокими паропропускными способностями — а это значит, что, как и дерево, он способен впитывать и накапливать влагу. Поэтому и внутренняя отделка стен из газобетонных блоков должна учитывать эту особенность.

Рассмотрим, как правильно подобрать материалы, какие методы и технологии использовать и какие работы предстоит выполнить, исходя из этого.

Содержание статьи

Требования, предъявляемые к внутренней отделке

Готовое помещение с отделкой

Выбирая материал для облицовки стен из газоблока, нужно помнить о его высокой гигроскопичности.

Поэтому возникают одновременно две задачи:

  1. Повысить уровень комфорта пребывания в помещении. Для этого нужно сделать, чтобы в помещении не происходило повышения влажности. Это может обеспечить паропроницаемая отделка и система вентиляции.
  2. Надежно защитить газоблочные стены от скопления сырости. Повышенная влажность внутри дома будет приводить к накоплению влаги в газобетоне и быстрому его разрушению. В таком случае, применяют паронепроницаемые материалы.

Утепление стены снаружи в разрезе

Отделка стен изнутри, возведенных из газоблока,, какой бы вариант материалов не был выбран, должна соответствовать строительным нормам.

Если это паропроницаемая облицовка, то она не должна приводить к малейшей задержке жидкости в газобетоне, а если паронепроницаемая — к скоплению сырости под слоем отделочного материала на поверхности стены. Эти проблемы решаются правильным выбором материалов и качественным их монтажом.

Вариант облицовки

Сравнение свойств паропроницаемой и паронепроницаемой отделки:

ПаропроницаемаяПаронепроницаемая
Многие профессиональные строители выбирают именно этот вариант.

Однако к выбору материала предъявляются крайне строгие требования.

Он должен отличаться высокой степенью паропроницаемости.

Это, прежде всего, такие материалы, как:

  • Гипс.
  • Песок перлитовый.
  • Известь гашеная.
  • Мел.
  • Доломит.
  • Дерево.

Паропроницаемые свойства позволяют не накапливаться в газобетонной стене влаге, если образуется конденсат. Это существенно продлевает его прочностные свойства и долговечность всей конструкции.

Паропроницаемая подходит для жилых помещений с нормальным уровнем влажности, в которых нужно сохранить здоровый микроклимат.

Паронепроницаемая отделка позволяет применять большее разнообразие материалов. Главное, чтобы в ходе эксплуатации сохранялись прочность облицовки и ее паронепроницаемые свойства.
  • Существует множество способов паронепроницаемой внутренней облицовки. Однако чаще всего, применяют самый дешевый и эффективный – нанесение штукатурки на основе цементно-песчаного раствора.
  • Главное в этом методе — обеспечить полноценную гидроизоляцию газоблочной стены как со стороны фундамента, так и помещения.
  • Если не выполнить эти требования, со временем, ввиду высокой гигроскопичности газобетона, штукатурка начнет отслаиваться, а стена подвергаться воздействию сырости.
  • Поэтому еще не маловажно устранить все возможные источники сырости и со стороны фасада и кровли.

Паронепроницаемая облицовка применяется в жилых помещениях с повышенной атмосферной влажностью, например, на кухне, в ванной комнате, сауне, бассейне, санузле, а также для внутренней отделки нежилых складских или производственных помещений.

Внимание! А вообще, паропроницаемость отделки изнутри зависит от варианта наружной. Если фасад, например, облицован кирпичом без вентзазора, или керамической плиткой, то внутри обязательно должна быть паронепроницаемая отделка, так как выходить пару будет некуда.

Цементная штукатурка, нанесенная изнутри

Какие виды отделки газоблочных стен бывают?

Наиболее популярные варианты:

  • Создание каркасно-навесной отделки гипсокартоном или пластиковыми/деревянными панелями.
  • Оштукатуривание.
  • Блочная кладка (декоративный кирпич, плитка, искусственный камень).
  • Финишное шпатлевание.
  • Окрашивание/нанесение обоев.

Облицовка керамической плиткой

Наиболее популярные методы отделки изнутри

Ход работ по отделке

Рассмотрим наиболее популярные методы отделки, их особенности, характеристики, эксплуатационные качества, достоинства, недостатки и сферу применения.

Вид отделкиОсобенности/характеристикиОбласть применения/достоинства/недостатки
Гипсокартон

Отделка при помощи гипсокартона

Установка гипсокартона осуществляется на предварительно монтированный деревянный, пластиковый или металлический каркас и имеет следующие особенности:
  • Поверхность грунтуется специальным пароизоляционным составом.
  • Каркас крепится с помощью специальных дюбелей по газобетону.
  • Для вентилируемости между листами гипсокартона и стеной должно сохраняться как минимум 5 см пространства.
  • При необходимости утепления вентилируемое пространство заполнятся базальтовыми или стекловолоконными плитами с обязательным параизоляционным слоем перед листами отделки.

Существуют как минимум три вида гипсокартона:

  • Стандартный, применяемых в помещениях с нормальной влажностью.
  • Водостойки, монтируемый в ванных комнатах, на кухнях, бассейнах.
  • Огнестойкий – используется для котельных и прочих помещений, где сохраняется высокая пожароопасность.

Как вариант отделки газоблочной стены можно применять пластиковые или деревянные панели. Их монтаж осуществляется по этим же правилам.

Преимущества:
  1. Улучшение эстетики интерьера.
  2. Создание максимально ровной и гладкой поверхности стены.
  3. Создает максимально возможное эффективное утепление ее изнутри.
  4. Придает стене дополнительные пароизолирующие свойства.
  5. Можно спрятать все коммуникации за навесную отделку
  6. Низкие трудозатраты и использование «чистых» материалов (по сравнению со штукатуркой или кладкой декоративной плитки или кирпичей)

Недостатки:

  • Необходимость создания каркаса и его правильное крепление из пористого материала.
  • Для помещений с большой влажностью нужно выполнять хорошую пароизоляцию и правильно подбирать материал по валгостойкости.
  • Каркасная отделка гипсокартоном «съедает» полезный объем помещения.
  • При использовании гипсокартона требуется дополнительная финишная отделка (шпаклевка, грунтовка, покраска или наклеивание обоев).

Деревянные и пластиковые панели лучше всего применимы для помещений с высокой степенью увлажненности воздуха. Это могут быть кухонные помещения, бани, санузлы, бассейны.

Гипсокартон в зависимости от типа применяется во всех видах помещений.

Штукатурка

Штукатурка

Процессу штукатурки обязательно предшествует нанесение на поверхность гидроизолирующей грунтовки. В дальнейшем процесс оштукатуривания состоит из следующих этапов:
  • Монтаж армирующей сетки. Для максимальной надежности ее закрепления используются специальные дюбеля по газобетону.
  • Выставление выравнивающих маячков. Расстояние между ними должно быть не больше ширины правила.
  • Приготовление раствора и нанесение его с установленной на стену армирующей сеткой.
  • После того как штукатурка схватится (если она имеет гипсовую основу, то это несколько минут), ее шлифуют и при необходимости шпаклюют.
  • В дальнейшем штукатурка подвергается финишной доводке. Это может быть покраска, побелка, нанесение обоев, кладка декоративной плитки.

Если штукатурка паропроницаемая материал финишной отделки должен иметь такое же свойство. В качестве материала для штукатурки лучше всего использовать специальные, обладающие высокими адгезионными свойствами сухие смеси. Инструкция с фото (картинками), как правильно разводить смесь и пользоваться, обычно прилагается к упаковке.

В основе штукатурных смесей в качестве связующего компонента применяют цемент или гипс/известь.
  • Цементно-песчаная/известковая штукатурка имеет паронепроницаемые свойства. Ее применяют для максимальной гидроизоляции стены в помещениях с высоким показателем влажности.
  • Гипсово-известковая штукатурка дает возможность сохранить здоровый микроклимат в жилом помещении.

Однако, чтобы газобетон не напитывался влагу, оштукатуривать его можно только там, где уровень атмосферной влажности на приемлемом уровне.

Преимущества оштукатуривания:

  • Улучшение эстетических качеств помещения.
  • Создание гидроизоляции (для паронепроницаемых штукатурок).
  • Улучшение тепло- и шумоизоляции.
  • Упрочнение газобетонной стены, особенно когда снаружи выполняется этим же методом. В таком случае толщина стены возрастает минимум на 10-15 см.

Недостатки:

  • Оштукатуривание достаточно сложный процесс, требующий умений и большого физического труда.
  • При не соблюдении технологии и неправильном подборе материала штукатурка растрескивается, отслаивается и разрушается, а также приводит к скоплению сырости, плесени и грибка на поверхности газобетона.
Блочная декоративная кладка (плитка, кирпич, камень)

Декоративная отделка

 Отделка снаружи часто выполняется в виде кладки декоративного кирпича/камня/плитки. Однако в последнее время этот метод начал применяться и для внутренних облицовочных работ.

Единственное отличие заключается в выборе материала. Для внутренней отделки предпочтительнее использовать паропроницаемые материалы:

  • Гипс.
  • Известь.
  • Песок.
  • Глина.

Естественно, использование изделий для внутренней декоративной блочной кладки из таких материалов имеет целью сохранение в помещении здорового микроклимата.

Если же главной задачей является создание максимальной гидроизоляции, то лучше использовать те же материалы, что применяются для наружной облицовки.

  • Цемент.
  • Пластик.
  • Кирпич.
  • Кафель.

Сегодня отделка выполняется с помощью так называемого искусственного камня. В его основе могут использоваться самые разные компоненты, но чаще всего гипс, известь и песок разных модификаций.

В целом, технология внутренней блочной кладки сходна с процессом оштукатуривания: так же требуется предварительная подготовка и грунтование.

 Декоративная блочная кладка применяется во внутренней отделке помещений различного назначения – от жилых/офисных до производственных и складских.

Для ванных комнат, кухонь, санузлов, бассейнов, саун и бань лучше использовать кафельную плитку или блоки из водостойких материалов.

Преимущество:

  • Большой ассортимент изделий по форме, цвету, текстуре, благодаря чему можно создавать неповторимое оформление интерьера.
  • Не требует финишной доводки.
  • При использовании паропроницаемых материалов сохраняется здоровый климат в помещении.
  • При использовании водонепроницаемых материалов можно добиться хорошей пароизоляции.
  • Повышается тепло/шумоизоляция помещения.
  • При использовании современных легких декоративных материалов конструкция стен и фундамента не несет существенной нагрузки.
  • Сглаживаются неровности.

Недостатки:

  • При неправильном выборе материалов и технологии в ходе эксплуатации возможно намокание стен под кладкой с последующим отставанием декоративных блоков.
  • При создании кладки на основе паронепроницаемых материалов в помещении должна быть хорошая система вентиляции.
  • При использовании декоративных блоков достаточной большой толщины (от 5 см) уменьшается объем помещения.
Финишное шпатлевание

Финишное шпатлевание стен

Финишное шпатлевание, как один из вариантов окончательной отделки и как подготовка перед окрашиванием или наклеиванием обоев.

В качестве материала используется специальная промышленно изготовленная финишная шпатлевка на гипсовой основе.

Краска и обои, наносимые на финишное покрытие, должны быть изготовлены исключительно из паропроницаемых материалов.

Краски должны иметь силикатную или силиконовую основу, а обои – бумажную.

 Применяется для выравнивания стен. Материал шпатлевки паропроницаемый, поэтому применять его можно в помещениях с нормальной влажностью воздуха.

Шпатлевка имеет следующие достоинства:

  • Шпатлевку можно наносить непосредственно на подготовленную стену, минуя процесс оштукатуривания.
  • Не требует особых финансовых вложений и трудовых затрат.
  • Не уменьшает объем и хорошо выравнивает основание перед покраской или нанесением обоев.

Недостатки:

  • Шпатлевание без оштукатуривания не отличается достаточной прочностью.
  • Легко разрушается под действием сырости.
  • Неправильный подбор краски и обоев приведет к отсыреванию и порче финишного покрытия и самой стены.

 

Покраска и нанесение обоев.

Покраска поверхности

Окраска и нанесение обоев несет в себе не только декоративную функцию, но и способ создания пароизоляции.

Обои, как и краска, может иметь как паропроницаемые, так и паронепроницаемые свойства.

Перед нанесением обоев или краски поверхность должна быть подготовлена:

  • Очищена от грязи, пыли, следов раствора и строительного мусора.
  • Выровнена.
  • Прогрунтована.
  • При необходимости, зашпатлевана.

Обои могут быть:

  1. Бумажные.
  2. Флизелиновые.
  3. Виниловые.
  4. Моющиеся.
  5. Жидкие.

Все красящие вещества подразделяются на водостойкие и паропроницаемые.

Водостойкие – это преимущественно акриловые, а паропропускаемые – силикатные или минеральные.

В зависимости от типа помещения, его назначения, системы вентиляции и показателя влажности подбирается водостойкая или, наоборот, паропроницаемая основа красящих веществ и обоев.

Достоинства:

  • Низкая цена и минимальные трудовые затраты.
  • Не уменьшает полезного объема помещения.
  • Большой выбор цветов и оттенков.

Недостатки:

  • Минимальные пароизолирующие свойства. При большой влажности одной краски или обоев будет недостаточно для надежной изоляции поверхности от влаги и сырости.
  • Не улучшает шумо- и теплоизоляцию (если не используется хотя бы предварительнае финишное шпатлевание).
  • При неправильном выборе материалов и способа нанесения происходит накопление влаги.

Монтаж гипсокартона

Видео-материал

Отделка стен дома из газобетонных блоков изнутри:

Критерии выбора способа отделки

Черновая отделка

При выборе способа внутренней отделки газоблосной конструкции для конкретного помещения необходимо исходить прежде всего из его назначения и климатических параметров, а также возможности их изменения, бюджета и личных предпочтений или дизайнерских задумок.

Для тех, кто только начинает осваивать это нелегкое мастерство, видео в этой статье показывает, с чего нужно начать, как выбрать материалы и сделать облицовку своими руками.

Оштукатуривание своими руками

Частный дом

Отделка газобетонного дома внутри

В собственном доме из газоблоков существуют как минимум три типа помещения:

  1. С нормальным уровнем влажности (залы, спальни, гостиные, детские, прихожие). Для отделки лучше использовать обычный гипсокартон, деревянные панели, бумажные обои, водопроницаемую краску и паропроницаемую штукатурку или декоративные блоки из гипса, песка и извести.
  2. С высоким уровнем влажности (кухни, санузлы, сауны, бассейн, придверная область, выходящая на улицу). Лучше использовать водостойкий гипсокартон, пластиковые панели и кафельную плитку.
  3. Хозяйственного назначения, в которых уровень влажности может колебаться (кладовые, цоколи, котельные). В идеале здесь нужно применять цементно-песчаную штукатурку, для топочных помещений применимы огнестойкие материалы.

Внутренняя чистовая облицовка газобетонного дома

Офисные помещения, общественные учреждения

Грунтование стен офисного помещения

Отделка внутренних стен помещений общественного назначения должна быть основана на тех видах материалов, которые обеспечивают максимальную долговечность конструкции здания и, естественно, отвечают дизайнерской мысли в оформлении интерьера.

Помещения, расположенные вдали от входов/выходов, лучше облицовывать паропроницаемыми материалами, а находящие вблизи и контактирующие с атмосферой улицы – из водостойких.

Отделка офиса

Цеха, склады, терминалы

Подготовка поверхности

Помещения производственного и складского назначения – это всегда источник влаги, сырости и постоянного колебания температуры. Поэтому, облицовка стен из газобетона изнутри, в таких зданиях должна осуществляться с использованием водостойких и паронепроницаемых материалов.

Паропроницаемые стены, нужны ли они. Сравнение разных видов утеплителей Паропроницаемость теплоизоляционных материалов

Прежде всего, нужно сказать о том, что о паропроницаемых (дышащих) и пароНЕпроницаемых (не дышащих) стенах я буду рассуждать не в категориях хорошо\плохо, а буду их рассматривать как два альтернативных варианта. Каждый из этих вариантов совершенно правильный, если его выполнить со всеми полагающимися требованиями. То есть, я не отвечаю на вопрос «нужны ли паропроницаемые стены», а рассматриваю оба варианта.

Итак, паропроницаемые стены дышат, пропускают через себя воздух (пар), а пароНЕпроницаемые стены не дышат, не пропускают через себя воздух (пар). Паропроницаемые стены сделаны только из паропроницаемых материалов. ПароНЕпроницаемые стены содержат в своей конструкции хотя бы один слой пароНЕпроницаемого материала (этого достаточно, чтобы вся стена в целом стала пароНЕпроницаемой). Все материалы делятся на паропроницаемые и пароНЕпроницаемые, это не хорошо, не плохо,- это такая данность:-).

Теперь посмотрим, что всё это означает, когда эти стены включаются в реальный дом (квартиру). Конструктивные возможности паропроницаемых и пароНЕпроницаемых стен мы в этом вопросе не рассматриваем. И такую, и такую стену можно сделать прочной, жесткой и тд. Основные различия получаются в таких двух вопросах:

Теплопотери. Через паропроницаемые стены, естесственно, происходят дополнительные теплопотери (вместе с воздухом уходит и тепло). Надо сказать, что эти теплопотери совсем небольшие (5-7% от общих). Величина их влияет на толщину теплоизоляции и мощность отопления. При расчете толщины (стены, если она без утеплителя, или самого утеплителя), учитывается коэффициент паропроницаемости. При расчете теплопотерь для подбора отопления тоже учитывается потери тепла, вследствие паропроницаемости стен. То есть, эти потери никуда не теряются, их учитывают при расчете того, на что они влияют. И, более того, мы уже сделали достаточно таких расчетов (по толщине утеплителя и теплопотерь для расчета мощности отопления), и вот что видно: разница в цифрах есть, но она такая маленькая, что реально не может повлиять ни на толщину утеплителя, ни на мощность отопительного прибора. Объясню: если при паропроницаемой стене нужно, например, 43 мм утеплителя, а при пароНЕпроницаемой- 42мм, то это все равно 50мм, в обоих вариантах. То же самое с мощностью котла, если по теплопотерям общим, понятно, что нужен котел на 24кВт, например, то только из-за паропроницаемости стен не получится следующий по мощности котел.

Вентиляция. Паропроницаемые стены участвуют в воздухообмене в помещении, а пароНЕпроницаемые стены- не участвуют. В помещении должен быть приток и вытяжка, они должны соответствовать норме и быть примерно равны. Для того, чтобы понять, сколько в доме\квартире должно быть притока и вытяжки (в м3 в час) делается расчет по вентиляции. В нем учитываются все возможности притока и вытяжки, считается норма для этого дома\квартиры, сравниваются реалии и норма, и рекомендуются методы доведения до нормы мощности притока и вытяжки. Так вот что получается по итогу этих расчетов (мы их уже тоже немало сделали): как правило, в современных домах не хватает притока. Это получается потому, что современные окна паронепроницаемые. Раньше эту вентиляцию никто для частного жилья не считал, так как приток нормально обеспечивался старыми деревянными окнами, негерметичными дверями, стенами с щелями, и тд. А теперь, если взять новое строительство, так почти все дома с пластиковыми окнами, и не менее половины с пароНЕпроницаемыми стенами. И притока воздуха в таких домах (постоянного) практически нет. Вот, можно посмотреть примеры расчетов по вентиляции, в темах:

Конкретно по этим домам видно, что приток через стены (если они паропроицаемые), составит только около 1\5 требуемого притока. То есть, вентиляцию надо нормально проектировать (считать) по любому, какие не были бы стены и окна. Только паропроницаемые стены, и всё,- нужного притока всё равно не обеспечивают.

Иногда вопрос о паропроницании стен становится актуальным в такой ситуации. В старом доме\квартире, который жил себе нормально с паропроницаемыми стенами, старыми деревянными окнами, и с одним вытяжным каналом в кухне, начинают менять окна (на пластиковые), потом, например, стены утепляют пенопластом (снаружи, как положено). Начинаются мокрые стены, плесень и тд. Вентиляция перестала работать. Притока нет, без притока вытяжка не работает. Отсюда, как мне кажется, вырос миф об «ужасном пенопласте», которым как только утеплить стену,- сразу начнется плесень. А дело тут в комплексе вопросов по вентиляции и утеплению, а не в «ужасности» того или иного материала.

По поводу того, что Вы пишете «невозможно сделать герметичные стены». Это не совсем так. Можно вполне их делать (с определенным приближением к герметичности), и их делают. Мы сейчас как раз готовим статью о таких домах, где полностью герметичные окна\стены\двери, весь воздух подается через систему рекуперации, и тд. Это принцип так называемых «пассивных» домов, об этом мы скоро расскажем.

Таким образом, вот вывод: выбирать можно и паропроницаемую стену, и пароНЕпроницаемую. Главное, грамотно решить все сопутствующие вопросы: по правильной теплоизоляции и компенсации теплопотерь, и по вентиляции.

Вот и дождался. Не знаю как Вы, а я давно хотел поэкспериментировать. А то всё теория да теория. На мои вопросы она не отвечала. Имею ввиду теплотехнический расчет по ДБН. И вот собрал я образцы и решил с ними поэкспериментировать. Мне интересно, как поведет себя материал при воздействии на него паром.

Вооружился чем мог. Двумя пароварками, кастрюлями с аккумуляторами холода, секундомером и пирометром. Ах, да… Еще ведром с водой для четвертого опыта с погружением образцов. И погнал… 🙂

Результаты эксперимента на паропроницаемость и инерционность, я свел в таблицу.

Вообще опыт пошел не так. Несмотря на разную теплопроводность материалов, температура поверхности образцов в первом опыте с пароизолирующим слоем практически не отличалась. Я подозреваю что пар с пароварки, который вырывался наружу, нагревал и поверхность образцов. Как только я обдувал образцы, температура падала на 1-2 градуса. Хотя в принципе, динамика роста температуры сохранялась. А меня это интересовало больше, ведь сами условия проведения опыта далеки от реальных.

Что меня удивило. Это Бетоль. Второй опыт без пароизоляции. Не стоит считать такое поведение утеплителя недостатком. В моём опыте сам Бетоль был представителем паропроницаемых утеплителей. Думаю минераловатные утеплители повели-бы себя так-же, но с более быстрой динамикой.

Опыт очень показателен. Резкий рост температуры (большие теплопотери) из-за паропроницаемости и последующее охлаждение материала при начале испарения воды с поверхности. Утеплитель прогрелся на столько, что это позволило ему выводить наружу воду в парообразном состоянии и таким образом себя охлаждать.

Газоблок 420 кг/м3. Он меня разочаровал. Нет! Не в плане качества! Просто он явно показал что эгоист! 🙂 С ним лучше не проектировать многослойные стены. Из-за более высокой паропропускной способности, он хуже удерживал теплый пар, чем плотный пеноблок. Это говорит о том, что в случае применения этого материала, весь температурно-влажностный удар примет паропроницаемый утеплитель. В общем, берите газоблок поплотней, потолще, а на внутренние стены клейте материалы с низкой паропроницаемостью (виниловые обои, пластиковая вагонка, масляная покраска и тд)…

А как вам пеноблок с высокой плотностью (представитель инерционных материалов)? Ну разве это не прелесть? Ведь он нам четко показал, как ведет себя инерционный материал при накоплении тепла. Хочу отметить, что снимая его с пароварки мне было горячо. Его температура была явно выше Бетоля и Газоблока. За то-же время воздействия он смог аккумулировать больше тепла, что привело и к более высокой температуре материала на 2-3 градуса.

Анализируя таблицу я получил много ответов и еще больше убедился в том, что в нашем климате надо строить инерционные дома и Вы точно сэкономите на отоплении…

С Уважением, Александр Терехов.

Паропроницаемость — способность материала пропускать или задерживать пар в результате разности парциального давления водяного пара при одинаковом атмосферном давлении по обеим сторонам материала. Паропроницаемость характеризуется величиной коэффициента паропроницаемости или величиной коэффициента сопротивления проницаемости при воздействии водяного пара. Коэффициент паропроницаемости измеряется в мг/(м·ч·Па).

В воздухе всегда содержится какое-то количество водяного пара, причем в теплом всегда больше, чем в холодном. При температуре внутреннего воздуха 20 °С и относительной влажности 55% в воздухе содержится 8 г водяных паров на 1 кг сухого воздуха, которые создают парциальное давление 1238 Па. При температуре –10°С и относительной влажности 83% в воздухе содержится около 1 г пара на 1 кг сухого воздуха, создающего парциальное давление 216 Па. Из-за разницы парциальных давлений между внутренним и наружным воздухом через стену происходит постоянная диффузия водяных паров из теплого помещения наружу. В результате в реальных условиях эксплуатации материал в конструкциях находится в несколько увлажненном состоянии. Степень увлажнения материала зависит от температурно-влажностных условий снаружи и внутри ограждения. Изменение коэффициента теплопроводности материала в эксплуатируемых конструкциях учитывается коэффициентами теплопроводности λ(A) и λ(Б), которые зависят от зоны влажности местного климата и влажностного режима помещения.
В результате диффузии водяных паров в толще конструкции происходит движение влажного воздуха из внутренних помещений. Проходя через паропроницаемые конструкции ограждения, влага испаряется наружу. Но если у наружной поверхности стены расположен слой материала, не пропускающий или плохо пропускающий водяные пары, то влага начинает скапливаться у границы паронепроницаемого слоя, вызывая отсыревание конструкции. В результате теплозащита влажной конструкции резко понижается, и она начинает промерзать. в данном случае возникает необходимость установки пароизоляционного слоя с теплой стороны конструкции.

Вроде бы всё относительно просто, но про паропроницаемость зачастую вспоминают только в контексте «дышащести» стен. Однако, это краеугольный камень в выборе утеплителя! К нему нужно подходить очень и очень осторожно! Нередки случаи, когда домовладелец утепляет дом, исходя лишь из показателя теплосопротивления, например, деревянный дом пенопластом. В результате получает загнивающие стены, плесень по всем углам и винит в этом «неэкологичный» утеплитель. Что касается пенопласта, то из за своей малой паропроницаемости его нужно использовать с умом и очень хорошо подумать, подходит ли он вам. Именно по этому показателю зачастую ватные или любые другие пористые утеплители подходят лучше для утепления стен снаружи. Кроме того, с ватными утеплителями сложнее ошибиться. Однако, бетонные или кирпичные дома можно без опасений утеплять и пенопластом — в этом случае пенопласт «дышит» лучше, чем стена!

В таблице ниже приведены материалы из списка ТКП, показатель паропроницаемости — последний столбец μ.

Как понять, что такое паропроницаемость, и зачем она нужна. Многие слышали, а некоторые и активно употребляют термин «дышашие стены» — так вот, «дышашими» такие стены называют потому, что они способны пропускать воздух и водяной пар через себя. Некоторые материалы (например, керамзит, дерево, все ватные утеплители) хорошо пропускают пар, а некоторые очень плохо (кирпич, пенопласты, бетон). Выдыхаемый человеком, выделяемый при приготовлении пищи или принятии ванной пар, если в доме нет вытяжки, создаёт повышенную влажность. Признаком этого является появление конденсата на окнах или на трубах с холодной водой. Считается, что если стена имеет высокую паропроницаемость, то в доме легко дышится. На самом же деле, это не совсем так!

В современном доме, даже если стены сделаны из «дышащего» материала, 96% пара удаляется из помещений через вытяжку и форточку, и только 4% через стены. Если на стены наклеены виниловые или флизиленовые обои, то стены влагу не пропускают. А если стены действительно «дышащие», то есть без обоев и прочей пароизоляции, в ветренную погоду из дома выдувает тепло. Чем выше паропроницаемость конструкционного материала (пенобетон, газобетон и прочие тёплые бетоны), тем больше он может набрать влаги, и как следствие, у него более низкая морозостойкость. Пар, выходя из дома через стену, в «точке росы» превращается в воду. Теплопроводность отсыревшего газоблока увеличивается многократно, то есть в доме будет, мягко говоря, очень холодно. Но самое страшное, что при падении ночью температуры, точка росы смещается внутрь стены, а конденсат, находящийся в стене замерзает. Вода при замерзании расширяется и частично разрушает структуру материала. Несколько сотен таких циклов приводят к полному разрушению материала. Поэтому паропроницаемость строительных материалов может сослужить вам плохую службу.

Про вред повышенной паропроницаемости в интернете гуляет с сайта на сайт . Приводить её содержание на своём сайте я не буду в силу некоторого несогласия с авторами, однако избранные моменты хочется озвучить. Так, например, известный производитель минерального утеплителя, компания Isover, на своём англоязычном сайте изложила «золотые правила утепления» (What are the golden rules of insulation? ) из 4-х пунктов:

    Эффективная изоляция. Используйте материалы с высоким термическим сопротивлением (низкой теплопроводностью). Самоочевидный пункт, не требующий особых комментариев.

    Герметичность. Хорошая герметичность является необходимым условием для эффективной системы теплоизоляции! Негерметичная теплоизоляция, независимо от её коэффициента теплоизоляции, может увеличивать потребление энергии от 7 до 11% на отопление здания. Поэтому о герметичности здания следует задумываться ещё на стадии проектирования. А по окончании работ проверить здание на герметичность.

    Контролируемая вентиляция. Именно на вентиляцию возлагается задача по удалению излишней влажности и пара. Вентиляция не должа и не может осуществляться за счёт нарушения герметичности ограждающих конструкций!

    Качественный монтаж. Об этом пункте, я думаю, тоже нет нужды говорить.

Важно отметить, что компания Isover не выпускает какие-либо пенопластовые утеплители, они занимаются исключительно минераловатными утеплителями, т.е. продуктами, имеющими наиболее высокий показатель паропроницаемости! Это действительно заставляет задуматься: как же так, вроде бы паропроницаемость необходима для отвода влаги, а производители рекомендуют полную герметичность!

Дело тут в недопонимании этого термина. Паропроницаемость материалов не предназначена для отвода влаги из жилого помещения — паропроницаемость нужна для отвода влаги из утеплителя ! Дело в том, что любой пористый утеплитель не является по сути самим утеплителем, он лишь создаёт структуру, удерживающую истинный утеплитель — воздух — в замкнутом объёме и по возможности неподвижным. Если вдруг образуется такое неблагоприятное условие, что точка росы оказывается в паропроницаемом утеплителе, то в нём будет конденсироваться влага. Эта влага в утеплителе берётся не из помещения! Воздух сам всегда содержит в себе какое-то количество влаги, и именно эта естественная влага и представляет угрозу утеплителю. Вот для отвода этой влаги наружу и нужно, чтобы после утеплителя были слои с не меньшей паропроницаемостью.

Семья из четырёх человек за сутки в среднем выделяет пар, равный 12 литрам воды! Эта влага из воздуха внутренних помещений никоим образом не должа попадать в утеплитель! Куда девать эту влагу — это вообще не должно никоим образом волновать утеплитель — его задача лишь утеплять!

Пример 1

Давайте разберём вышесказанное на примере. Возьмём две стены каркасного дома одинаковой толщины и одинакового состава (изнутри к наружному слою), отличатся буду они только видом утеплителя:

Лист гипсокартона (10мм) — OSB-3 (12мм) — Утеплитель (150мм) — ОSB-3 (12мм) — вентзазор (30мм) — ветрозащита — фасад.

Утеплитель выберем с абсолютно одинаковой теплопроводностью — 0,043 Вт/(м °С), основное, десятикратное отличие между ними только в паропроницаемости:

Плотность ρ= 12 кг/м³.

Коэффициент паропроницаемости μ= 0.035 мг/(м ч Па)

Коэф. теплопроводности в климатических условиях Б (худший показатель) λ(Б)= 0.043 Вт/(м °С).

Плотность ρ= 35 кг/м³.

Коэффициент паропроницаемости μ= 0.3 мг/(м ч Па)

Конечно, условия расчёта я тоже использую абсолютно одинаковые: температура внутри +18°С, влажность 55%, температура снаружи -10°С, влажность 84%.

Расчёт я провел в теплотехническом калькуляторе , кликнув по фото, вы перейдёте прямо на страницу расчёта:

Как видно из расчёта, теплосопротивление обоих стен совершенно одинаково (R=3.89), и даже точка росы у них расположена почти одинаково в толще утеплителя, однако, из за высокой паропроницаемости в стене с эковатой будет конденсироваться влага, сильно увлажняя утеплитель. Как бы ни была хороша сухая эковата, сырая эковата тепло держит во много раз хуже. А если допустить, что температура на улице опустится до -25°С, то зона конденсации составит почти 2/3 утеплителя. Такая стена не удовлетворяет нормам по защите от переувлажнения! С пенополистиролом ситуация принципиально другая потому, что воздух в нём находится в замкнутых ячейках, ему просто неоткуда набрать достаточное количество влаги для выпадения росы.

Справедливости ради нужно сказать, что эковату без пароизоляционных плёнок не укладывают! И если добавить в «стеновой пирог» пароизоляционную плёнку между ОSB и эковатой с внутренней стороны помещения, то зона конденсации практически выйдет из утеплителя и конструкция полностью будет удовлетворять требованиям по увлажнению (см. картинку слева). Однако, устройство пароиозяции практически лишает смысла размышления о пользе для микроклимата помещения эффекта «дыхания стены». Пароизоляционная мембрана имеет коэффициент паропроницаемости около 0,1 мг/(м·ч·Па), а порой пароизолируют полиэтиленовыми плёнками или утеплителями с фольгированной стороной — их коэффициент паропроницаемости стремится к нулю.

Но низкая паропроницаемость тоже далеко не всегда хороша! При утеплении достаточно хорошо паропроницаемых стен из газо- пенобетона экструдированным пенополистиролом без пароизоляции изнутри в доме непременно поселится плесень, стены будут влажными, а воздух будет совсем не свеж. И даже регулярное проветривание не сможет высушить такой дом! Давайте смоделируем ситуацию, противоположную прошлой!

Пример 2

Стена на этот раз будет состоять из следующих элементов:

Газобетон марки D500 (200мм) — Утеплитель (100мм) — вентзазор (30мм) — ветрозащита — фасад.

Утеплитель выберем точно такой же, и более того, стену сделаем с точно таким же теплосопротивлением (R=3.89).

Как видим, при совершенно равных теплотехнических характеристиках мы можем получить радикально противоположные результаты от утепления одними и теми же материалами!!! Нужно отметить, что во втором примере обе конструкции удовлетворяют нормам по защите от переувлажнения, не смотря на то, что зона конденсации попадает в газосиликат. Такой эффект связан с тем, что плоскость максимального увлажнения попадает в пенополистирол, а из за его низкой паропроницаемости в нём влага не конденсируется.

В вопросе паропроницаемости нужно разобраться досконально ещё до того, как вы решите, как и чем вы будете утеплять свой дом!

Слоёные стены

В современном доме требования к теплоизоляции стен столь высоки, что однородная стена уже не способна соответствовать им. Согласитесь, при требовании к теплосопротивлению R=3 делать однородную кирпичную стену толшиной 135 см не вариант! Современные стены — это многослойные конструкции, где есть слои, выполняющие роль теплоизоляции, конструктивные слои, слой наружной отделки, слой внутренней отделки, слои паро- гидро- ветро-изоляций. В связи с разнообразными характеристиками каждого слоя очень важно правильно их располагать! Основное правило в расположении слоёв конструкции стены таково:

Паропроницаемость внутреннего слоя должна быть ниже, чем наружного, для свободного выходы пара за стены дома. При таком решении «точка росы» перемещается к наружной стороне несущей стены и не разрушает стен здания. Для предотврощения выпадения конденсата внутри ограждающей конструкции сопротивление теплопередаче в стене должно уменьшаться, а сопротивление паропроницанию возрастать снаружи внутрь.

Думаю, нужно это проиллюстрировать для лучшего понимания.

При проведении строительных работ нередко приходится сравнивать свойства разных материалов. Это нужно для того, чтобы подобрать наиболее подходящий из них.

Ведь там, где хорош один из них, совсем не подойдет другой. Поэтому, осуществляя теплоизоляцию, нужно не просто утеплить объект. Важно выбрать утеплитель, подходящий именно для данного случая.

А для этого нужно знать характеристики и особенности разных видов теплоизоляции. Вот об этом мы и поговорим.

Что такое теплопроводность

Для обеспечения хорошей теплоизоляции важнейшим критерием является теплопроводность утеплителей. Так называется передача тепла внутри одного предмета.

То есть, если у одного предмета одна его часть теплее другой, то тепло будет переходить от теплой части к холодной. Тот же самый процесс происходит и в здании.

Таким образом, стены, крыша и даже пол могут отдавать тепло в окружающий мир. Для сохранения тепла в доме этот процесс нужно свести к минимуму. С этой целью используют изделия, имеющие небольшое значение данного параметра.

Таблица теплопроводности

Обработанную информацию об этом свойстве разных материалов можно представить в виде таблицы. К примеру, вот так:

Здесь присутствуют всего два параметра. Первый – это коэффициент теплопроводности утеплителей. Второй – толщина стены, которая потребуется для обеспечения оптимальной температуры внутри здания.

Взглянув на эту таблицу, становится очевидным следующий факт. Построить комфортное здание из однородных изделий, например, из полнотелых кирпичей, невозможно. Ведь для этого потребуется толщина стены не менее 2,38м.

Поэтому для обеспечения нужного уровня тепла в помещениях требуется теплоизоляция. И первым и важнейшим критерием ее отбора является вышеуказанный первый параметр. У современных изделий он не должен быть более 0.04 Вт/м°С.

Совет!
При покупке обратите свое внимание на следующую особенность.
Изготовители, указывая на своих изделиях теплопроводность утеплителя, часто используют не одну, а целых три величины: первая – для случаев, когда материал эксплуатируется в сухом помещении с температурой в 10ºС;второе значение – для случаев эксплуатации опять же, в сухом помещении, но с температурой в 25 ºС; третья величина – для эксплуатации изделия в разных условиях влажности.
Это может быть помещение с влажностью категории А или В.
Для ориентировочного расчета следует использовать первое значение.
Все остальные нужны для проведения точных расчетов. О том, как они осуществляются, можно узнать из СНиП II-3-79 «Строительная теплотехника».

Иные критерии выбора

При выборе подходящего изделия должна учитываться не только теплопроводность и цена товара.

Нужно обратить внимание и на иные критерии:

  • объемный вес утеплителя;
  • формостабильность данного материала;
  • паропроницаемость;
  • горючесть теплоизоляции;
  • звукоизоляционные свойства изделия.

Рассмотрим эти характеристики подробнее. Начнем по порядку.

Объемный вес утеплителя

Объемным весом называется масса 1 м² изделия. Причем в зависимости от плотности материала эта величина может быть различной – от 11 кг до 350 кг .

Вес теплоизоляции непременно нужно учитывать, особенно проводя утепление лоджии. Ведь конструкция, на которую крепится утеплитель, должна быть рассчитана на данный вес. В зависимости от массы будет отличаться и способ монтажа теплоизолирующих изделий.

Определившись с данным критерием, нужно учесть и иные параметры. Это объемный вес, формостабильность, паропроницаемость, горючесть и звукоизоляционные свойства.

В представленном видео в этой статье вы найдете дополнительную информацию по данной теме.

Главная » Водоснабжение » Паропроницаемые стены, нужны ли они. Сравнение разных видов утеплителей Паропроницаемость теплоизоляционных материалов

Какая толщина в мил для пароизоляции вашего пространства для ползания

Ползания под старыми домами обычно вентилируются, что означает, что в них есть небольшие отверстия, позволяющие воздуху свободно проходить между ползком и снаружи. Однако на практике эти вентиляционные отверстия плохо справляются с циркуляцией воздуха, поэтому влага, попадающая под дом, будет там оставаться. Во влажном климате особенно опасны вентилируемые пространства для подполья. Насыщенный влагой воздух попадает в пространство для ползания и конденсируется в капли воды на холодных трубах и бетонных стенах, что способствует развитию плесени, грибка, плесени и бактерий.

К счастью, вентилируемые рабочие места можно закрыть с помощью надлежащей установки пароизоляции. Толщина пароизоляции колеблется от 6 до 20 мил, при этом 6 мил — это минимум, а 20 мил — самый прочный и устойчивый к проколам.

Зачем нужен пароизоляционный барьер?

Закрытие пространства для обхода может предотвратить проникновение грызунов, насекомых или других вредителей в ваш дом. Влага создает гостеприимную среду для нежелательных гостей, и, если ее не принять во внимание, влага может разрушить черновой пол вашего дома, а вместе с ним и фундамент.В зависимости от степени повреждения стоимость очистки и / или ремонта подвесного пространства может быть значительно выше, поэтому превентивная мера — установка пароизоляции — является предпочтительным курсом действий.

Герметизация открытого пространства пароизоляцией также может предотвратить накопление влаги в полах и жилом пространстве, уберегая ваш дом от гнили и плесени. Кроме того, вы получите значительную экономию энергии.

Пароизоляционные материалы для ползания

Армированный полиэтиленовый пластиковый лист (поли) бывает разной толщины и прочности.Полиуретан толщиной 6 мил обычно используется в качестве пароизоляции и предлагает домовладельцу краткосрочную экономию. Однако эта экономия может быть потеряна в долгосрочной перспективе, если кто-то будет ходить или ползать по поли, вызывая микроотверстия в пароизоляции. Как только в пароизоляции появятся отверстия, даже самые маленькие, она больше не будет функционировать как настоящая пароизоляция. По этой причине, в зависимости от почвенных условий, Americover рекомендует 10 мил и выше для долговременной парозащиты.

Другая проблема заключается в том, что полиамид, хранящийся в местных магазинах бытовой техники, часто бывает более тонким, неармированным и может быть сделан из переработанного или повторно измельченного поли.Regrind poly может содержать примеси, такие как грязь или влага. В то время как более тонкий пластик или измельченный материал могут быть приемлемыми для краткосрочного использования, только армированный первичный поли следует использовать для долгосрочных применений, таких как пароизоляция пространства для ползания. Правильно установленный первичный армированный полиэтилен должен прослужить 20 или более лет в подполье.

Выбор толщины пароизоляции в обходном пространстве

Есть два измерения, с которыми вы должны знать, выбирая полиуретан для пароизоляции пространства для ползания.«Мил» — это измерение толщины поли, а химическая вязкость — проницаемость для влаги.

  • Мил: Полиэтиленовая пленка измеряется в «милах». Мил равен 0,001 дюйма толщины. В нормах для жилых помещений часто указывается пароизоляция из армированного полиамида толщиной не менее 6 мил (0,006 дюйма). Тем не менее, Americover рекомендует 10 мил или выше для приложений, использующих пространство для обхода. Americover предлагает толщину до 20 мил.
  • Допуск: Показатель проницаемости показывает, насколько легко водяной пар проходит через материал.Чем ниже рейтинг химической проницаемости, тем менее проницаемый материал. Чтобы классифицировать как пароизоляцию, материал должен иметь рейтинг проницаемости 0,1 или ниже. Полиэтиленовая пленка толщиной 6 мил (0,06 перм) и более соответствует этому минимуму.

Выбор пароизоляции в обходное пространство

Толщина выбранного вами поли будет в основном зависеть от двух факторов:

  • Использование пространства для обхода (хранение, обслуживание и т. Д.)
  • Почва или материал на полу подполья

Во-первых, вам нужно выяснить, сколько полиэтиленовой пленки вам понадобится, чтобы покрыть пространство для ползания.Не забудьте получить достаточно материала, чтобы швы нахлестывались на 6–12 дюймов. Рулон шириной 6 футов эффективно закроет большинство фундаментных стен, но для пола рассмотрите возможность использования более широкого рулона. Вот как рассчитать общую площадь, которую вам нужно покрыть:

  • Стена = 2 x (длина + ширина) x высота
  • Пол = длина x ширина (не забудьте указать наложение от 6 до 12 дюймов).
  • Итого = стена + пол

Если в пространство для обхода планируется регулярно заходить для обслуживания, или если элементы будут храниться в пространстве для обхода, рекомендуется использовать более толстый поли, например, 12 мил.Минимальных 6 мил также недостаточно, если на полу подполья есть камни, корни или бетонные глыбы. Помните, что один разрыв или прокол в пароизоляции позволит влаге пройти сквозь него и сделает барьер менее эффективным.

Чтобы сэкономить деньги без ущерба для прочности, вы можете использовать более тонкий поли, такой как 6 или 8 мил, на стенах подполья, в то время как использовать более толстый поли на полу.

ПАРОБАРЬЕРНЫЕ МАТЕРИАЛЫ | Сохраняя тепло: материалы к справочнику

Рисунок 3-6 Герметизация распределительной коробки.

Изображение большего размера

Пароизоляция — важный компонент ограждающей конструкции дома, поскольку он обеспечивает некоторую защиту конструкции и изоляции от повреждений, вызванных воздействием влаги. Пароизоляция должна противостоять потоку водяного пара изнутри, быть прочной и располагаться на теплой стороне утеплителя. В некоторых случаях это может быть часть утеплителя или воздушного барьера. Он должен быть легким в установке и подходящим для других работ, выполняемых в доме.

Установите пароизоляцию для защиты всей поверхности утепленных стен, потолков и полов.Обратите особое внимание на все проходы, стыки и соединения (например, осветительные приборы, дюбели, выключатели и оконные рамы), а также на участки с повышенной влажностью, такие как ванные комнаты и кухни.

Обычно расположен на теплой стороне изоляции, пароизоляция также может быть установлена ​​частично в стене, при условии, что не более одной трети изоляционного качества стены находится на теплой стороне пароизоляции. (Для получения информации о правиле 1/3 — 2/3 см. Управление потоком влаги.)

Это значение теплоизоляции должно быть уменьшено до четверти или меньше в очень холодном климате или в зданиях с источниками высокой влажности, таких как бассейны. Как и воздушный барьер, пароизоляция может быть изготовлена ​​из различных материалов, включая существующие строительные компоненты, такие как фанера, OSB, краска или виниловые обои. В большинстве старых домов слои грунтовки и краски на масляной основе могут функционировать как адекватный пароизоляционный слой для стен и потолков.

Показатели пароизоляции

Эффективность пароизоляции (также известной как замедлитель диффузии пара) измеряется с точки зрения его проницаемости (проницаемости).Чем ниже рейтинг химической завивки, тем эффективнее будет гидроизоляционный барьер. К материалам, которые считаются эффективными пароизоляционными материалами, относятся полиэтилен, алюминиевая фольга, поламидная пленка (интеллектуальный барьер), краски на масляной основе и латексные пароизоляционные краски (различаются по типу и толщине, некоторым типам и толщине изоляции и даже некоторым виниловым обоям).

Советы и рекомендации по установке пароизоляции

Во время энергетического кризиса 1970-х годов укоренилось преобладающее мнение о том, что плотная герметизация стен и потолков пароизоляцией необходима для блокировки передачи тепла и снижения затрат на энергию.Однако вскоре было установлено, что, если герметизация не была абсолютной, влага, которая попала в герметичные стены, могла вызвать серьезные структурные проблемы и проблемы со здоровьем, такие как аллергические реакции на гниение плесени внутри стен. Хотя по-прежнему хорошей практикой является минимизация потерь тепла через стены, потолки и полы, теперь известно, что не менее важно правильно установить пароизоляцию и чтобы стены также могли «дышать».

Разрешение дебатов о пароизоляции

До сих пор ведутся споры о том, насколько необходимы пароизоляционные материалы, но консенсус становится все ближе.Большинство властей согласны с тем, что пароизоляция важна при определенных условиях, но не обязательно в качестве решения для всего дома для каждого дома. В обстоятельствах, когда условия внутри дома или офиса сильно отличаются от условий на открытом воздухе, водяной пар может проходить через полости стен и может задерживаться внутри, поэтому рекомендуется хорошо установленная пароизоляция. Пароизоляция также может быть важна для некоторых помещений с особенно высоким уровнем влажности.

Наука о движении влаги

Водяной пар может проходить через строительные материалы несколькими способами, включая прямую передачу и передачу тепла, но исследования показывают, что 98% переноса влаги через стены происходит через воздушные зазоры, включая трещины вокруг электрических приборов и розеток, а также зазоры вдоль плинтусов. .Таким образом, установка пароизоляции на поверхностях стен должна производиться одновременно с герметизацией этих воздушных зазоров в стенах и потолках, а также вдоль поверхностей пола.

Обратите внимание, что плохое выполнение пароизоляции может быть хуже, чем полное отсутствие усилий. Цель стратегии пароизоляции — предотвратить накопление влаги и повреждение строительных материалов. Неправильно установленный пароизоляционный слой может фактически задерживать влагу внутри стены, в то время как более пористая стена может эффективно дышать и менее подвержена долговременным проблемам с влажностью.Это состояние особенно проблематично, если пароизоляция установлена ​​как на внутренней, так и на внешней поверхности стен, поскольку такая стена вообще не может дышать.

Нужен ли мне пароизоляция?

Когда-то считавшиеся необходимыми для всего дома или офиса, теперь пароизоляция настоятельно рекомендуется только для определенных условий, а методы создания пароизоляции должны быть адаптированы к климату, региону и типу конструкции стен. Например, рекомендуемая пароизоляция в доме или офисе во влажном южном климате, построенном из кирпича, сильно отличается от пароизоляции в холодном климате в доме, построенном с деревянной обшивкой.Всегда обращайтесь к текущим рекомендациям местных норм при принятии решения об установке пароизоляции и о том, как это сделать. Избегайте установки внутренних пароизоляционных материалов там, где конструкция наружных стен уже включает материал с пароизоляционными свойствами.

Большинство авторитетов рекомендуют пароизоляцию в определенных ситуациях:

  • В помещениях с высокой влажностью, таких как теплицы, комнаты со спа или бассейнами, а также ванные комнаты, часто рекомендуются пароизоляция. Проконсультируйтесь с офисами строительной инспекции для получения местных рекомендаций.
  • В очень холодном климате использование полиэтиленовых пластиковых пароизоляционных материалов между изоляцией и внутренней стеновой панелью может быть полезным при условии, что все воздушные зазоры в любых полостях стены и потолка также будут заблокированы. Внешняя поверхность стены или полости пола должна оставаться проницаемой, чтобы позволить рассеивать любую влагу, которая попадает в полость стены.
  • В очень жарком и влажном климате может быть полезна внешняя пароизоляция, которая препятствует проникновению наружной влаги в стены.
  • Подземные стены и плиты перекрытия пропускают грунтовую влагу через бетонные стены или плиты. Пароизоляция бетонной поверхности обычно рекомендуется перед укладкой деревянных каркасов или напольных покрытий.
  • Подходящие помещения выигрывают от влагозащитного полиэтиленового барьера, размещенного непосредственно над обнаженной землей.

Советы по установке пароизоляции

Если пароизоляция гарантируется местными строительными практиками и рекомендациями норм, помните о следующих методах:

  • Здания должны соответствовать стандартам ASHRAE 62.2 или 62.1 для надлежащей вентиляции перед герметизацией полной пароизоляцией. Современные дома или офисы, которые плотно закрыты для обеспечения высокой энергоэффективности, также должны иметь теплообменники воздух-воздух или другие методы обеспечения хорошего обмена свежим воздухом
  • Не используйте непроницаемые пароизоляции там, где полупроницаемые или проницаемые материалы обеспечивают удовлетворительную работу. Методы строительства, которые позволяют материалам внутренних стен высохнуть, считаются лучшими, чем те, которые направлены на предотвращение проникновения влаги
  • Пароизоляцию обычно лучше всего устанавливать на той стороне стены, которая подвержена более высокой температуре и более влажным условиям: внутренняя поверхность в более холодном климате и внешняя поверхность в жарком влажном климате.
  • В существующих помещениях масляные краски или пароизоляционные латексные краски обеспечивают эффективный барьер для влаги.
  • Избегайте полностью непроницаемых барьеров, таких как полиэтиленовые или виниловые настенные покрытия, в помещениях с кондиционированием воздуха. Эта практика связана с появлением плесени в зданиях и другими проблемами качества воздуха.
  • Избегайте установки пароизоляции с обеих сторон конструкции. Стены и полости потолка в идеале должны иметь возможность высыхать в одном направлении, если другая сторона сооружена таким образом, чтобы предотвратить проникновение влаги.
  • Заделайте все трещины и отверстия в паронепроницаемой стене, чтобы заблокировать воздушные зазоры. Используйте специальную герметизирующую ленту для соединения листов, если используются полиэтиленовые листы. Полная блокировка воздуха необходима для обеспечения удовлетворительного барьера для влаги, а также для максимального повышения энергоэффективности стены.
  • Используйте акустический герметик из аэрозольной пены или герметизирующую ленту, чтобы заблокировать пространство вокруг электрических коробок у розеток, выключателей или потолочных светильников.

Рейтинг паропропускания

Чтобы помочь строителям контролировать влажность, различные строительные материалы классифицируются в соответствии с проницаемостью, и им присвоен рейтинг проницаемости .Используются различные рейтинговые системы, но одна из наиболее распространенных — это система проницаемости США.

Непроницаемые материалы — это материалы с допуском менее 1 США. Вот некоторые примеры:

  • Стекло
  • Листовой металл
  • Лист полиэтиленовый
  • Резиновая мембрана
  • Пароизоляционные краски
  • Фанера наружная
  • Фольгированная жесткая изоляционная плита

Полупроницаемые материалы рассчитаны на давление от 1 до 10 U.С. пермь. Вот некоторые примеры:

  • Необлицованный пенополистирол или экструдированный полистирол
  • 30-фунтовая бумага с асфальтовым покрытием (гудрон)
  • Фанера интерьерная
  • Крафт-бумага с битумным покрытием
  • Изоляционный войлок с фольгой или бумагой
  • Гипсокартон, окрашенный масляной или влагостойкой латексной краской

Проницаемые материалы имеют допуск 10 или выше по США. Вот некоторые примеры:

  • Гипсокартон неокрашенный (гипсокартон)
  • Стекловолоконная изоляция (без покрытия)
  • Целлюлозная изоляция
  • Доска обрезная
  • Бетонный блок
  • Бетонные плиты
  • Кирпич
  • 15-фунтовая бумага с асфальтовым покрытием (гудрон)
  • Обертка для дома

Водонепроницаемые материалы не всегда желательны, так как в некоторых ситуациях стене требуются проницаемые материалы, чтобы правильно дышать и избавляться от лишней влаги.Большинство экспертов не рекомендуют герметизировать стену с обеих сторон, так как это средство удерживает влагу и усугубляет проблемы, которые она создает.

Понимание пароизоляции | Журнал Architect

В сфере жилищного строительства достаточно противоречивых строительных технологий, неправильного применения продуктов, устаревших кодексов и рассказов старых жен, чтобы сбить с толку любого, кто ищет правильный способ строительства. И пароизоляция занимает одно из первых мест в этом списке. Немногие строители действительно понимают, как они работают и зачем их использовать.Путаницу усугубляет тот факт, что решение о том, следует ли вам устанавливать пароизоляцию, зависит от местоположения дома. К сожалению, это недоразумение может привести к катастрофическим сбоям конвертов и проблемам с плесенью.

Определены барьеры для воздуха и пара

Сначала я хочу прояснить распространенную путаницу между «пароизоляцией» и «воздушной преградой». Это недоразумение возникает из-за того, что воздух обычно содержит много влаги в виде пара. Когда насыщенный паром воздух перемещается из одного места в другое, пар перемещается вместе с ним.Хорошо установленный воздушный барьер контролирует как поток воздуха, так и поток влаги. Если вы искали еще одну причину, по которой следует уделять пристальное внимание правильной установке воздушных барьеров, то вот она.

Контроль движения воздуха должен быть вашим главным приоритетом в игре по энергоэффективности, а также обеспечивает отличный контроль влажности. Обращайте пристальное внимание на каждое место, где будет течь воздух, используя заглушки, прокладки и пену. Для получения дополнительной информации о правильном использовании воздушных барьеров посетите веб-сайты Building Science Corp.на www.buildingscience.com, Building America на www.buildingamerica.gov или Ассоциация воздушных барьеров на www.airbarrier.org.

При правильном определении пароизоляция сама по себе не контролирует движение воздуха; он контролирует движение влаги. Фактически, пароизоляция не является барьером; это замедлитель диффузии пара (VDR). VDR регулирует поток влаги изнутри или снаружи внутрь на молекулярном уровне. Эта функция контроля влажности происходит везде, где в конструкции используется VDR.Следовательно, в отличие от барьера для проникновения воздуха, VDR не обязательно должен быть сплошным, герметичным или без отверстий; Перфорация в VDR просто обеспечивает большую диффузию пара в этой области по сравнению с другими областями, где диффузия пара менее ограничена.

VDR оцениваются по уровню контроля диффузии пара, который они обеспечивают.

Способность материала задерживать диффузию водяного пара определяется его проницаемостью в единицах, известных как «проницаемость». Это мера количества частиц водяного пара, проходящих через квадратный фут материала в час при известной разнице давления пара.Любой материал с рейтингом проницаемости менее 0,10 считается замедлителем образования пара Класса 1.

Проблема с пароизоляцией

Первоначальная причина использования пароизоляции была хорошей: предотвратить намокание стен и потолков. На практике теперь мы понимаем, что когда VDR устанавливаются внутри сборки, они также предотвращают внутреннюю сушку. Это может привести к значительным проблемам с влажностью и появлением плесени; Проблемы возникают, когда стены намокают во время строительства или чаще всего в течение всей жизни дома.Эти циклы увлажнения могут быть вызваны потоком воздуха, утечками из окон, дисбалансом давления и множеством проблем, связанных с образом жизни. Места ниже уровня особенно уязвимы. Растущая сложность стеновых систем также усугубляет проблему.

Еще есть климатическая переменная. Большая часть заблуждений относительно правильного использования VDR является результатом исследовательских отчетов и анекдотической информации. Почти все эти исследования проводились в холодном климате и были сосредоточены на потоке пара изнутри наружу в зимние месяцы; в нем не учитывались ни движение пара в других климатических условиях, ни то, как поток влаги происходит снаружи внутрь при использовании кондиционирования воздуха во влажные летние месяцы.Когда влага течет из более влажной внешней среды в стенную систему в климате с кондиционированным воздухом, на охлаждаемом внутреннем VDR может образоваться конденсат. Вы можете видеть, что при использовании полиуретана с низкой проницаемостью возможна конденсация на этой поверхности.

Выбор оболочки может еще больше усложнить поток пара изнутри во внешнюю. Когда некоторые облицовочные материалы, такие как кирпич и традиционная штукатурка, намокают, они могут удерживать значительное количество воды и требуют более длительного времени сушки. В жаркую и влажную погоду влага втягивается внутрь, поскольку солнце нагревает эти поверхности, увеличивая давление пара на сборку.Это также может добавить нежелательной влаги. Лучшая стратегия для этого — вентиляция облицовки кладки и замена поли VDR продуктом с более высокой химической проницаемостью, например краской, которая позволит системе стен работать в течение сезона.

Воздух / пароизоляция должна умереть

ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ
Juste Fanou
Термины «воздушные барьеры» и «замедлители образования пара» (или «пароизоляция»), возможно, являются одними из наиболее плохо понимаемых концепций в строительной отрасли.Большинство специалистов в области строительства знают, что они необходимы, но часто не могут правильно разместить их в стеновых конструкциях. Также последствия неправильной установки этих материалов могут закончиться сбоями. Такое непонимание функций этих узлов привело к упрощению практических правил, подверженных неправильному применению (, например, , пароизоляция всегда находится внутри, а воздушный барьер всегда снаружи). По мере того, как производители вводят материалы с новыми свойствами и пытаются раздвинуть границы конструкции ограждающих конструкций зданий, крайне важно, чтобы отрасль согласовала терминологию для обозначения конкретных функций и назначения этих материалов, чтобы избежать путаницы и дорогостоящих ошибок.В этом отношении термин «воздух / пароизоляция» вводит в заблуждение, и его следует заменить более подходящей терминологией.

Краткая история

Фото © BigStockPhoto.com

Первые попытки повысить тепловой комфорт пассажиров в современной североамериканской конструкции с деревянным каркасом относятся к 1800-м годам. Внедрение «строительной бумаги» в виде пропитанного асфальтом войлока, также известного как оболочечные мембраны или атмосферостойкие барьеры (WRB), представляло собой раннюю попытку уменьшить смачивание стеновых конструкций и утечку воздуха (см. Книгу Building от 2017 г. Материалы: выбросы продуктов и опасность горения для здоровья , автор К.Гесс-Коса). Промышленность добилась дальнейших успехов в области характеристик оболочки в 1930-х годах с появлением теплоизоляции в полостях каркаса и на чердаках (для получения дополнительной информации прочитайте статью «Контроль тепла, воздуха и влажности в стенах канадских домов: обзор Историческая основа современной практики », М. Кониорчик и Д. Гавин, опубликованные в апрельском выпуске журнала Journal of Building Physics за 2008 г.) . Однако вскоре проявились нежелательные эффекты влаги в изолированных полостях.Традиционно окрашенные деревянные фасады начали страдать от отслаивания, образования пузырей и других повреждений покрытия. Как это является нормой в строительной отрасли, быстро последовала «игра виноватых», когда производители изоляционных материалов обвиняли производителей красок и наоборот, в то время как производители строительной бумаги оказались в середине (см. Статью «Возникновение диффузионной парадигмы»). в США », автор — У. Б. Роуз, опубликованный в книге 2003 г. Research in Building Physics: Proceedings of the Second International Conference on Building Physics , под редакцией Дж.V. J. Carmeliet, H. Hens, G. Vermeir). Только в конце 1930-х годов ученые начали исследовать движение влаги в строительных конструкциях. Их выводы, которые некоторые считают спорными или даже предвзятыми, пришли к выводу, что перенос водяного пара путем диффузии (процесс, описанный далее в этой статье) был ответственным за отслаивание краски от сайдинга (многие возражают против теории диффузии пара Фрэнка Роули, которая привела к введение пароизоляции в полостях стен и вентилируемых чердачных помещениях не было обосновано здравой наукой.Многие специалисты в этой области считают это исследование необъективным, поскольку оно финансировалось изоляционной промышленностью как способ защиты от претензий, что изоляция ответственна за конденсацию в полостях и отслаивание краски). Эти выводы привели к принятию нормативных актов, которые обязывали использовать мембраны с низкой паропроницаемостью в строительных проектах в начале 1950-х годов. Это было рождение «пароизоляции», и промышленность отметила его решение проблемы влажности, облицовав стены полиэтиленом (PE).Якобы проблема отслоения краски решилась, по крайней мере так казалось.

Рисунок 1: Классификация материалов по паропроницаемости; ссылка на статью «Строительная наука» Дж. Лстибурека.
Изображение предоставлено J. Lstiburek

Тем не менее, проблемы с влажностью сохранялись. Дальнейшие исследования в середине 1980-х годов показали, что неконтролируемая инфильтрация воздуха, а не диффузия пара, была самой большой причиной накопления влаги в полостях.Однако к тому времени популярность ныне повсеместных методов «6-mil poly» вдохновила на герметизацию уже знакомого пароизоляции. Цель заключалась в том, чтобы превратить его в эффективную воздушную преграду.

Эти попытки герметизировать пароизоляцию можно охарактеризовать как возникновение «воздушно-пароизоляции», как понятия, так и термина. Концептуально «барьер для воздуха / пара» был материалом, предназначенным для решения проблем как инфильтрации воздуха, так и диффузии пара. Его сторонники верили в герметизацию стыков полиэтиленовых листов для создания материала двойного назначения, приписывая дополнительные свойства контроля инфильтрации воздуха уже популярному полиэтилену толщиной 6 мил.«Эта популярность, возможно, и стала причиной его большой привлекательности и широкого распространения в отрасли. Однако со временем идея «герметизации полиэтиленом» была быстро оставлена, и специалисты-строители исследовали другие материалы для обеспечения герметичности. Было ясно, что полиэтилен не является достаточно прочным материалом, чтобы противостоять воздействию порывов ветра и давления. Более того, отсутствие долговечности усугублялось внутренними трудностями, связанными с установкой полиэтилена в непрерывном режиме.

Даже если концепция полиэтиленового барьера «воздух / пар» постепенно исчезла, термин продолжал использоваться.По совпадению, время шло, казалось, что общее понимание функций этих элементов управления воздухом и влажностью было еще больше омрачено этим смешанным термином. Эти когда-то отличные друг от друга материалы постепенно превращались в абстрактные пунктирные линии, которые, как все знали, требовались для деталей конструкции, но никто до конца не понимал, где и почему.

Понимание пароизоляции | Зеленый кокон

В своей работе мы сталкиваемся с множеством «интересных» изоляционных работ.Но, прежде чем начинать какой-либо проект, необходимо понять пароизоляцию. Таким образом обеспечивается правильная установка утеплителя.

Многие домовладельцы хотят сэкономить, поэтому устанавливают утеплитель самостоятельно. Кроме того, домовладельцы нанимают лицензированных профессионалов, не обученных правильной установке теплоизоляции. Но самая большая ошибка, которую мы видим, — это установка двойной пароизоляции — установка покрытия (обычно пластикового) поверх уже существующей пароизоляции.

Что такое пароизоляция

«Функция пароизоляции — задерживать миграцию водяного пара.Кроме того, пароизоляция обычно не предназначена для замедления миграции воздуха. Это функция воздушных преград »[1]

Кроме того, пароизоляция — это любой материал, используемый для защиты от влаги, обычно пластик или лист фольги. Кроме того, эти листы противостоят диффузии влаги через стены, пол, потолок или кровельные конструкции зданий [2].

Что делает пароизоляция?

Пароизоляция устанавливается вдоль, внутри или вокруг стен, потолков и полов.Конечно, это сделано для предотвращения распространения влаги и потенциального повреждения водой. Кроме того, настоящий пароизоляционный барьер — это барьер, который полностью предотвращает прохождение влаги через его материал, что измеряется «скоростью прохождения водяного пара». Если материал имеет пористость, но барьер по-прежнему обеспечивает защиту от влаги, его называют замедлителем диффузии пара. [3] Кроме того, замедлители образования пара обычно называют просто барьерами для пара. Терминология барьеров менее точна, потому что в большинстве случаев продукты не полностью блокируют пар.

Что можно использовать в качестве пароизоляции?

Для создания эффективных пароизоляционных материалов доступно большое количество материалов, в том числе:

  • Эластомерные покрытия
  • Алюминиевая фольга
  • Алюминий на бумажной основе
  • Лист полиэтиленовый пластиковый
  • Крафт-бумага с асфальтовым покрытием
  • Пленка металлизированная
  • Краски-замедлители парообразования
  • Изоляция из экструдированного полистирола или пенополистирола с фольгой
  • Фанера наружная
  • Мембрана кровельная листовая
  • Стекло и металлические листы [4]

Где мне нужна пароизоляция?

IRC делит Северную Америку на восемь климатических зон.Это делается для того, чтобы определить, когда в здании может потребоваться пароизоляция. Кроме того, IRC рекомендует строителям устанавливать пароизоляцию класса I или II на внутренней стороне домов в климатических зонах 5 и выше, а также в зоне Marine 4. Однако, если вы кондиционируете свой дом летом, вы можете задерживать конденсат на крыше или стенах в течение части года. В этом случае обязательно используйте пароизоляцию класса II на внутренней стороне стены. Кроме того, в интерьере можно использовать пароизоляцию класса III.Соедините это с изоляцией из аэрозольной пены на внутренней стороне стены или крыши. Кроме того, при строительстве в жарком и влажном климате (зоны с 1 по 3) у вас не должно быть пароизоляции на внутренней стороне стены. [5]

Основная проблема

Неправильное использование пароизоляции приводит к увеличению проблем, связанных с влажностью. Первоначально пароизоляция предназначалась для предотвращения намокания узлов. Однако они часто препятствуют высыханию сборок. Подобно усадьбе, пароизоляция, установленная внутри сборок, предотвращает засыхание сборок внутрь.Это может быть проблемой в любом помещении с кондиционером, в помещении под землей или в пароизоляции снаружи. Кроме того, проблема может возникнуть при укладке кирпича поверх строительной бумаги и паропроницаемой оболочки. [6]

Строительство в холодном климате с соблюдением строительных норм

Требуется ли пароизоляция в Новой Англии? Да! Не говоря уже о том, что ваш первый шаг в качестве застройщика — это проконсультироваться со своими местными и государственными строительными нормами. Во многих странах с более холодным климатом Северной Америки пароизоляция является обязательной частью строительства.

Вы можете обнаружить, что пароизоляция часто не требуется в более теплом климате. А при установке в неподходящем климате или не на той стороне стройматериалов пароизоляция может принести больше вреда, чем пользы. Точно так же это обстоятельство может предотвратить высыхание водяного пара, что, в свою очередь, может вызвать гниение и плесень. [7]

Если вы не знаете, какие здания подходят для вашего района, спросите эксперта!

Двойная пароизоляция — не делайте этого!

Что такое двойная пароизоляция? Изоляция на фото А была установлена ​​неопытным установщиком изоляции.Дополнительно коричневая бумага на стекловолокне является пароизоляцией. Покрыв все полиэтиленом, установщики создали двойную пароизоляцию. Не говоря уже о том, что такой тип установки создает в будущем проблемы с влажностью, плесенью и гнилью. Более того, на фото B целлюлозная сетка не обвязана и начинает провисать. Кроме того, скобы рвутся, и потолок может упасть в любой момент!

В заключение, если вам нужна изоляция, позвоните нам и мы решим, какой тип лучше.Позвольте нам думать за вас!

[1] Строительная наука (2011). BSD-106: Понимание пароизоляции. Получено с сайта buildingscience.com.
[2] Википедия (2019). Пароизоляция. Получено с en.wikipedia.org.
[3] Energy.gov (2019). Пароизоляция или замедлители диффузии пара . Получено с energy.gov.
[4] Energy.gov. Пароизоляция
[5] Fine Home Building (2009). Как это работает: Vapor Drive . Извлечено из мелкого домостроения.com.
[6] Строительная наука, BSD-106.
[7] IKO Commercial, (2019). Введение в пароизоляцию и пароизоляцию . Получено с iko.com.

Воздушный барьер против парового барьера: в чем разница

Воздушные барьеры предназначены для предотвращения попадания потока воздуха и связанной с ним влаги в ограждающую конструкцию здания. Пароизоляция предназначена только для предотвращения переноса влаги за счет диффузии пара в ограждающую конструкцию дома. Примечательно, что количество влаги, переносимой воздушным потоком, от 50 до 100 раз больше, чем количество влаги, переносимой диффузией пара, что делает потребность в высококачественном воздушном барьере, таком как Barricade ® Building Wrap , более существенным, чем пароизоляция.

Кроме того, непроницаемые пароизоляционные барьеры могут вызвать образование плесени и гниения, в то время как проницаемые воздушные барьеры, такие как Barricade ® Building Wrap, обеспечивают испарение влаги внутри стеновой системы дома.

Воздушные барьеры 101

Что такое воздушный барьер?

Международный кодекс энергосбережения 2018 (IECC ® ) определяет воздушный барьер как один или несколько материалов, соединенных непрерывным образом для ограничения или предотвращения прохождения воздуха через тепловую оболочку здания и ее сборки.Материал воздушного барьера также должен иметь воздухопроницаемость не более 0,02 л / (с · м²) при перепаде давления 75 Па (0,004 куб. Фут / фут2 при перепаде давления 1,56 фунта / фут2) при испытании в соответствии с ASTM. E 2178. Воздухопроницаемость — это количество воздуха, проникающего через продукт, в то время как утечка воздуха — это воздух, который проходит через зазоры и отверстия.

Для чего нужен воздушный барьер?

Назначение эффективного воздушного барьера — регулировать микроклимат в помещении, останавливая перенос воздуха и связанной с ним влаги между интерьером и экстерьером дома.Воздушный барьер должен также противостоять действующим на него перепадам давления воздуха. Прекращение переноса влаги внутрь стенового блока имеет решающее значение, потому что, когда теплый пар касается холодных внутренних стен, пар превращается в жидкость за счет конденсации. По сути, воздушные барьеры сводят к минимуму или ограничивают потери и приток тепла за счет теплопроводности, конвекции и излучения.

  • Теплопроводность — это действие более горячих молекул, движущихся по направлению к более холодным молекулам. Эффективное значение R системы стен здания — это ее сопротивление теплопроводности.
  • Тепловая конвекция — это поток тепловой энергии из более теплого помещения в более холодное за счет потока жидкостей (обычно жидкостей и газов).
  • Тепловое излучение передает тепло от теплых мест к прохладным помещениям с помощью электромагнитных волн, которые в основном представляют собой солнечное излучение.

Основные требования к качественной и эффективной воздушной преграде
  1. Долговечность в течение ожидаемого срока службы дома
  2. Непрерывно по всему ограждению здания
  3. Непроницаемый для воздушного потока
  4. Прочность и жесткость, позволяющие противостоять силам, которые могут действовать на них во время и после строительства

Кодекс требований к воздушным преградам

Жилые дома

IRC 2018 ( Таблица R402.4.1.1 ) говорится, что в ограждающей конструкции здания должен быть установлен непрерывный воздушный барьер, внешняя тепловая оболочка содержит непрерывный барьер, а разрывы стыков в воздушном барьере должны быть герметизированы.

Коммерческие здания

IBC 2018, раздел C402.5.1 , критерии воздушного барьера для коммерческих зданий (требуются для всех климатических зон, кроме 2B), требуют непрерывного воздушного барьера по всей тепловой оболочке здания. Кроме того, разрешается размещать воздушные заслонки внутри или снаружи оболочки здания, внутри узлов, составляющих оболочку, или в любой их комбинации.Кроме того, воздушный барьер должен соответствовать разделам C402.5.1.1 и C492.5.1.2 .

Пароизоляция 101

Пароизоляция предотвращает диффузию пара через строительные материалы. В строительной науке диффузией пара управляет второй закон термодинамики. Проще говоря, влага течет из области с более высокой концентрацией в область с более низкой концентрацией влаги или из более теплого в более прохладное пространство внутри строительного материала, такого как гипс и изоляция.

Сравнение пароизоляции и пароизоляции

Важно не путать пароизоляцию с ингибиторами парообразования. Пароизоляция останавливает диффузию пара, а замедлитель пара лишь замедляет диффузию пара. Важно отметить, что метод осушителя по стандарту ASTM E 96 используется для определения способности материала ограничивать количество влаги, проходящей через него, что определяет его класс замедлителя пара (барьера).

  • Класс I — пароизоляция: 0,1 доп.
  • Класс II — это замедлитель образования пара: 0,1 <доп. <1,0 доп.
  • Класс III — замедлитель образования паров: 1,0 <допуск <10 допусков

Исторически пароизоляция (обычно полиэтилен) размещалась на внутренней изоляции стен и потолка, чтобы предотвратить разделение пара на стеновые системы в зимние месяцы, когда внутри дома теплее, чем воздух внутри стеновой системы.

Нужны ли пароизоляции стеновой системе?

Распространение пара — второстепенное значение при проникновении влаги в стенную систему

В исследовании 2018 года * из Дании изучалось влияние проливного дождя и диффузии пара на движение влаги и тепла через гигроскопичную и проницаемую оболочку здания.Гигроскопичная оболочка здания способна впитывать и накапливать влагу из окружающего воздуха. Проницаемая оболочка здания обеспечивает диффузию пара.

Исследование пришло к выводу, что наличие пароизоляции не привело к значительным изменениям влажности стенового блока. Кроме того, из четырех механизмов переноса влаги в стеновую систему, потока жидкости, капиллярного всасывания, движения воздуха и диффузии пара, диффузия пара представляет собой наименьшую величину и поэтому с меньшей вероятностью нанесет серьезный ущерб дому.

Проблемы с пароизоляцией

Пароизоляция не только не помогает системе стен оставаться сухой, но и может повредить целостность дома. Если влага проникает в стеновую систему, низкая проницаемость пароизоляции может препятствовать высыханию стеновой системы. Недостаточная сушка внутри ограждения здания может привести к появлению плесени и гнили, которые вредны для здоровья жителей дома и могут повредить целостность дома.

Кодекс требований к пароизоляции

Использование пароизоляции внутри или снаружи здания зависит от климатической зоны .Международный строительный кодекс 2018 года (IBC) 1404.3 и Международный жилищный кодекс 2018 года (IRC) R702.7 предписывают использование пароизоляционных материалов и замедлителей схватывания класса I или II на внутренней стороне каркасной стены в климатических зонах 6,7,8 и морской 4. Южные климатические зоны 1, 2 и 3 не требуют пароизоляции и замедлителей схватывания.

Устранение необходимости в пароизоляции с помощью защитной пленки

Barricade Building Wrap представляет собой непрерывный воздушный барьер, покрывающий всю ограждающую конструкцию дома.Баррикадная пленка также непроницаема для воздушного потока, долговечна в течение ожидаемого срока службы дома и обладает жесткостью и прочностью, чтобы противостоять силам, которые действуют на нее во время и после строительства.

  1. Barricade Wrap — это система непрерывного воздушного барьера, которая контролирует перенос воздуха, тепла и влаги, а также воздуха, что обеспечивает здоровый, комфортный, энергоэффективный, комфортный и прочный дом. Важно отметить, что Barricade Wrap соответствует и превосходит требования к воздушному барьеру IECC R402 2018 года.4.1 и C402.5.1 .
  2. Barricade Wrap с рейтингом стойкости 11 США согласно тесту ASTM E96, проницаем для влаги. Стандарт требует домашнего обертывания с пятью химическими завивками или выше.
  3. Barricade ® Обертка долговечна благодаря устойчивости к холоду, УФ-лучам и влаге.
    • Термостойкость Barricade: AC38 Раздел 3.3.4: (Испытание на изгиб на холодном оправке) гарантирует, что продукт не будет трескаться при низких температурах.
    • Barricade Wrap может выдерживать без повреждений четыре месяца ультрафиолетового излучения.
    • Barricade Wrap проходит все эти испытания на водонепроницаемость: ASTM D779 (испытание на лодке), CCMC 07102 (испытание в водоеме) и метод испытаний 127 AATCC.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *